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Abstract. Contemporary malware makes extensive use of different techniques such as 
packing, code obfuscation, polymorphism, and metamorphism, to evade signature-based 
detection. Traditional signature-based detection technique is hard to catch up with latest 
malware or unknown malware. Behavior-based detection models are being investigated 
as a new methodology to defeat malware. This kind of approaches typically relies on 
system call sequences/graphs to model a malicious specification/pattern. In this paper, 
we present a new class of attacks, namely “shadow attacks”, to evade current behavior-
based malware detectors by partitioning one piece of malware into multiple “shadow 
processes”. None of the shadow processes contains a recognizable malicious behavior 
specification known to single-process-based malware detectors, yet those shadow 
processes as an ensemble can still fulfill the original malicious functionality. To 
demonstrate the feasibility of this attack, we have developed a compiler-level prototype 
tool, AutoShadow, to automatically generate shadow-process version of malware given 
the source code of original malware. Our preliminary result has demonstrated the 
effectiveness of shadow attacks in evading several behavior-based malware 
analysis/detection solutions in real world. With the increasing adoption of multi-core 
computers and multi-process programs, malware writers may exploit more such shadow 
attacks in the future. We hope our preliminary study can foster more discussion and 
research to improve current generation of behavior-based malware detectors to address 
this great potential threat before it becomes a security problem of the epidemic 
proportions. 
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1 Introduction 

Malware, such as viruses, worms, trojan, spyware, rootkits, and botnets, are a prevalent 
and severe threat to Internet security. Malware writers have developed sophisticated 
techniques to evade existing signature-based detection tools. These evasion techniques include 
packing, code obfuscation [20], polymorphism, and metamorphism [23]. These techniques 
generate different variants of a malware program, i.e., every instance looks different 
(syntactically) but still maintains the same function (semantically). To nullify those evasion 
techniques defenders began to develop countermeasures [1][3][12][19][24] that aimed to 
recognize malware based on their behaviors, which are typically characterized by 
sequences/graphs of system calls since system calls are inevitable interaction interfaces 
between applications and OS. This behavior based solution detects malicious behaviors of 
malware families by matching suspicious system calls with existing malicious behavior 
specifications built on certain system call sequences or graphs [1][3][8][30]. Thus this 



behavior-based detection solution is more robust and hard to evade by using traditional 
attacking techniques. 

We believe that knowing the limitations of the contemporary behavior-based malware 
detection research is an important problem. In this paper, we propose a new class of attack, 
“shadow attack”, to counter behavior-based malware analysis by splitting critical system call 
sequences/graphs of malware and exporting them to separate processes. Specifically, shadow 
attacks create shadow process communication (SPC) channels between the rewritten malware 
and its shadow processes to achieve the original malicious functionalities. As of writing of this 
paper, most behavior-based malware detectors are designed based on malicious specifications 
in terms of system call sequences/graphs of individual single-process program (or these with 
simple inheritance/fork relationships).  It is worth noting that the practically used system call 
sequence/graph behaviors are rarely just a single system call because that will have high false 
positive rates as likely many normal programs could use the same single system call with 
similar parameters as a malware does. Therefore, these behavior-based malware detectors 
could hardly detect shadow processes because they only contain small segments (e.g., just one 
system call) of the malicious behavior of malware.  

As behavior-based malware detection becomes more prevalent, understanding its 
weaknesses and evasion vectors is very important to improve its resilience. We investigate the 
feasibility of indirect, implicit SPC design so that explicit in-host SPCs can be concealed with 
mixed implicit chains or even with the help of remote network coordination. We also adopt 
the technique proposed in [22] to hide local SPC among shadow processes by transforming 
data dependence to control dependence to evade dynamic information flow and data tainting 
based detections [25]. Given the myriad collections of process partition and coordination 
constructs, our study unveils the potential evasion vectors of this attack. 

We have developed a compiler-level prototype tool, AutoShadow, for malware writers to 
automatically make source to source and source to binary transformation of C/C++ based 
malware codes. We applied AutoShadow to several real-world malware examples and found 
that our technique can successfully export critical system calls into shadow processes. Our 
preliminary results show that shadow processes can evade the detection from real-world 
behavioral detection/analysis tools such as Norman Sandbox [28]. 

In short, this paper makes the following contributions: 
• We  present  a  new,  general  class  of  attacks  to  conceal  malware  behaviors in 

multiple shadow processes and provide a systematic and in-depth study.  Shadow attacks can 
be automated for partition and export of critical system calls or other functions into shadow 
processes. This  kind  of  new  attack  can  help  us  better  understand  the  limitation  of  
existing  behavior-based malware detection techniques.  

•  We develop a compiler-level prototype system, AutoShadow, to demonstrate the 
practicality of automatic shadow attacks using several real-world malware samples.   

