
Shadow Attacks: Automatically Evading System-Call-Behavior
Based Malware Detection

Weiqin Ma, Pu Duan, Sanmin Liu, Guofei Gu and Jyh-Charn Liu

Department of Computer Science and Engineering, Texas A&M University
 College Station, TX, USA 77843-3112

{weiqinma ,dp1979,sanmin,guofei,liu}@cse.tamu.edu

Abstract. Contemporary malware makes extensive use of different techniques such as
packing, code obfuscation, polymorphism, and metamorphism, to evade signature-based
detection. Traditional signature-based detection technique is hard to catch up with latest
malware or unknown malware. Behavior-based detection models are being investigated
as a new methodology to defeat malware. This kind of approaches typically relies on
system call sequences/graphs to model a malicious specification/pattern. In this paper,
we present a new class of attacks, namely “shadow attacks”, to evade current behavior-
based malware detectors by partitioning one piece of malware into multiple “shadow
processes”. None of the shadow processes contains a recognizable malicious behavior
specification known to single-process-based malware detectors, yet those shadow
processes as an ensemble can still fulfill the original malicious functionality. To
demonstrate the feasibility of this attack, we have developed a compiler-level prototype
tool, AutoShadow, to automatically generate shadow-process version of malware given
the source code of original malware. Our preliminary result has demonstrated the
effectiveness of shadow attacks in evading several behavior-based malware
analysis/detection solutions in real world. With the increasing adoption of multi-core
computers and multi-process programs, malware writers may exploit more such shadow
attacks in the future. We hope our preliminary study can foster more discussion and
research to improve current generation of behavior-based malware detectors to address
this great potential threat before it becomes a security problem of the epidemic
proportions.

Keywords: behavioral detection, malware evasion, shadow attack, system call
obfuscation

1 Introduction

Malware, such as viruses, worms, trojan, spyware, rootkits, and botnets, are a prevalent
and severe threat to Internet security. Malware writers have developed sophisticated
techniques to evade existing signature-based detection tools. These evasion techniques include
packing, code obfuscation [20], polymorphism, and metamorphism [23]. These techniques
generate different variants of a malware program, i.e., every instance looks different
(syntactically) but still maintains the same function (semantically). To nullify those evasion
techniques defenders began to develop countermeasures [1][3][12][19][24] that aimed to
recognize malware based on their behaviors, which are typically characterized by
sequences/graphs of system calls since system calls are inevitable interaction interfaces
between applications and OS. This behavior based solution detects malicious behaviors of
malware families by matching suspicious system calls with existing malicious behavior
specifications built on certain system call sequences or graphs [1][3][8][30]. Thus this

behavior-based detection solution is more robust and hard to evade by using traditional
attacking techniques.

We believe that knowing the limitations of the contemporary behavior-based malware
detection research is an important problem. In this paper, we propose a new class of attack,
“shadow attack”, to counter behavior-based malware analysis by splitting critical system call
sequences/graphs of malware and exporting them to separate processes. Specifically, shadow
attacks create shadow process communication (SPC) channels between the rewritten malware
and its shadow processes to achieve the original malicious functionalities. As of writing of this
paper, most behavior-based malware detectors are designed based on malicious specifications
in terms of system call sequences/graphs of individual single-process program (or these with
simple inheritance/fork relationships). It is worth noting that the practically used system call
sequence/graph behaviors are rarely just a single system call because that will have high false
positive rates as likely many normal programs could use the same single system call with
similar parameters as a malware does. Therefore, these behavior-based malware detectors
could hardly detect shadow processes because they only contain small segments (e.g., just one
system call) of the malicious behavior of malware.

As behavior-based malware detection becomes more prevalent, understanding its
weaknesses and evasion vectors is very important to improve its resilience. We investigate the
feasibility of indirect, implicit SPC design so that explicit in-host SPCs can be concealed with
mixed implicit chains or even with the help of remote network coordination. We also adopt
the technique proposed in [22] to hide local SPC among shadow processes by transforming
data dependence to control dependence to evade dynamic information flow and data tainting
based detections [25]. Given the myriad collections of process partition and coordination
constructs, our study unveils the potential evasion vectors of this attack.

We have developed a compiler-level prototype tool, AutoShadow, for malware writers to
automatically make source to source and source to binary transformation of C/C++ based
malware codes. We applied AutoShadow to several real-world malware examples and found
that our technique can successfully export critical system calls into shadow processes. Our
preliminary results show that shadow processes can evade the detection from real-world
behavioral detection/analysis tools such as Norman Sandbox [28].

In short, this paper makes the following contributions:
• We present a new, general class of attacks to conceal malware behaviors in

multiple shadow processes and provide a systematic and in-depth study. Shadow attacks can
be automated for partition and export of critical system calls or other functions into shadow
processes. This kind of new attack can help us better understand the limitation of
existing behavior-based malware detection techniques.

• We develop a compiler-level prototype system, AutoShadow, to demonstrate the
practicality of automatic shadow attacks using several real-world malware samples.

• Experimental results suggest that shadow attacks can effectively conceal behaviors of
malware and evade several current behavioral detection solutions. Although we provide some
defense insights, the rich functionalities of SPC give malware writers a new ground to protect
their properties. We hope this study can foster more discussion and research efforts to address
this new class of attacks before they elevate to large scale malware outbreaks.

