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Abstract
Android platform adopts permissions to protect sensitive resources
from untrusted apps. However, after permissions are granted by
users at install time, apps could use these permissions (sensitive
resources) with no further restrictions. Thus, recent years have
witnessed the explosion of undesirable behaviors in Android apps.
An important part in the defense is the accurate analysis of Android
apps. However, traditional syscall-based analysis techniques are
not well-suited for Android, because they could not capture critical
interactions between the application and the Android system.

This paper presents VetDroid, a dynamic analysis platform for
reconstructing sensitive behaviors in Android apps from a novel
permission use perspective. VetDroid features a systematic frame-
work to effectively construct permission use behaviors, i.e., how
applications use permissions to access (sensitive) system resources,
and how these acquired permission-sensitive resources are further
utilized by the application. With permission use behaviors, security
analysts can easily examine the internal sensitive behaviors of an
app. Using real-world Android malware, we show that VetDroid
can clearly reconstruct fine-grained malicious behaviors to ease
malware analysis. We further apply VetDroid to 1,249 top free apps
in Google Play. VetDroid can assist in finding more information
leaks than TaintDroid [24], a state-of-the-art technique. In addition,
we show how we can use VetDroid to analyze fine-grained causes of
information leaks that TaintDroid cannot reveal. Finally, we show
that VetDroid can help identify subtle vulnerabilities in some (top
free) applications otherwise hard to detect.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.2.1 [Software
Engineering]: Requirements/Specifications
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1. INTRODUCTION
Smartphone platforms are becoming more and more popular

these days [5]. To protect sensitive resources in the smartphones,
permission-based isolation mechanism [13] is used by modern
smartphone systems to prevent untrusted apps from unauthorized
accesses. In Android, an app needs to explicitly request a set
of permissions when it is installed. However, after permissions
are granted to an app, there is no way to inspect and restrict
how these permissions are used by the app to utilize sensitive
resources. Unsurprisingly, Android has attracted a huge number
of attacks. According to McAfee threat report of Q3 2012 [6],
Android remains the largest target for mobile malware and the
number almost doubled in Q4 2012. While these malware apps
are clear examples containing undesirable behaviors, unfortunately
even in supposedly benign apps, there could also be many hidden
undesirable behaviors such as privacy invasion.

An important part in the fight against these undesirable behaviors
is the analysis of sensitive behaviors in Android apps. Traditional
analysis techniques reconstruct program behaviors from collected
program execution traces. A rich literature exists (see, e.g., [14,16,
21, 22, 33, 40, 49]) that focuses on solutions to construct effective
behavior representations. All these research efforts have mostly
used system calls to depict software behaviors because system calls
capture the intrinsic characteristics of the interactions between an
application and the underlying system. Previous studies differ from
each other only in how to structure the set of system calls made
by the applications [17]. However, previous work is not readily
applicable due to the following unique features of Android:

Android Framework Managed Resources. Android is an applica-
tion framework on top of Linux kernel [51] where applications do
not directly use system calls to access system resources. Instead,
most system resources in Android are managed and protected by
the Android framework, and the application-system interactions
occur at a higher semantic level (such as accessing contacts, call
history) than system calls at the Linux Kernel level. Indeed,
Android provides specific APIs for applications to access system
resources and regulates the access rules. Using system calls to learn
the interaction behaviors between applications and Android will
lose a semantic view of accesses to Android resources, degrading
the quality and precision of the reconstructed behaviors.

Binder Inter-Process Communication (IPC). In Android, system
services are provided in separated processes, with a convenient IPC
mechanism (Binder) to facilitate the communication among system
services and applications. Binder IPC is heavily used in Android
and recommended in the design of applications. The wide use



of IPC also brings problems to traditional syscall-level behavior
reconstruction. First, traditional solutions would only intercept a
lot of system calls used to interact with the Binder driver, hiding
the real actions performed by the application. Second, the use
of IPC in Android apps breaks the execution flow of an app into
chains among multiple processes, making the evasion of traditional
syscall-based behavior monitoring easier [42].