• Experimental results suggest that shadow attacks can effectively conceal behaviors of 
malware and evade several current behavioral detection solutions. Although we provide some 
defense insights, the rich functionalities of SPC give malware writers a new ground to protect 
their properties. We hope this study can foster more discussion and research efforts to address 
this new class of attacks before they elevate to large scale malware outbreaks. 



2 Problem statement 

2.1 Problem Formulation & Illustration 

Follow what current behavioral detection approaches do, we model program behaviors at the 
system call level. That is, the behavior of a program is represented by the sequence of system 
calls, their I/O parameters and data. The behaviors of most malware can be tied to their system 
call sequences/graphs. However, when a shadow attack is added as a part of the malware, this 
sequence/graph is broken. Table 1 lists some basic notations that will be used in the rest of the 
discussion. 

Table 1. Notations of our model 

Description Set  Instance  
process   P = (p1, …, pn) ∀ i ∈ [1,…,n], pi ∈ P  
process state Q = (q1, …, qm) ∀ i ∈ [1,…,m], qi ∈ Q 
system call S = (s1, ..., sk) ∀ i ∈ [1,…,k], si ∈ S 

Table 2. System Call Relationship 

Symbol  Description 
si ∧ sj both si and sj happen, si, sj ∈ S  
si ∨ sj either si or sj happen, si, sj ∈ S 
si → sj si happens before sj  

We assume that a system consists of n processes P = (p1, …, pn). Each process can be in 
any state of Q, which represents the state of process resources such as memory, CPU, file, and 
network. ∀ i ∈ [1,…,l], si ∈ S denotes a system call. Table 2 lists different relationships 
between two system calls. γ denotes a set of relation operators between two system calls, i.e., 
γ= {∧,∨,→}. We define a malware specification as M = s1γs2γs3。。。, i.e., a set of sequence 
and parameter/data dependence relations of system calls. 

 
Fig. 1. Malware specification graph of download-execution: recv ∧ open → write → exec 

Figure 1 shows a typical system call sequence of a malware specification which attempts to 
download an executable file from the Internet and then execute it [1], such as “egg” 
downloading and infection.  

If an execution trace of a program p is denoted by Tp, Tp = s1 → s2 →…→sn. We define 
sub(Tp) as any possible sub-sequence of Tp. Then for a behavior-based malware detector, we 
define a detection function 
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Definition: A Shadow Attack can be regarded as a program transformation function SAp: 
given a program p and some malware specifications M as inputs, SAp will generate a multiple-
process program p’ with two properties: (i) Detect(p’)=False while Detect(p)=True, (ii)p’ has 
the same functionality as p. 
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Fig. 2. Illustration of a shadow attack 

Figure 2 illustrates how the functionality of a program remains the same when its system 
call sequence is exported to shadow processes. That said, the ensemble of shadow processes 
could achieve the same state as the original process had when same input parameters, output 
parameter values and return values are transferred appropriately between shadow processes. 
Here, the left side, P0, is the original program, while the right side, P0’ and P1’, is the 
transformed program. qij denotes the state of process Pi for ∀ i ∈ [0, 1] and j ∈ [0, 1, 2], si 
denotes system call. We further define Δsj as the impact of sj over the environment including 
the changes to output parameters, return values and changes to system resources. Through 
transferring the same input parameter from P0’ to P1’, and transferring the output parameter 
value and return value from P1’ back to P0’, the ensemble of P0’ and P1’ will achieve the same 
state as P0 had.  

2.2 Bootstrapping Shadow Attacks  

As illustrated above, a shadow attack is essentially a multi-process malware program. 
Executing multi-process shadow attack takes more elaborated steps than a single process 
attack. An important question is then how to get this multi-process malware executed on a 
single victim machine (i.e., the bootstrapping procedure)? Actually there are many ways to 
accomplish this. Here we provide two example scenarios to demonstrate it. 
• The partitioned binaries can be spawned from one auxiliary process. For example, the 

partitioned binaries can be compressed into a self-extraction binary using compression tools. 
The advantage of this method is that malware can be easily and efficiently spread. The 
disadvantage is that the processes can be grouped or correlated relatively easily. 
•  Web-based malware infection is one of the most popular malware infection vectors 

nowadays. The shadow processes can be (drive-by) downloaded separately into the target 
machine and then executed separately. This approach is practical. Nowadays many Internet 
browsers, such as Google Chrome, Microsoft Internet Explorer, are all implemented in 
multiple processes. In such an environment, malware can be downloaded by different 



processes via the same (or different) malicious URLs and executed separately. Correlation of 
multiple shadow processes will likely be harder. 

Although we give two example scenarios above, we note that with the increasing popular 
use of multi-process programs, and dynamic, complex and variant existing infection vectors, 
multi-process malware is very feasible with many possibilities to arrive at end users.  