2 Problem statement

2.1 Problem Formulation & Illustration

Follow what current behavioral detection approaches do, we model program behaviors at the
system call level. That is, the behavior of a program is represented by the sequence of system
calls, their I/O parameters and data. The behaviors of most malware can be tied to their system
call sequences/graphs. However, when a shadow attack is added as a part of the malware, this
sequence/graph is broken. Table 1 lists some basic notations that will be used in the rest of the
discussion.

Table 1. Notations of our model

Description Set Instance
process P = (p1, …, pn) ∀ i ∈ [1,…,n], pi ∈ P
process state Q = (q1, …, qm) ∀ i ∈ [1,…,m], qi ∈ Q
system call S = (s1, ..., sk) ∀ i ∈ [1,…,k], si ∈ S

Table 2. System Call Relationship

Symbol Description
si ∧ sj both si and sj happen, si, sj ∈ S
si ∨ sj either si or sj happen, si, sj ∈ S
si → sj si happens before sj

We assume that a system consists of n processes P = (p1, …, pn). Each process can be in
any state of Q, which represents the state of process resources such as memory, CPU, file, and
network. ∀ i ∈ [1,…,l], si ∈ S denotes a system call. Table 2 lists different relationships
between two system calls. γ denotes a set of relation operators between two system calls, i.e.,
γ= {∧,∨,→}. We define a malware specification as M = s1γs2γs3。。。, i.e., a set of sequence
and parameter/data dependence relations of system calls.

Fig. 1. Malware specification graph of download-execution: recv ∧ open → write → exec

Figure 1 shows a typical system call sequence of a malware specification which attempts to
download an executable file from the Internet and then execute it [1], such as “egg”
downloading and infection.

If an execution trace of a program p is denoted by Tp, Tp = s1 → s2 →…→sn. We define
sub(Tp) as any possible sub-sequence of Tp. Then for a behavior-based malware detector, we
define a detection function

⎩
⎨
⎧

∈∀∉
∈∃∈

=
]...1[M,)(Tsub,False
]...1[M,)(Tsub True,

 Detect(p)
pi

pi

ni
ni

Definition: A Shadow Attack can be regarded as a program transformation function SAp:
given a program p and some malware specifications M as inputs, SAp will generate a multiple-
process program p’ with two properties: (i) Detect(p’)=False while Detect(p)=True, (ii)p’ has
the same functionality as p.

00q

01q

02q

2s

1sΔ

2sΔ

1s

00q

01q

02q

1sΔ 1s

10q

2s

11q

2sΔ

2sΔ

Fig. 2. Illustration of a shadow attack

Figure 2 illustrates how the functionality of a program remains the same when its system
call sequence is exported to shadow processes. That said, the ensemble of shadow processes
could achieve the same state as the original process had when same input parameters, output
parameter values and return values are transferred appropriately between shadow processes.
Here, the left side, P0, is the original program, while the right side, P0’ and P1’, is the
transformed program. qij denotes the state of process Pi for ∀ i ∈ [0, 1] and j ∈ [0, 1, 2], si
denotes system call. We further define Δsj as the impact of sj over the environment including
the changes to output parameters, return values and changes to system resources. Through
transferring the same input parameter from P0’ to P1’, and transferring the output parameter
value and return value from P1’ back to P0’, the ensemble of P0’ and P1’ will achieve the same
state as P0 had.

2.2 Bootstrapping Shadow Attacks

As illustrated above, a shadow attack is essentially a multi-process malware program.
Executing multi-process shadow attack takes more elaborated steps than a single process
attack. An important question is then how to get this multi-process malware executed on a
single victim machine (i.e., the bootstrapping procedure)? Actually there are many ways to
accomplish this. Here we provide two example scenarios to demonstrate it.
• The partitioned binaries can be spawned from one auxiliary process. For example, the

partitioned binaries can be compressed into a self-extraction binary using compression tools.
The advantage of this method is that malware can be easily and efficiently spread. The
disadvantage is that the processes can be grouped or correlated relatively easily.
• Web-based malware infection is one of the most popular malware infection vectors

nowadays. The shadow processes can be (drive-by) downloaded separately into the target
machine and then executed separately. This approach is practical. Nowadays many Internet
browsers, such as Google Chrome, Microsoft Internet Explorer, are all implemented in
multiple processes. In such an environment, malware can be downloaded by different

processes via the same (or different) malicious URLs and executed separately. Correlation of
multiple shadow processes will likely be harder.

Although we give two example scenarios above, we note that with the increasing popular
use of multi-process programs, and dynamic, complex and variant existing infection vectors,
multi-process malware is very feasible with many possibilities to arrive at end users.

3 Shadow attack design

In principle, a shadow attack can export any critical system call in a malware specification to
different shadow processes so that any such specification-based malware detector will be hard
to detect it. One of the key questions in designing such a shadow attack is how to coordinate
these shadow processes so that they can still accomplish the original functionality as a whole
system. In this section, we first show the general architecture of shadow attack malware. We
discuss how we can design Shadow Process Coordination/Communication (SPC) with
different levels of sophistication, flexibilities and stealthiness. In particular, we show the
design of indirect, implicit local SPC using remote network coordination. We also discuss to
hide local SPC from taint-based data dependence tracking among processes. We leave detailed
discussion on how to automatically partition a given malware code to its shadow-process
version to next section.

3.1 Architecture of Shadow Attack Malware

The design space of Shadow Process Coordination/Communication (SPC) includes covert
channel communication [14] like covert cache [31] and branch predictor [10], and other
traditional communication approaches like Inter-Process Communication (IPC) [32],
environment variables, files and registries. In our shadow attacks, we mainly target to export
critical system calls from their original process/code to new generated (shadow) processes.