Event Triggers. Android employs an event trigger mechanism to
notify interested applications when certain (hardware) events occur.
In this model, for example, if an application wants to be notified
when the phone’s location changes, it just needs to register a
callback for such an event. When Android sniffs a location change
event from the location sensors, it notifies all the interested appli-
cations of the latest location by invoking their registered callbacks.
This asynchronous resource access model via system delivery is
quite different from the synchronous application-request access
model. A key observation is that application registered callbacks
are application code, so they could evade system call interception.
As a result, traditional behavior reconstruction methods will lose
such important application behaviors.

The above analysis indicates that a general method to reconstruct
sensitive behaviors of Android apps is highly desired. Since
Android does not use system calls as the main mechanism to
isolate applications, system calls do not appear to be a good vehicle
for representing behaviors. Considering the unique permission-
based isolation mechanism in Android, we propose to reconstruct
sensitive behaviors for Android apps from a novel permission use
perspective, i.e., how applications use permissions to interact with
the Android system and sensitive resources. We define a new
concept, permission use behavior, which captures what and how
permissions are used to access system resources, as well as how
these resources are further utilized by the application internally.
Accordingly, we define two kinds of permission use points: Explicit
permission use points (E-PUP) denote those callsites of Android
APIs in applications that explicitly request the permission-sensitive
resources; Implicit permission use points (I-PUP) denote the use
points of the acquired sensitive resources that are requested with
permissions. For example, assume an application requests both
ACCESS_FINE_LOCATION and INTERNET permissions during
the installation time. Its permission use behavior should track the
explicit points where these two permissions are requested and also
all the implicit points where the location and network resources
are used inside the application. In this case, any point where two
permissions are intertwined is of particular interest because it might
indicate possible location leakage to the network.

In this paper, we design a dynamic analysis system called
VetDroid to automatically construct permission use behaviors for
Android apps. VetDroid features a systematic permission use
analysis to identify a complete set of E-PUPs and I-PUPs with
accurate permission use information during the runtime. Our
proposed permission use analysis is composed of two components:
E-PUP Identifer which intercepts all invocations to Android APIs
and sniffs accurate permission check information from Android’s
permission enforcement system to identifies all the E-PUPs with
accurate permission use information, and I-PUP Tracker which
takes the asynchronous resource delivery model into account to
recognize the exact delivery point in the application for each
resource requested at a E-PUP and locates all the I-PUPs of these
resources by permission-based tainting analysis. VetDroid also
features a driver to enlarge the scope of the dynamic analysis
to cover more application behaviors and a behavior profiler to
generate behavior graphs with highlighted sensitive behaviors for
analysts to examine.

To evaluate the effectiveness of permission use behavior and
VetDroid, we first use VetDroid to analyze real-world Android
malware. The results show that the permission use behaviors
reconstructed by VetDroid can significantly ease the malware
analysis. We further apply VetDroid to more than one thousand top
free apps in Google Play Store. VetDroid finds more information
leaks than the state-of-the-art leak detection system TaintDroid
[24], and shows its capability to analyze the fine-grained incentives
of information leaks among the apps. Furthermore, VetDroid even
detects subtle Account Hijack Vulnerability in a top free Android
app. The analysis overhead caused by VetDroid is reasonably low
for an offline analysis tool.

This paper makes the following major contributions:
• We analyze the limitations of existing syscall-based behavior

analysis methods when applied to Android platform and
propose permission use behavior as a new perspective to
analyze Android apps.

• We present a systematic framework to reconstruct permission
use behaviors. Our automated solution is able to completely
identify all possible permission use points with accurate
permission information.

• We implement a prototype system, VetDroid, and evalu-
ate its effectiveness in analyzing real-world Android apps.
VetDroid not only greatly eases the analysis of malware
behaviors, but also assists in identifying fine-grained causes
for information leakages and even subtle vulnerabilities in
benign Android apps otherwise hard to detect.

The rest of this paper is organized as follows. §2 introduces some
background information about Android and defines the permission
use behavior. §3 describes our overall behavior reconstruction
approach. After that, we present our evaluation results in §4 and
discuss possible limitations & further improvements in §5. Finally,
we discuss related work in §6 and conclude our paper in §7.