3 Shadow attack design 

In principle, a shadow attack can export any critical system call in a malware specification to 
different shadow processes so that any such specification-based malware detector will be hard 
to detect it. One of the key questions in designing such a shadow attack is how to coordinate 
these shadow processes so that they can still accomplish the original functionality as a whole 
system. In this section, we first show the general architecture of shadow attack malware. We 
discuss how we can design Shadow Process Coordination/Communication (SPC) with 
different levels of sophistication, flexibilities and stealthiness. In particular, we show the 
design of indirect, implicit local SPC using remote network coordination. We also discuss to 
hide local SPC from taint-based data dependence tracking among processes. We leave detailed 
discussion on how to automatically partition a given malware code to its shadow-process 
version to next section. 

3.1 Architecture of Shadow Attack Malware  

The design space of Shadow Process Coordination/Communication (SPC) includes covert 
channel communication [14] like covert cache [31] and branch predictor [10], and other 
traditional communication approaches like Inter-Process Communication (IPC) [32], 
environment variables, files and registries. In our shadow attacks, we mainly target to export 
critical system calls from their original process/code to new generated (shadow) processes.  
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Fig. 3. Architecture of Shadow Attacks 

For example, in Figure 3, two critical system calls are initially in process1. We export s1 
and s2 to two processes process2 and process3, respectively. Then, process1 communicates 
with process2 and s1 is executed in process2. process2 then communicates with process1 to 
return the results of s1. The same procedure is used to execute s2. As a result, the functionality 
of process1 is maintained since both s1 and s2 are executed in the original order.  

Using this shadow attack, the previous presented download-then-execute malware example 
(in Figure 1) can be transformed to the shadow process version illustrated in Figure 4.  

 



 
Fig. 4. Shadow attack version of example shown in Fig. 1 

Our shadow attack uses marshalling [33] to transfer objects between two separate 
processes. Basically, there are two ways to transfer a file descriptor in Unix: Unix Domain 
Socket and Stream Pipe [32]. In addition, some general in-host communication mechanism 
can transfer file descriptors between processes as proposed in [16]. In Windows, at least two 
ways can be used to transfer socket handlers: WSADuplicateSocket()—a function in the 
Windows Socket 2 library in the context of the source process which created the socket; 
Win32 DuplicateHandle() function. 

3.2 Hiding Local SPC through Remote Network Coordination 
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Fig. 5. Hiding SPC through Remote Network Coordination 

To make local shadow processes’ communication harder to be noticed, we also design 
indirect/implicit SPC through remote network coordination, i.e., we coordinate local shadow 
processes via outside stepping nodes. As shown in Figure 5, we export critical system calls s1 
and s2 from process1 to process2 and process3, respectively. process1 communicates with an 
outside host A through network channels. This host A then communicates with another host B 
which then communicates with process2 and process2 executes s1. After the execution, 
process2 communicates with process1 through other outside hosts (A and B) to get results of 
s1. Similar procedure is taken when s2 is executed in process3. The advantage is that it is 
difficult to detect local SPC links between local processes because there is no direct 
observable connection. These local processes also do not have network-level correlation 
because they talk to different remote machines. In this way, it is a very challenging task to find 
their relationship of different local processes that coordinated through different networks.  

3.3 Further Discussion on SPC Design Space  

A plurality of in-host and network based coordination and communication approaches exist on 
both Linux/Unix and Windows operation systems. On Linux/Unix, communication methods 



include message queues, semaphore sets, Unix domain sockets, and shared memory [32]. On 
Windows, communication methods include Clipboard, COM, DDE, File Mapping, Mailslots, 
Pipes, RPC, shared memory Windows Sockets and web services. Our shadow attack utilizes 
communication methods for data/parameter communication and synchronization between 
processes. Next we use the following examples to illustrate functionality, advantages, and 
disadvantages of some communication methods:  
(1) Unix domain sockets: Sockets transfer data between processes using buffers in the kernel 

memory. A process can exchange a file descriptor to another process using sendmsg() and 
recvmsg(). The file descriptor is related to process migration and socket migration. For 
example, the technique used in MSOCK [14] can be used for socket migration between 
two processes. 

(2) Shared memory: When there is not much data type conversion in the shared data 
between processes, shared memory methods have better performance compared with 
other SPC methods (e.g., pipe and sockets). We can utilize certain techniques, e.g., 
mapping physical pages to two distinct virtual addresses, to complicate the detection of 
the use of shared memory. On the other hand, shared memory method can only be used in 
a single machine, while other SPC methods may be used on different machines in a 
network. 

(3) SOAP: Simple Object Access Protocol (SOAP) can be used for data communication or 
calling methods in web services through the Internet. In SOAP, data is transmitted in 
XML files. The advantage of this approach is that it can easily pass through many 
firewalls since XML files can be transmitted through standard HTTP requests. The 
disadvantage is that XML files in SOAP use more bandwidth and memory as compared 
with direct data access methods like shared memory.   