1s

2s

1s

2s

Fig. 3. Architecture of Shadow Attacks

For example, in Figure 3, two critical system calls are initially in process1. We export s1
and s2 to two processes process2 and process3, respectively. Then, process1 communicates
with process2 and s1 is executed in process2. process2 then communicates with process1 to
return the results of s1. The same procedure is used to execute s2. As a result, the functionality
of process1 is maintained since both s1 and s2 are executed in the original order.

Using this shadow attack, the previous presented download-then-execute malware example
(in Figure 1) can be transformed to the shadow process version illustrated in Figure 4.

Fig. 4. Shadow attack version of example shown in Fig. 1

Our shadow attack uses marshalling [33] to transfer objects between two separate
processes. Basically, there are two ways to transfer a file descriptor in Unix: Unix Domain
Socket and Stream Pipe [32]. In addition, some general in-host communication mechanism
can transfer file descriptors between processes as proposed in [16]. In Windows, at least two
ways can be used to transfer socket handlers: WSADuplicateSocket()—a function in the
Windows Socket 2 library in the context of the source process which created the socket;
Win32 DuplicateHandle() function.

3.2 Hiding Local SPC through Remote Network Coordination

1s

2s
1s 2s

Fig. 5. Hiding SPC through Remote Network Coordination

To make local shadow processes’ communication harder to be noticed, we also design
indirect/implicit SPC through remote network coordination, i.e., we coordinate local shadow
processes via outside stepping nodes. As shown in Figure 5, we export critical system calls s1
and s2 from process1 to process2 and process3, respectively. process1 communicates with an
outside host A through network channels. This host A then communicates with another host B
which then communicates with process2 and process2 executes s1. After the execution,
process2 communicates with process1 through other outside hosts (A and B) to get results of
s1. Similar procedure is taken when s2 is executed in process3. The advantage is that it is
difficult to detect local SPC links between local processes because there is no direct
observable connection. These local processes also do not have network-level correlation
because they talk to different remote machines. In this way, it is a very challenging task to find
their relationship of different local processes that coordinated through different networks.

3.3 Further Discussion on SPC Design Space

A plurality of in-host and network based coordination and communication approaches exist on
both Linux/Unix and Windows operation systems. On Linux/Unix, communication methods

include message queues, semaphore sets, Unix domain sockets, and shared memory [32]. On
Windows, communication methods include Clipboard, COM, DDE, File Mapping, Mailslots,
Pipes, RPC, shared memory Windows Sockets and web services. Our shadow attack utilizes
communication methods for data/parameter communication and synchronization between
processes. Next we use the following examples to illustrate functionality, advantages, and
disadvantages of some communication methods:
(1) Unix domain sockets: Sockets transfer data between processes using buffers in the kernel

memory. A process can exchange a file descriptor to another process using sendmsg() and
recvmsg(). The file descriptor is related to process migration and socket migration. For
example, the technique used in MSOCK [14] can be used for socket migration between
two processes.

(2) Shared memory: When there is not much data type conversion in the shared data
between processes, shared memory methods have better performance compared with
other SPC methods (e.g., pipe and sockets). We can utilize certain techniques, e.g.,
mapping physical pages to two distinct virtual addresses, to complicate the detection of
the use of shared memory. On the other hand, shared memory method can only be used in
a single machine, while other SPC methods may be used on different machines in a
network.

(3) SOAP: Simple Object Access Protocol (SOAP) can be used for data communication or
calling methods in web services through the Internet. In SOAP, data is transmitted in
XML files. The advantage of this approach is that it can easily pass through many
firewalls since XML files can be transmitted through standard HTTP requests. The
disadvantage is that XML files in SOAP use more bandwidth and memory as compared
with direct data access methods like shared memory.

In addition to these well-known SPC mechanisms, one can easily use other more advanced
SPC approaches (e.g., covert channels), especially mixing of different SPC mechanisms, to
complicate the detection of SPC. Various covert channels have been proposed before. In [31]
the authors demonstrate that shared access to memory caches can provide an easily used high
bandwidth covert channel between threads. While in [10] the authors introduce a Simple
Branch Prediction Analysis (SBPA) attack which analyzes the CPU’s Branch Predictor states
through spying on a single quasi-parallel computation process.

1s

Fig. 6. Mixed, Indirect, Implicit SPC Chain

To build a mixed and indirect SPC Chain, as shown in Figure 6, we take out the critical
system call s1 from process1 and place it in process2. To provide the communication between
process1 and process2, we let process1 communicate with the SPC method file at the point
right before the execution of s1. Then file communicates with shared memory, shared memory
communicates with socket and so on, until we reach process2. After the execution of s1, we
return to process1 at the point right after the execution of s1, based on the communication
provided by the same SPC mechanisms. The advantage of this mixed implementation of SPC

mechanisms is that it is more difficult to detect the hybrid communication between process1
and process2. In this communication, because many SPC objects, files, or resources are also
used by other regular programs, it is challenging for detectors to differentiate the partitioned
malwares from other regular programs.

Another aspect of shadow attack is that it may significantly increase the resource
requirements for tracing and detection of multi-process applications. Because interleaving of
multiple processes could lead to path explosion, the detection of a specific behavior would
become significantly more difficult.