2. PROBLEM STATEMENT

2.1 Android Background
Android is the most popular mobile operating system today. It

is built on top of more than 100 open source projects including
Linux kernel. To enhance the security, Android is designed to be
a privilege-separated operating system, in which each application
runs with a distinct system identity (Linux UID and GID). The
system components are also isolated into distinct identities. With
the help of the identity isolation mechanism in Linux, applications
in Android are isolated from each other and from the system.

Android employs a quite efficient and convenient IPC mecha-
nism, Binder, which is extensively used for interaction between
applications as well as for application-OS interfaces. Binder is
implemented as a kernel driver and user-level applications could
just interact with it through standard system calls, e.g., open(),
ioctl(). Binder is the key infrastructure of Android system and
aggressively used to connect various parts of the system together.

To facilitate resource accessing from isolated applications and
data sharing among applications and the system, Android designs a
permission-based security mechanism [26]. Each application needs
permissions to access system resources. These permissions are
granted from users at install time. At runtime, each application
is checked by Android before accessing sensitive resources. Any
access to resources without granted permissions will be denied.
The permission mechanism in Android is fine-grained [30] which
is different from iOS [11]. In Android 4.2, there are 130 items of
sensitive resources that are protected with permissions [1].



The Android application framework forces a component-based
application model [26] to increase the code reusability. It does
not have a main() function or any single entry point for execution.
Instead, Android apps must be developed in terms of components.
There are four types of components defined in Android’s pro-
gramming model: Activity component has a user interface and
handles the interactions with user, Service component performs
background processing, ContentProvider component stores and
shares data such as a relational database, and BroadcastReceiver
component handles messages from other components, including
the system. The primary mechanism for component interactions is
through an Intent, which is simply a message object encapsulating
the information of interest to the component that receives the intent
such as the action to be taken and the data to act on, and some
meta data managed by Android system. A component can be
protected by permissions and only those applications with granted
permissions can interact with the privileged component.

2.2 Motivation
Existing work [14, 21, 33, 40, 49] on behavior analysis has

mostly used system calls to depict application’s internal behaviors.
However, previous work has problems when applied to Android
platform due to Android’s new security model. As explained
in §1, these problems make traditional solutions not well-suited
for monitoring fine-grained Android behaviors such as accesses
to Android managed resources, interactions with system services
through Binder IPC, and responses to privileged system events.

TaintDroid [24] alerts information leaks inside an Android app
via dynamic taint tracking. AppIntent [57] redefines the privacy
leakage as user-unintended sensitive data transmission and designs
a new technique, event-space constraint symbolic execution, to
distinguish intended and unintended transmission. However the
two tools could neither analyze other kinds of undesirable be-
haviors such as stealthily sending SMS, nor examine the internal
logic of sensitive behaviors. ProfileDroid [53] is a behavior
profiling system for Android apps which is also not suitable
for analyzing internal behavior logic. DroidScope [56] is an
analysis platform designed for Android that extends traditional
techniques to cover Java semantics. However, the problem of
analyzing Android apps is not simple as how to capture behaviors
from different language implementations. It is hard to conduct
effective analysis without considering Android’s specific security
mechanism. Permission Event Graph [20], which represents the
temporal order between Android events and permission requests, is
proposed to characterize unintended sensitive behaviors. However,
this technique could not capture the internal logic of permission
usage, especially when multiple permissions are intertwined.

From the above short analysis of existing work, we find that
they do not take full consideration of permission-based isolation
mechanism in Android [13], which we believe to be important to
understand behaviors of these applications. Thus, in this paper
we propose to reconstruct permission use behaviors as a new and
complementary aspect in analyzing Android apps.

2.3 Definition of Permission Use Behavior
Permission use behaviors aim to capture apps’ internal sensitive

behaviors on utilizing system resources that are protected by
some permissions. According to the lifecycle of utilizing system
resources inside an app, we define different kinds of permission
use points (PUP). First, an app needs to invoke some Android APIs
to request system resources, which we call resource request stage.
If the requested resources are protected by some permissions,
Android’s permission enforcement system will check whether this

app has been granted the corresponding permissions at install
time. Because permission checks explicitly occur during resource
request stage, we denote the callsites in the app that invoke Android
APIs to request protected system resources as explicit permission
use points (E-PUP).