In addition to these well-known SPC mechanisms, one can easily use other more advanced 
SPC approaches (e.g., covert channels), especially mixing of different SPC mechanisms, to 
complicate the detection of SPC. Various covert channels have been proposed before. In [31] 
the authors demonstrate that shared access to memory caches can provide an easily used high 
bandwidth covert channel between threads. While in [10] the authors introduce a Simple 
Branch Prediction Analysis (SBPA) attack which analyzes the CPU’s Branch Predictor states 
through spying on a single quasi-parallel computation process. 
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Fig. 6. Mixed, Indirect, Implicit SPC Chain 

To build a mixed and indirect SPC Chain, as shown in Figure 6, we take out the critical 
system call s1 from process1 and place it in process2. To provide the communication between 
process1 and process2, we let process1 communicate with the SPC method file at the point 
right before the execution of s1. Then file communicates with shared memory, shared memory 
communicates with socket and so on, until we reach process2. After the execution of s1, we 
return to process1 at the point right after the execution of s1, based on the communication 
provided by the same SPC mechanisms. The advantage of this mixed implementation of SPC 



mechanisms is that it is more difficult to detect the hybrid communication between process1 
and process2. In this communication, because many SPC objects, files, or resources are also 
used by other regular programs, it is challenging for detectors to differentiate the partitioned 
malwares from other regular programs. 

Another aspect of shadow attack is that it may significantly increase the resource 
requirements for tracing and detection of multi-process applications. Because interleaving of 
multiple processes could lead to path explosion, the detection of a specific behavior would 
become significantly more difficult.  

3.4 Hiding SPC from Information Flow Tracking 

In our attack, the system calls in multiple processes usually carry the same parameter data 
(e.g., file name) to fulfill the malware’s functionality. A possible technique to detect related 
processes is to correlate them by tracking the information flow, e.g., taint the system call 
parameter (e.g., file name) and track the data dependence [25]. However, these techniques are 
mainly used in offline analysis instead of real-time detection because of their high overhead. 
In addition, we can systematically transfer data dependence into control dependence [22] 
through an automated source code rewrite procedure. This kind of technique is particularly 
well suited for evading taint-analysis-based detection.  

We first use two simple examples to introduce control flow dependence, which can be 
categorized by two types: explicit control flow dependence and implicit control flow 
dependence. 

 
Explicit control flow: 
if  x = = a 
     y = a  
Implicit control flow: 
for (int i = 0; i<255; i ++) { 
       tmp = 1; 
      if (x! = j) 
          tmp = 0; 
      if (tmp = = 1) 
          y = j; 
} 

Then we show how to use the idea of control flow to hide the data dependence of different 
types of data in system calls, e.g., char, string, int, struct.  We use an example to illustrate 
how to transmit the value of a char type parameter x to another char type parameter y without 
revealing their data dependence relationship. 

 
char Convertchar(char x) 
        char y; 
        for (int i = 0; i<255; i ++) 
        { 
                if (x = = i) 
                { 
                         y = i; 
                         break; 
                  } 
          } 
return  y; 



We can use the same idea to transmit the value of a string parameter x to another string 
parameter y by applying control flow to each character in the string. 

 
char * ConvertString (char * x, int xlength) 
{ 
          char * y = new char[xlength]; 
          for (int i = 0; i < xlength; i ++) 
          { 
             y[ i ] = ConvertChar(x[ i ]); 
           } 
} 

For numeric types, e.g., int or float in C or C++, we can first convert them into a string 
type. Then we use the string-based control flow transformation as shown above and convert 
the string back into a numeric type after transformation. For struct type parameters, we can 
follow a similar procedure because they are constructed with int and string parameters. 

4 Automating shadow attack 

We have implemented a prototype tool AutoShadow as a proof of concept to automate shadow 
attacks, i.e., it can automatically generate a shadow-process version of malware given an 
original malware source code. AutoShadow is built on the intermediate representation (IR) 
bytecode using compiler frameworks such as LLVM [2] and Phoenix [21]. We selected 
LLVM because of its mature features in Linux. AutoShadow analyzes source code and locates 
critical system calls to launch the shadow attack. For the Phoenix based example, some 
manual patching was done to demonstrate the feasibility. 

4.1 AutoShadow Design Architecture  

 

 
Fig. 7. AutoShadow Design Architecture  

Figure 7 shows the design architecture of AutoShadow. It takes malware source code as input 
and generates the IR bytecode through the LLVM-GCC compiler, which includes both 
malware bytecode and communication bytecode. The malware bytecode can be further 
optimized and transformed based on our pass/plug-in. Then, the transformed bytecode, 
together with the communication bytecode, is passed to the LLVM linker to generate ELF 
executable format binaries. These binaries can then be distributed to execute real attacks. 
Bytecodes can be converted to the source code form so that they can be further morphed into 
new shapes and structures to fulfill the same malicious functionalities. 