3.4 Hiding SPC from Information Flow Tracking

In our attack, the system calls in multiple processes usually carry the same parameter data
(e.g., file name) to fulfill the malware’s functionality. A possible technique to detect related
processes is to correlate them by tracking the information flow, e.g., taint the system call
parameter (e.g., file name) and track the data dependence [25]. However, these techniques are
mainly used in offline analysis instead of real-time detection because of their high overhead.
In addition, we can systematically transfer data dependence into control dependence [22]
through an automated source code rewrite procedure. This kind of technique is particularly
well suited for evading taint-analysis-based detection.

We first use two simple examples to introduce control flow dependence, which can be
categorized by two types: explicit control flow dependence and implicit control flow
dependence.

Explicit control flow:
if x = = a
 y = a
Implicit control flow:
for (int i = 0; i<255; i ++) {
 tmp = 1;
 if (x! = j)
 tmp = 0;
 if (tmp = = 1)
 y = j;
}

Then we show how to use the idea of control flow to hide the data dependence of different
types of data in system calls, e.g., char, string, int, struct. We use an example to illustrate
how to transmit the value of a char type parameter x to another char type parameter y without
revealing their data dependence relationship.

char Convertchar(char x)
 char y;
 for (int i = 0; i<255; i ++)
 {
 if (x = = i)
 {
 y = i;
 break;
 }
 }
return y;

We can use the same idea to transmit the value of a string parameter x to another string
parameter y by applying control flow to each character in the string.

char * ConvertString (char * x, int xlength)
{
 char * y = new char[xlength];
 for (int i = 0; i < xlength; i ++)
 {
 y[i] = ConvertChar(x[i]);
 }
}

For numeric types, e.g., int or float in C or C++, we can first convert them into a string
type. Then we use the string-based control flow transformation as shown above and convert
the string back into a numeric type after transformation. For struct type parameters, we can
follow a similar procedure because they are constructed with int and string parameters.

4 Automating shadow attack

We have implemented a prototype tool AutoShadow as a proof of concept to automate shadow
attacks, i.e., it can automatically generate a shadow-process version of malware given an
original malware source code. AutoShadow is built on the intermediate representation (IR)
bytecode using compiler frameworks such as LLVM [2] and Phoenix [21]. We selected
LLVM because of its mature features in Linux. AutoShadow analyzes source code and locates
critical system calls to launch the shadow attack. For the Phoenix based example, some
manual patching was done to demonstrate the feasibility.

4.1 AutoShadow Design Architecture

Fig. 7. AutoShadow Design Architecture

Figure 7 shows the design architecture of AutoShadow. It takes malware source code as input
and generates the IR bytecode through the LLVM-GCC compiler, which includes both
malware bytecode and communication bytecode. The malware bytecode can be further
optimized and transformed based on our pass/plug-in. Then, the transformed bytecode,
together with the communication bytecode, is passed to the LLVM linker to generate ELF
executable format binaries. These binaries can then be distributed to execute real attacks.
Bytecodes can be converted to the source code form so that they can be further morphed into
new shapes and structures to fulfill the same malicious functionalities.

4.2 Code Analysis and Transformation

As shown in Figure 7, our IR transform pass performs transformation on the IR bytecode of
malware and is loaded by LLVM as a shared library during the optimization of the IR code.
Our transformation technique converts the IR code into new malware IR bytecode. We replace
the critical system calls with an external function to communicate with another process. The
new transformed bytecode will be executed in multiple processes, which achieves the process
partitioning.

Our pass inherits the existing CallGraphSCCPass [2] provided in LLVM, traverses all
system calls and finds the candidate critical system calls. CallGraphSCCPass is used to
traverse the call graph of a program. The candidate system call will be replaced by the external
function in all instructions that invoked the candidate system call. In our pass, the alias
analysis of LLVM is used to update the change of call graph. Algorithm 1 shows the
transformation procedure of in-host SPC based shadow attacks.

Algorithm 1: in-host SPC
1. Traverse all the system calls
2. Determine whether a system call s is a candidate system call
3 Create a new external function s’ using the arguments and return types of s
4. Replace s with s’ in all instructions that called s
5. Update the call graph using alias analysis

4.3 Communication Code Generation

Parameter Data Serialization. For system call partitioning, the most important and challenging
task is to decide whether a system call can be exported from its original process to another
process to cross process boundaries. Two aspects need to be considered: the type of the system
call parameters/data and the semantics of the system call.

For the first aspect, the parameters of a candidate critical system should satisfy two
conditions: the parameter communication part can be abstracted as a layer of object
serialization and the parameters can be put into the medium like shared memory, message
queue, or file. The communication data between processes can be categorized into two types:
standard variable type like int, char and struct and void*, system resource object like file
descriptor and socket descriptor.

• Standard Variable Type: for int type parameters, we can easily convert int to string and
then transfer string type parameters through SPC to other processes. For void*, type
parameters, it is very difficult to decide which actual types of pointed parameters need to be
transferred. However, the number of system calls is limited and we only focus on those
critical system calls that are attributable to the description of malware behavior. Therefore, we
can know the specific semantics of these system calls and which type of data should be
transferred for the specific system call by manually checking its definition and usage. Then,
we can transfer void* to string or struct or others. For example, we can convert the void* into
char* or some struct type based on semantic of the system call. Also we can know that there is
a variable to tell the length of the char*. For other complex types of objects, we can use boost
serialization [29].