4.2 Code Analysis and Transformation  

As shown in Figure 7, our IR transform pass performs transformation on the IR bytecode of 
malware and is loaded by LLVM as a shared library during the optimization of the IR code. 
Our transformation technique converts the IR code into new malware IR bytecode. We replace 
the critical system calls with an external function to communicate with another process. The 
new transformed bytecode will be executed in multiple processes, which achieves the process 
partitioning. 

Our pass inherits the existing CallGraphSCCPass [2] provided in LLVM, traverses all 
system calls and finds the candidate critical system calls. CallGraphSCCPass is used to 
traverse the call graph of a program. The candidate system call will be replaced by the external 
function in all instructions that invoked the candidate system call. In our pass, the alias 
analysis of LLVM is used to update the change of call graph. Algorithm 1 shows the 
transformation procedure of in-host SPC based shadow attacks. 

Algorithm 1: in-host SPC 
1. Traverse all the system calls 
2. Determine whether a system call s is a candidate system call 
3 Create a new external function s’ using the arguments and return types of s 
4. Replace s with s’ in all instructions that called s 
5. Update the call graph using alias analysis
 

4.3 Communication Code Generation  

Parameter Data Serialization. For system call partitioning, the most important and challenging 
task is to decide whether a system call can be exported from its original process to another 
process to cross process boundaries. Two aspects need to be considered: the type of the system 
call parameters/data and the semantics of the system call. 

For the first aspect, the parameters of a candidate critical system should satisfy two 
conditions: the parameter communication part can be abstracted as a layer of object 
serialization and the parameters can be put into the medium like shared memory, message 
queue, or file. The communication data between processes can be categorized into two types: 
standard variable type like int, char and struct and void*, system resource object like file 
descriptor and socket descriptor.  

• Standard Variable Type: for int type parameters, we can easily convert int to string and 
then transfer string type parameters through SPC to other processes. For void*, type 
parameters, it is very difficult to decide which actual types of pointed parameters need to be 
transferred.  However, the number of system calls is limited and we only focus on those 
critical system calls that are attributable to the description of malware behavior. Therefore, we 
can know the specific semantics of these system calls and which type of data should be 
transferred for the specific system call by manually checking its definition and usage. Then, 
we can transfer void* to string or struct or others. For example, we can convert the void* into 
char* or some struct type based on semantic of the system call. Also we can know that there is 
a variable to tell the length of the char*. For other complex types of objects, we can use boost 
serialization [29]. 

• System Resource Object: this type of data includes file descriptors and socket descriptors. 
In Linux, we used Unix domain socket and stream pipe to transfer file descriptors. In 
Windows, we use DuplicateHandle and WSADuplicateSocket to clone socket descriptor. 
WSADuplicateSocket fills up a WSAPROTOCOL_INFO structure with information of existing 
socket connection. WSAPROTOCOL_INFO structure can be transferred by using common 



communication mechanism like pipe, shared memory, and socket. This could be used for 
transferring handles in network-coordinated SPC described in Section 3.2.  

Since we can transfer the file descriptor in addition to directly copying the filename, it is 
far more expensive and difficult than tracking filename duplications in traditional approaches. 
Since a file descriptor is a quintessential example of capability object, data transferring could 
be generalized to an object capability system. More generally speaking, the system call 
partitioning could be easily extended to function and module level. 

Table 3. Example system calls supported in AutoShadow (more system calls could be easily added) 

Function Category System Call 
File I/O operation open, read, write  
Network socket, connect, recv, send, read, write 
Process management exec,execl 

 

We also need to consider several system calls with special semantics. For example, fork() 
cannot be exported because it inherits context of current process. Another example is getpid() 
because its execution result is different in different processes. In windows, similar function 
like fork() can be used [19]. 

Our implementation focused on critical system calls that are heavily used in malware and 
can be exported to another process. Currently, AutoShadow supports a list of system calls as 
shown in Table 3. The system calls are frequently used to identify malicious behaviors. For 
example, they are used to manage processes (e.g., execute an updated binary), operate on file 
and I/O (e.g., access confidential file, infect existing executable, modify registry), access 
network (e.g., egg downloading, botnet C&C, spamming and proxy). Some simple examples 
of malware malicious behaviors and their associated system calls are shown in Table 4. 

Table 4. Example Malware Behavior and System Calls (notations are the same as in Table 2) 

Malicious Behavior Key System Call Sequence 
Download and Execute (recv^write)^(open→write)^(recv→write)^(write→exec) 
Proxy recv(socket,buffer) →send(destsocket,buffer) 
Modify Registry (RegCreateKeyA→DeleteValueA)∨ 

(RegCreateKeyA→RegCloseKeyA) 

4.4 Prototype Implementation  

In current version of AutoShadow, we have implemented in-host shadow attacks. The 
implementation of remote-network-coordinated shadow attacks follows similar principle and 
is not included in current version. 