• System Resource Object: this type of data includes file descriptors and socket descriptors.
In Linux, we used Unix domain socket and stream pipe to transfer file descriptors. In
Windows, we use DuplicateHandle and WSADuplicateSocket to clone socket descriptor.
WSADuplicateSocket fills up a WSAPROTOCOL_INFO structure with information of existing
socket connection. WSAPROTOCOL_INFO structure can be transferred by using common

communication mechanism like pipe, shared memory, and socket. This could be used for
transferring handles in network-coordinated SPC described in Section 3.2.

Since we can transfer the file descriptor in addition to directly copying the filename, it is
far more expensive and difficult than tracking filename duplications in traditional approaches.
Since a file descriptor is a quintessential example of capability object, data transferring could
be generalized to an object capability system. More generally speaking, the system call
partitioning could be easily extended to function and module level.

Table 3. Example system calls supported in AutoShadow (more system calls could be easily added)

Function Category System Call
File I/O operation open, read, write
Network socket, connect, recv, send, read, write
Process management exec,execl

We also need to consider several system calls with special semantics. For example, fork()
cannot be exported because it inherits context of current process. Another example is getpid()
because its execution result is different in different processes. In windows, similar function
like fork() can be used [19].

Our implementation focused on critical system calls that are heavily used in malware and
can be exported to another process. Currently, AutoShadow supports a list of system calls as
shown in Table 3. The system calls are frequently used to identify malicious behaviors. For
example, they are used to manage processes (e.g., execute an updated binary), operate on file
and I/O (e.g., access confidential file, infect existing executable, modify registry), access
network (e.g., egg downloading, botnet C&C, spamming and proxy). Some simple examples
of malware malicious behaviors and their associated system calls are shown in Table 4.

Table 4. Example Malware Behavior and System Calls (notations are the same as in Table 2)

Malicious Behavior Key System Call Sequence
Download and Execute (recv^write)^(open→write)^(recv→write)^(write→exec)
Proxy recv(socket,buffer) →send(destsocket,buffer)
Modify Registry (RegCreateKeyA→DeleteValueA)∨

(RegCreateKeyA→RegCloseKeyA)

4.4 Prototype Implementation

In current version of AutoShadow, we have implemented in-host shadow attacks. The
implementation of remote-network-coordinated shadow attacks follows similar principle and
is not included in current version.

For in-host SPC, we implemented pipe and socket as example representative mechanisms.
As shown in Figure 8, malware.c source code can be transformed into three files to extract
system call write(). After transformation, the system call write() in malware.c was replaced
with an external function called SPC_write() in SPCwriteClient.c which serves as a client to
send required data for write() in SPCwriteServer.c. SPC_writeSrv() function will receive data
and convert data into needed arguments for write(). Then the critical system call write() is
executed. After its execution, output parameters and return values are sent to SPC_write() in
SPCwriteClient.c which is called by malware.c. Note that SPC_write() could be further
obfuscated to avoid to being statically fingerprinted.

Fig. 8. Code transformation example

4.5 Windows Compiler Tool Implementation

In Windows, we use Phoenix to make the transformation. We generated binary from source
codes and used the PEReader to construct IR from the binary. We imported external functions
from a dll to replace target system calls or functions. Finally, we use PEWriter to write IR to
new binary files.

5 Evaluation

We evaluated the effectiveness and performance of our tool. Since we target behavior-based
malware detection, we first filter out tradition signature-based AV tools. Some AV tools claim
to combine both signature-based detection and behavior-based detection. They are not suitable
for our evaluation because it is difficult for us to differentiate whether a malware sample was
detected by its signature or its behavior. Many research prototype systems such as the tool in
[1] are unfortunately not publicly available for testing. As a result, we submitted the binary to
two online malware behavioral analysis/detection tools: CWSandbox [26] and Norman
Sandbox (we also implemented a simple detection tool similar to [1] as described in Section
5.4). We have also tried Anubis [13]. However, Anubis could not properly recognize and
analyze our multi-process-based binaries inside the self-extracting archive form. Thus, we
exclude it in our evaluation.

5.1 Effectiveness Test via Online Analysis

We compare detection results of a single-process based malware with that of the transformed
multiple processes. We extracted relevant critical system calls, i.e., connect, send, recv,
CreateFile, WriteFile, from the source code of Agobot [4], which implemented the malicious
behavior of downloading a file from a URL and then executing the file. We compiled the code
into a binary, and then submitted the binary to two online malware behavioral analysis tools:
CWSandbox and Norman Sandbox.

We evaluated the shadow attack based on the extracted code from Agobot, which consisted
of three different binary executable files representing connect process, download process and
execute process, respectively. The three binary files were combined into one self-extracted
binary using winrar (as the simplest scenario described in Section 2.2) because these online
services only accept single binary submission. We then used winrar to unfold and execute the
binaries to verify the original functionality as downloading and executing.

We now describe the detection outcomes of two cases in the Norman Sandbox. For the
single-process based binary, the Norman sandbox detected it as “Win32/Downloader” as
shown in Figure 9. For the shadow-attack based binary, the Norman sandbox reported it as not

infected as shown in Figure 10. The Norman Sandbox’s Report showed the opened URL in
the single process detection result. While for the shadow processed binary it only showed the
connection.

Fig. 9. Norman Report of single process

Fig. 10. Norman Report of shadow processes

Then, we submitted the multi-process-based binary (.exe) file to CWSandbox for analysis.
For single-process based binary, CWSandbox clearly reported the network activity via a
download URL as shown in Figure 11. However, for the shadow processes based binary, it
only reported the outgoing connection without indicating the download URL, as shown in
Figure 12. These two examples demonstrate the effectiveness of shadow attack.