For in-host SPC, we implemented pipe and socket as example representative mechanisms. 
As shown in Figure 8, malware.c source code can be transformed into three files to extract 
system call write(). After transformation, the system call write() in malware.c was replaced 
with an external function called SPC_write() in SPCwriteClient.c which serves as a client to 
send required data for write() in SPCwriteServer.c. SPC_writeSrv() function will receive data 
and convert data into needed arguments for write(). Then the critical system call write() is 
executed. After its execution, output parameters and return values are sent to SPC_write() in 
SPCwriteClient.c which is called by malware.c. Note that SPC_write() could be further 
obfuscated to avoid to being statically fingerprinted. 



 
Fig. 8. Code transformation example 

4.5 Windows Compiler Tool Implementation  

In Windows, we use Phoenix to make the transformation. We generated binary from source 
codes and used the PEReader to construct IR from the binary. We imported external functions 
from a dll to replace target system calls or functions. Finally, we use PEWriter to write IR to 
new binary files. 

5 Evaluation  

We evaluated the effectiveness and performance of our tool. Since we target behavior-based 
malware detection, we first filter out tradition signature-based AV tools. Some AV tools claim 
to combine both signature-based detection and behavior-based detection. They are not suitable 
for our evaluation because it is difficult for us to differentiate whether a malware sample was 
detected by its signature or its behavior. Many research prototype systems such as the tool in 
[1] are unfortunately not publicly available for testing. As a result, we submitted the binary to 
two online malware behavioral analysis/detection tools: CWSandbox [26] and Norman 
Sandbox (we also implemented a simple detection tool similar to [1] as described in Section 
5.4). We have also tried Anubis [13]. However, Anubis could not properly recognize and 
analyze our multi-process-based binaries inside the self-extracting archive form. Thus, we 
exclude it in our evaluation.  

5.1 Effectiveness Test via Online Analysis  

We compare detection results of a single-process based malware with that of the transformed 
multiple processes. We extracted relevant critical system calls, i.e., connect, send, recv, 
CreateFile, WriteFile, from the source code of Agobot [4], which implemented the malicious 
behavior of downloading a file from a URL and then executing the file. We compiled the code 
into a binary, and then submitted the binary to two online malware behavioral analysis tools: 
CWSandbox and Norman Sandbox.  

We evaluated the shadow attack based on the extracted code from Agobot, which consisted 
of three different binary executable files representing connect process, download process and 
execute process, respectively. The three binary files were combined into one self-extracted 
binary using winrar (as the simplest scenario described in Section 2.2) because these online 
services only accept single binary submission. We then used winrar to unfold and execute the 
binaries to verify the original functionality as downloading and executing. 

We now describe the detection outcomes of two cases in the Norman Sandbox. For the 
single-process based binary, the Norman sandbox detected it as “Win32/Downloader” as 
shown in Figure 9. For the shadow-attack based binary, the Norman sandbox reported it as not 



infected as shown in Figure 10. The Norman Sandbox’s Report showed the opened URL in 
the single process detection result. While for the shadow processed binary it only showed the 
connection. 

 
Fig. 9. Norman Report of single process 

 

 
Fig. 10. Norman Report of shadow processes 

Then, we submitted the multi-process-based binary (.exe) file to CWSandbox for analysis. 
For single-process based binary, CWSandbox clearly reported the network activity via a 
download URL as shown in Figure 11. However, for the shadow processes based binary, it 
only reported the outgoing connection without indicating the download URL, as shown in 
Figure 12. These two examples demonstrate the effectiveness of shadow attack. 

 

 
Fig. 11. CWSandbox Report of single process 

 

self.exe : Not detected by Sandbox  
(Signature: NO_VIRUS) 
[ DetectionInfo ] 
* Filename: C:\analyzer\scan\self4.exe. 
* Sandbox name: NO_MALWARE 
[ Network services ] 

* Connects to "students.cs.*.edu" on port 80. 

DoTcpConnectExecute.exe:INFECTEDwith 
W32/Downloader (Signature: NO_VIRUS) 
[ DetectionInfo ] 
*Filename:C:\analyzer\scan\DoTcpConnectExecute.exe. 
* Sandbox name: W32/Downloader. 
[ Network services ] 
* Connects to "students.cs.*.edu" on port 80. 
*OpensURL: students.cs.*.edu/*/notepad.exe. 
[ Security issues ] 
*Starting downloaded file-potential security problem. 



 
Fig. 12. CWSandbox Report of shadow processes 

5.2 Evaluation Using Real-World Malware 

We further evaluated the efficiency and feasibility of AutoShadow on several real-world 
malware programs. Our evaluation was performed on a Linux machine with an Intel core 2 
Duo 2.40GHz processor, 6MB cache, and 2GB of memory. 

Table 5. Evaluation results on malware examples 

 
The results in Table 5 show that AutoShadow can automatically extract critical system 

calls in well-known malwares like Q8bot (a bot program), Apachworm, Computer_dunno, and 
Kaiten. After partition, Q8bot becomes a new malware with four shadow processes. Obviously, 
by splitting, creating, sending, and receiving behavior into multiple processes, behavior-based 
detection tools that attempt to capture the C&C (command & control) pattern (e.g., [25]) in 
one process are likely to fail. The apache worm has a mailing behavior. This mailing behavior 
can be modeled using system call sequence as “connect() ^ write() ^ write(“Hello”) ^ 
write(“RCPT”)”, which can be readily detected by existing behavior-based detectors (e.g., 
[1][3]). This behavior specification is exported to multiple shadow processes, and therefore 
they do not exist in any single process. Coromputer_dunno and Kaiten are two examples of 
bot programs that are designed to launch DDoS attacks. They have C&C patterns that could be 
potentially detected by detection approaches like [25]. Similar to the Q8bot, AutoShadow 
successfully partitions its critical system calls and thus make it undetectable. We also report 
the transformation time. For example, Apach-worm has a total of 2,255 lines of code. It costs 
AutoShadow only 0.05 seconds for the partition. As shown in Table 5, other three malware 
programs take less than 0.05 seconds for the transformation. These tests on the four real-world 
malware examples demonstrate the high efficiency of AutoShadow. 

5.3 Performance 

We also evaluated the process communication cost by using the malware example in Figure 1.  



 

 
Fig. 13. Performance time  

Since the main overhead occurred when two shadow processes communicate, we changed the 
number of such communication interactions by using different buffer size of write(). Figure 13 
shows the total execution time of the malware in two cases: before partition (single process) 
and after partition using in-host communication. We can see that when there are less than 10 
interactions between shadow processes, the attack have similar execution time as the original 
malware. With the increase of interactions, the shadow attacks cost more time on the 
communication. It is worth noting that although multi-process malware is slower than the 
original single-process malware, we believe most malware writers might still favor more 
evasive multi-process malware if the task is not time-critical. In addition, malware writers can 
always optimize communications between shadow processes in reality, e.g., choosing 
selective critical system calls and limiting the number of shadow processes.   

5.4 Estimating Possible Detection Cost of Multi-Process Malware 

In theory, one could defend against shadow attack with adequate monitoring of process 
activities to determine their relationship, data flows, etc. That being said, it is important to 
gain a realistic sense of the performance in these countermeasures. We use the Linux system 
calls to gain a glance of the design complexity and run-time costs.  

Firstly, we implemented a very simple single process behavior-based malware detector, 
similar to the idea of [1]. In order to monitor system calls, we can employ either Ptrace or 
kernel modifying. We choose using Ptrace for simplicity. We use shadow attack to transform 
Agobot, which contains five malicious behaviors including: (a) download and execute; (b) 
Remote-Initiated Network Download; (c) Remote-Initiated Send Email; (d) Remote-Initiated 
Sendto; (e) TCP Proxy. Not surprisingly, our result showed that Agobot successfully evades 
the single-process detector after shadow attack (while it can be detected before shadow attack). 

In a generic defense system, one needs to group correlative processes which have direct or 
indirect communications with each other. After grouping correlated processes, one could 
implement a system call dependency graph of multiple processes using relevant state 
information as its inputs. To monitor the System-V IPC, we need to monitor the system call 
shmget()/msgget()/semget(), and group processes by comparing  parameters of these system 
calls. Besides, to monitor in-host SPC method of pipe, socket, and disk file, the inode value of 
each file descriptor opened by all processes (called IPC object hereafter), needs to be analyzed. 
In doing so, we can tell which processes have ever accessed the same IPC object to 
communicate with each other. We employ a user mode approach, that is whenever a 
pipe/socket/disk-file related system call is triggered, the change of file descriptors in /proc/fd 
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needs to be logged, and then analyzed.  Figure 14 displays the architecture of our example 
multi-process malware detector. 

For each correlated process group, we can recover a global system call sequence according 
to the specification. Without considering any specific malware, we conducted a series of 
experiments to gain a sense of the monitoring cost. We use a benchmark program which 
makes 5 system calls: fopen->read->write->fclose->execv, with 1000 iterations. And measure 
the running time of this program, normally, with ptrace monitoring and with /proc/fd 
monitoring. Figure 15 shows that the running time of this program increased from 150 ms to 
1,195 ms and 93,121 ms, respectively, when Ptrace and /proc/fd monitoring were activated. 
The checking of /proc/fd directory is trigged whenever fopen/fclose are called. Thus it is time 
consuming. 