Fig. 11. CWSandbox Report of single process

self.exe : Not detected by Sandbox
(Signature: NO_VIRUS)
[DetectionInfo]
* Filename: C:\analyzer\scan\self4.exe.
* Sandbox name: NO_MALWARE
[Network services]

* Connects to "students.cs.*.edu" on port 80.

DoTcpConnectExecute.exe:INFECTEDwith
W32/Downloader (Signature: NO_VIRUS)
[DetectionInfo]
*Filename:C:\analyzer\scan\DoTcpConnectExecute.exe.
* Sandbox name: W32/Downloader.
[Network services]
* Connects to "students.cs.*.edu" on port 80.
OpensURL: students.cs..edu/*/notepad.exe.
[Security issues]
*Starting downloaded file-potential security problem.

Fig. 12. CWSandbox Report of shadow processes

5.2 Evaluation Using Real-World Malware

We further evaluated the efficiency and feasibility of AutoShadow on several real-world
malware programs. Our evaluation was performed on a Linux machine with an Intel core 2
Duo 2.40GHz processor, 6MB cache, and 2GB of memory.

Table 5. Evaluation results on malware examples

The results in Table 5 show that AutoShadow can automatically extract critical system

calls in well-known malwares like Q8bot (a bot program), Apachworm, Computer_dunno, and
Kaiten. After partition, Q8bot becomes a new malware with four shadow processes. Obviously,
by splitting, creating, sending, and receiving behavior into multiple processes, behavior-based
detection tools that attempt to capture the C&C (command & control) pattern (e.g., [25]) in
one process are likely to fail. The apache worm has a mailing behavior. This mailing behavior
can be modeled using system call sequence as “connect() ^ write() ^ write(“Hello”) ^
write(“RCPT”)”, which can be readily detected by existing behavior-based detectors (e.g.,
[1][3]). This behavior specification is exported to multiple shadow processes, and therefore
they do not exist in any single process. Coromputer_dunno and Kaiten are two examples of
bot programs that are designed to launch DDoS attacks. They have C&C patterns that could be
potentially detected by detection approaches like [25]. Similar to the Q8bot, AutoShadow
successfully partitions its critical system calls and thus make it undetectable. We also report
the transformation time. For example, Apach-worm has a total of 2,255 lines of code. It costs
AutoShadow only 0.05 seconds for the partition. As shown in Table 5, other three malware
programs take less than 0.05 seconds for the transformation. These tests on the four real-world
malware examples demonstrate the high efficiency of AutoShadow.

5.3 Performance

We also evaluated the process communication cost by using the malware example in Figure 1.

Fig. 13. Performance time

Since the main overhead occurred when two shadow processes communicate, we changed the
number of such communication interactions by using different buffer size of write(). Figure 13
shows the total execution time of the malware in two cases: before partition (single process)
and after partition using in-host communication. We can see that when there are less than 10
interactions between shadow processes, the attack have similar execution time as the original
malware. With the increase of interactions, the shadow attacks cost more time on the
communication. It is worth noting that although multi-process malware is slower than the
original single-process malware, we believe most malware writers might still favor more
evasive multi-process malware if the task is not time-critical. In addition, malware writers can
always optimize communications between shadow processes in reality, e.g., choosing
selective critical system calls and limiting the number of shadow processes.

5.4 Estimating Possible Detection Cost of Multi-Process Malware

In theory, one could defend against shadow attack with adequate monitoring of process
activities to determine their relationship, data flows, etc. That being said, it is important to
gain a realistic sense of the performance in these countermeasures. We use the Linux system
calls to gain a glance of the design complexity and run-time costs.

Firstly, we implemented a very simple single process behavior-based malware detector,
similar to the idea of [1]. In order to monitor system calls, we can employ either Ptrace or
kernel modifying. We choose using Ptrace for simplicity. We use shadow attack to transform
Agobot, which contains five malicious behaviors including: (a) download and execute; (b)
Remote-Initiated Network Download; (c) Remote-Initiated Send Email; (d) Remote-Initiated
Sendto; (e) TCP Proxy. Not surprisingly, our result showed that Agobot successfully evades
the single-process detector after shadow attack (while it can be detected before shadow attack).

In a generic defense system, one needs to group correlative processes which have direct or
indirect communications with each other. After grouping correlated processes, one could
implement a system call dependency graph of multiple processes using relevant state
information as its inputs. To monitor the System-V IPC, we need to monitor the system call
shmget()/msgget()/semget(), and group processes by comparing parameters of these system
calls. Besides, to monitor in-host SPC method of pipe, socket, and disk file, the inode value of
each file descriptor opened by all processes (called IPC object hereafter), needs to be analyzed.
In doing so, we can tell which processes have ever accessed the same IPC object to
communicate with each other. We employ a user mode approach, that is whenever a
pipe/socket/disk-file related system call is triggered, the change of file descriptors in /proc/fd

0

50000

100000

150000

10 20 80 320

Ex
ec
ut
io
n

Ti
m
e(
m
ic
ro
se
co
nd

)

Number of Communication Interactions

single process
in‐host partition

needs to be logged, and then analyzed. Figure 14 displays the architecture of our example
multi-process malware detector.

For each correlated process group, we can recover a global system call sequence according
to the specification. Without considering any specific malware, we conducted a series of
experiments to gain a sense of the monitoring cost. We use a benchmark program which
makes 5 system calls: fopen->read->write->fclose->execv, with 1000 iterations. And measure
the running time of this program, normally, with ptrace monitoring and with /proc/fd
monitoring. Figure 15 shows that the running time of this program increased from 150 ms to
1,195 ms and 93,121 ms, respectively, when Ptrace and /proc/fd monitoring were activated.
The checking of /proc/fd directory is trigged whenever fopen/fclose are called. Thus it is time
consuming.

Fig. 14. Example architecture of a multi-process malware detector

Fig. 15. Time cost induced by Multi-process Monitoring/Correlation

We note that our above naïve example detector is merely for the purpose of estimating one
possible detection cost for multi-process malware. It is just an example, and by no means a
best, realistic, nor optimal design. One may easily argue that there can be much better design
in terms of both effectiveness and efficiency. However, the message we want to convey from
this naïve example is that fully real-time correlating processes (through explicit or even
implicit SPC) can be much more expensive than single-process based monitoring. To our
knowledge very few tools support multi-process analysis due to the high cost of blind
enumeration on grouping of processes to one or more malwares. In addition, inter-process
coordination can be made indirect and hidden using many ways (even remote-network-
coordination) to make it more difficult for multi-process malware detection. We need further
research to study more efficient real-time solution for correlating processes communicating
using different SPC.

1

10

100

1000

10000

100000

Ex
ec
ut
io
n
Ti
m
e

（
m
ill
is
ec
on

d）

Normal with
Ptrace

with IPC
monitoring

We also need to improve the effectiveness of accurately correlating multi-process malware
that uses indirect/implicit SPC. A possible way is to perform fine-grained kernel-level global
processes and system object tracking and correlation analysis. In [18], BackTracker, a VM-
based monitoring method, is proposed for such a fine-grained tracking. However, this
approach is very expensive and used only for offline analysis instead of real-time detection
purpose. Thus, we believe how to build an effective and efficient shadow attack detector is
still an open problem.

6 Discussion

Our approach could easily be combined with current signature-evading techniques such as
metamorphic viruses [34]. By doing so, AutoShadow could be able to evade both signature-
based and behavior-based malware detector.

To defend against SPC based shadow attacks, all possible in-host SPC activities might
need to be monitored to screen for correlated processes. Some major obstacles must be
overcome by defenders. First, a detection approach may have high false positive rate because
normal processes also use in-host communications. In particular, with the increasingly used
multi-core CPUs and increasingly adopted normal multi-process programs, this issue could
become worse. Second, with conversion of data flows to control flows, it is not easy to
efficiently track the parameter data dependency between processes. Finally, the use of
information flow and data tainting are relatively expensive in practice because of their high
operational overhead. The remote-network-coordinated shadow attacks could further eliminate
the direct observable communications and makes the detection even harder.

We believe that it will be useful to consider correlations and dependencies between
processes based on system objects/resources. For example, the correlation between two
processes may be established when they are found to operate on a same file. However, this
approach must also address the false positive issue and the high overhead (as shown in
BackTracker [18]).

7 Related work

Program/Malware partition. One related work to AutoShadow is k-ary theoretic malware
model [6] that provided a theoretical analysis of the hardness of detection. Source code
fragmented malware has been proven to be NP-Complete in general [6]. Detection of shadow
attack is thus also NP-complete since shadow attack is a form of fragmented malware at
behavior level. Our approach is different from [6] because we fragment malware into different
executable binaries at behavior level and we provide a practical, automated compiler-level
solution. Several systems automatically generated distributed programs by applying static
code analysis [2]. In theory, program partition can also be abstracted as a NP-hard problem
[11]. In addition, Mimicry attack [27][5] obfuscated the order of system calls to evade system
call based IDS. Another similar multi-process based work [7] proposed a code injection
technique, which writes some malicious code to other processes for detection evasion. It has
the weakness that the behavior of writing data to the memory space of other process is
uncommon and suspicious, which could cause attention of detection tools.
Behavior-based malware detection. A semantic-aware detector using code template of
instructions was developed in [3]. In [12] specification language was mined for malicious
behavior. Layered behavior graph using system calls was proposed in [1]. These detectors
focus on one single process rather than multiple processes. Jiang et al. [15] detected the break-
in point of worms by assigning different colors to different processes derived from different

services. It cannot detect covert communication channels. Panorama system [16] was
proposed to detect privacy breaking malwares by tracing the information flow of access and
processing sensitive information in an offline fashion. BackTracker [18] traced back to
vulnerable points by monitoring and logging system calls, files and processes. It is still an
offline tool.

It was recently proposed in [9] that one could counter the behavior-based detections by
using Time-Lock Puzzle (TLP). It utilizes cryptographic techniques to ensure that a message
is never revealed until certain right moment. Thus, TLP prevents the Anti-Virus (AV) engine
from discovering the encryption key and thus hide suspect codes without being identified [9].
Another technique, system call obfuscation [29], evades malware detectors by replacing
certain system calls with general control system calls. Our work is different from these in that
we propose a new class of attacks on behavior-based detectors.

8 Conclusion

In this paper we show the models and techniques of shadow attack. The essence of this kind of
attack is to export malicious behavior specifications from a malware program to multiple
shadow processes. We implemented a compiler-level prototype tool to demonstrate its
feasibility. Our preliminary results show that transformed malware could evade or counter
existing behavioral analysis tools. Several research problems still remain open. For example,
from attack point of view, how to launch optimal shadow attach in terms of minimal number
of processes, resource consumption, and communication cost. More importantly, from defense
point of view, how to efficiently and effectively defend against this new threat still requires
further research.