 
Fig. 14. Example architecture of a multi-process malware detector 

 

 
Fig. 15. Time cost induced by Multi-process Monitoring/Correlation 

 
We note that our above naïve example detector is merely for the purpose of estimating one 
possible detection cost for multi-process malware. It is just an example, and by no means a 
best, realistic, nor optimal design. One may easily argue that there can be much better design 
in terms of both effectiveness and efficiency. However, the message we want to convey from 
this naïve example is that fully real-time correlating processes (through explicit or even 
implicit SPC) can be much more expensive than single-process based monitoring. To our 
knowledge very few tools support multi-process analysis due to the high cost of blind 
enumeration on grouping of processes to one or more malwares. In addition, inter-process 
coordination can be made indirect and hidden using many ways (even remote-network-
coordination) to make it more difficult for multi-process malware detection. We need further 
research to study more efficient real-time solution for correlating processes communicating 
using different SPC. 
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We also need to improve the effectiveness of accurately correlating multi-process malware 
that uses indirect/implicit SPC. A possible way is to perform fine-grained kernel-level global 
processes and system object tracking and correlation analysis. In [18], BackTracker, a VM-
based monitoring method, is proposed for such a fine-grained tracking. However, this 
approach is very expensive and used only for offline analysis instead of real-time detection 
purpose. Thus, we believe how to build an effective and efficient shadow attack detector is 
still an open problem. 

6 Discussion 

Our approach could easily be combined with current signature-evading techniques such as 
metamorphic viruses [34]. By doing so, AutoShadow could be able to evade both signature-
based and behavior-based malware detector. 

To defend against SPC based shadow attacks, all possible in-host SPC activities might 
need to be monitored to screen for correlated processes. Some major obstacles must be 
overcome by defenders. First, a detection approach may have high false positive rate because 
normal processes also use in-host communications. In particular, with the increasingly used 
multi-core CPUs and increasingly adopted normal multi-process programs, this issue could 
become worse. Second, with conversion of data flows to control flows, it is not easy to 
efficiently track the parameter data dependency between processes. Finally, the use of 
information flow and data tainting are relatively expensive in practice because of their high 
operational overhead. The remote-network-coordinated shadow attacks could further eliminate 
the direct observable communications and makes the detection even harder. 

We believe that it will be useful to consider correlations and dependencies between 
processes based on system objects/resources. For example, the correlation between two 
processes may be established when they are found to operate on a same file. However, this 
approach must also address the false positive issue and the high overhead (as shown in 
BackTracker [18]).  

7  Related work 

Program/Malware partition. One related work to AutoShadow is k-ary theoretic malware 
model [6] that provided a theoretical analysis of the hardness of detection. Source code 
fragmented malware has been proven to be NP-Complete in general [6]. Detection of shadow 
attack is thus also NP-complete since shadow attack is a form of fragmented malware at 
behavior level. Our approach is different from [6] because we fragment malware into different 
executable binaries at behavior level and we provide a practical, automated compiler-level 
solution. Several systems automatically generated distributed programs by applying static 
code analysis [2]. In theory, program partition can also be abstracted as a NP-hard problem 
[11]. In addition, Mimicry attack [27][5] obfuscated the order of system calls to evade system 
call based IDS. Another similar multi-process based work [7] proposed a code injection 
technique, which writes some malicious code to other processes for detection evasion. It has 
the weakness that the behavior of writing data to the memory space of other process is 
uncommon and suspicious, which could cause attention of detection tools.  
Behavior-based malware detection. A semantic-aware detector using code template of 
instructions was developed in [3]. In [12] specification language was mined for malicious 
behavior. Layered behavior graph using system calls was proposed in [1]. These detectors 
focus on one single process rather than multiple processes. Jiang et al. [15] detected the break-
in point of worms by assigning different colors to different processes derived from different 



services. It cannot detect covert communication channels. Panorama system [16] was 
proposed to detect privacy breaking malwares by tracing the information flow of access and 
processing sensitive information in an offline fashion. BackTracker [18] traced back to 
vulnerable points by monitoring and logging system calls, files and processes. It is still an 
offline tool.  

It was recently proposed in [9] that one could counter the behavior-based detections by 
using Time-Lock Puzzle (TLP). It utilizes cryptographic techniques to ensure that a message 
is never revealed until certain right moment. Thus, TLP prevents the Anti-Virus (AV) engine 
from discovering the encryption key and thus hide suspect codes without being identified [9]. 
Another technique, system call obfuscation [29], evades malware detectors by replacing 
certain system calls with general control system calls. Our work is different from these in that 
we propose a new class of attacks on behavior-based detectors. 

8 Conclusion 

In this paper we show the models and techniques of shadow attack. The essence of this kind of 
attack is to export malicious behavior specifications from a malware program to multiple 
shadow processes. We implemented a compiler-level prototype tool to demonstrate its 
feasibility. Our preliminary results show that transformed malware could evade or counter 
existing behavioral analysis tools. Several research problems still remain open. For example, 
from attack point of view, how to launch optimal shadow attach in terms of minimal number 
of processes, resource consumption, and communication cost. More importantly, from defense 
point of view, how to efficiently and effectively defend against this new threat still requires 
further research. 
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