References

1. L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell, “A Layered Architecture for
Detecting Malicious Behaviors”, in Proc. of the 11th international Symposium on Recent Advances
in intrusion Detection (RAID’08), 2008.

2. C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program analysis &
transformation”, in Proc. of the 2004 International Symposium on Code Generation and
Optimization (CGO’04), 2004.

3. M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant, “Semantics-Aware Malware
Detection”, in Proc. of IEEE Symposium on Security and Privacy, 2005.

4. P. Barford and V. Yagneswaran, “An Inside Look at Botnets”, Advances in Information Security,
Springer, 2006.

5. D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection systems”, in Proc. of the
9th ACM conference on Computer and communications security (CCS’02), 2002.

6. E. Filiol, “Formalisation and implementation aspects of k-ary (malicious) codes”, Journal in
Computer Virology, vol. 3, no. 3, EICAR 2007 Best Academic Papers, 2007.

7. N. Harbour, “Stealth Secrets of the Malware Ninjas”, available at
https://www.blackhat.com/presentations/bh-usa-07/Harbour/Presentation/bh-usa-07-
harbour.pdf.

8. C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and X. Wang, “Effective and
Efficient Malware Detection at the End Host”, in Proc. of 18th USENIX Security Symposium, 2009.

9. Nomenumbra, “Counter Behavior Based Malware Analysis, Hacking at Random”, HAR 2009.

10. O. Aciiçmez, Ç. K. Koç, and J. Seifert, “On the power of simple branch prediction analysis”, in
Proc. of the 2nd ACM Symposium on information, Computer and Communications Security
(ASIACCS’07), 2007.

11. B.W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partition Graphs”, Bell Systems
Technical J., vol. 49, pp. 291-307, 1970.

12. M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of malicious behavior”, in Proc.
of the 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 2007.

13. Anubis. http://anubis.iseclab.org/.

14. L. Lamport, “Time, clocks, and the ordering of events in a distributed system”, Communications of
the ACM, v.21 n.7, p.558-565, 1978.

15. X. Jiang, A. Walters, F. Buchholz, D. Xu, Y. M. Wang, and E. H. Spafford, “Provenance-Aware
Tracing of Worm Break-in and Contaminations: A Process Coloring Approach”, in Proc. of 26th
IEEE Int’l Conf. Distributed Computing Systems (ICDCS’06), 2006.

16. T. Fletcher, “Sharing a File Descriptor Between Processes”,
http://www.qnx.com/developers/articles/article_913_1.html

17. H. Yin, D. Song, E. Manuel, C. Kruegel, and E. Kirda, “Panorama: Capturing system-wide
information flow for malware detection and analysis”, in Proc. of the 14th ACM Conferences on
Computer and Communication Security, 2007.

18. S. T. King and P. M. Chen, “Backtracking Intrusions”, in Proc. of the 2003 Symposium on
Operating Systems Principles, pages 223–236, 2003.

19. E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer, “Behavior-based Spyware Detection”,
in Proc. of the USENIX Security Symposium, 2006.

20. F. Cohen, “Computer viruses: theory and experiments”, Computers and Security, v.6 n.1, p.22-35,
1987.

21. Phoenix. https://connect.microsoft.com/Phoenix.
22. L. Cavallaro, P. Saxena, and R. Sekar, “On the limits of information flow techniques for malware

analysis and containment”, in Proc. of 5th international conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, 2008.

23. P. Szor, “The Art of Computer Virus Research and Defense”, Addison-Wesley Professional, 2005.
24. S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, “Self-Nonself Discrimination in a

Computer”, in Proc. of IEEE Symposium on Security & Privacy,1994
25. E. Stinson and J. C. Mitchell, “Characterizing Bots' Remote Control Behavior”, In Detection of

Intrusions & Malware, and Vulnerability Assessment, 2007.
26. C. Willems, T. Holz, and F. Freiling, “Toward Automated Dynamic Malware Analysis Using

CWSandbox”, in Proc. of IEEE Security and Privacy, 2007
27. C. Kruegel, E. Kirda, D. Mutz, W. Robertson, G. Vigna, “Automating mimicry attacks using static

binary analysis”, in Proc. of the 14th conference on USENIX Security Symposium, p.11-11, 2005.
28. Norman Sandbox Whitepaper. http://www.norman.com.
29. A. Srivastava, A. Lanzi, and Jonathon Giffin, “System Call API Obfuscation”, in Proc. of the 11th

International Symposium on Recent Advances in Intrusion Detection, 2008.
30. K. Rieck, T. Holz, C. Willems, P. Düssel and P. Laskov, “Learning and Classification of Malware

Behavior”, in Proc. of Detection of Intrusions and Malware, and Vulnerability Assessment, 2008.
31. C. Percival, “Cache missing for fun and profit”, BSDCan,

http://www.daemonology.net/hyperthreading-considered-harmful/ , 2005.
32. R. Stevens, “UNIX Network Programming”, Volume 2, Second Edition: Interprocess

Communications, Prentice Hall, 1999.
33. K. V. Dyshlevoi, V. E. Kamensky, and L. B. Solovskaya, “Marshalling In Distributed Systems:

Two Approaches”, http://citeseerx.ist.psu.edu/viewdoc/su
mmary?doi=10.1.1.26.9781, 1997.

34. J. Borello and L. Mé, “Code obfuscation techniques for metamorphic viruses”, J. Comput. Virol. 4,
211–220 (2008). doi: 10.1007/s11416-008-0084-2