After the resource request stage, system resources may be
delivered to the app synchronously or asynchronously, depending
on the API used to request resources. The resource delivery
point is the starting point to learn the behaviors of utilizing
sensitive resources inside an app, and thus is very important for
reconstructing permission use behaviors.

Finally, when the requested resources have been delivered to the
app, they may be processed by application-specific logic, which
reflects the internal behaviors of utilizing sensitive resources. For
example, the location resource may be used by an app to suggest the
restaurants nearby, or may be used by a malicious entity to track the
victim. Although the further processing of acquired resources in an
app does not cause additional permission checks against the app,
it is still important to track the further use of these resources. In
this paper, these internal use points of the protected resources are
denoted as implicit permission use points (I-PUP). I-PUPs make
the critical behaviors stand out from other irrelevant application-
specific actions to ease the analysis of the app.

Permission Use Behavior. As described above, E-PUPs
capture what and where permissions are used by the application,
while I-PUPs capture how the application uses permissions to
implement their specific logic. However, a single permission
use point only represents a sensitive action performed by the
application, and does not necessarily capture a meaningful behavior
for analyzing applications. Based on the E-PUPs and I-PUPs, we
now formally define permission use behaviors.

DEFINITION 1. A Permission Use Behavior is a function call
graph G = (V,E, α) over a set of permissions P where:

• the set of vertices V = VE−PUP ∪ VI−PUP , and it consists
of all E-PUPs and I-PUPs,

• the set of edges E ⊑ V × V , and each edge connects nodes
that use the same permission,

• the labeling function α : V → P , and it associates each
node with permission(s) it uses.

With permission use behaviors, the interactions between applica-
tions and the Android system are effectively abstracted because it
describes how applications request system resources and internally
use the acquired system resources. However, the two kinds of
permission use points are hard to identify due to some unique
features of Android and application-specific logic. We thus design
an analysis platform called VetDroid to automatically reconstruct
permission use behaviors from Android apps.

3. VETDROID DESIGN
The overview of VetDroid design is shown in Figure 1. Sample

applications are first loaded into Application Driver, which auto-
matically executes the application in our sandbox (details described
in §3.3). During the execution, Permission Use Analysis module
identifies all the E-PUPs, I-PUPs and their relationships. These
behaviors are recorded by Log Tracer with runtime information
into a log file. The log file is offline processed by Behavior
Profiler to automatically construct behavior representations (details
described in §3.4).

The key challenge in our approach is on the effectiveness
of permission use analysis, i.e., how to completely identify all
the permission use points with accurate permission information
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Figure 1: Overview of VetDroid to reconstruct permission use behaviors for Android apps.

and precisely track their relationships. To correctly capture the
behaviors of using permissions inside an app, we analyze the
execution flow of the application with regards to Android’s special
permission mechanism and programming model. Our systematic
permission use analysis contains two main components: E-PUP
Identifier, which identifies all E-PUPs with accurate permission
information (details described in §3.1); and I-PUP Tracker, which
keeps tracking of the resources requested at each E-PUP to trace
all I-PUPs (details described in §3.2).

3.1 E-PUP Identifier
During the execution, applications may request system resources

that are protected by some permissions. E-PUPs represent such
behaviors in the application. The key feature of an E-PUP is that
it’s a callsite that invokes an Android API, and a permission check
occurs during the execution of this API. To reconstruct effective
permission use behaviors, the E-PUP Identifier should have two
properties. First, it should completely identify all the callsites that
invoke privileged Android APIs. Second, it should catch accurate
information about the permission checked by Android during the
execution of an API; otherwise the correctness and preciseness of
the reconstructed behaviors cannot be guaranteed.

Existing work [12,27] has built privileged API lists with required
permissions. It seems that our E-PUP Identifier could leverage
such API-permission lists to identify E-PUPs by intercepting all
APIs during the execution, and then looking up the permissions
that would be checked in an API-permission list by matching API
signatures. Unfortunately, existing API-permission lists are either
incomplete [27] or inaccurate [12]. Stowaway [27] uses Java
reflection to execute Android APIs and monitors what permissions
are checked by the system. To create appropriate arguments for
each API, Stowaway uses API fuzzing to automatically generate
test cases. Although Stowaway’s API-permission list is accurate,
it is quite incomplete due to the fuzzer’s inability to generate
complete inputs for all Android APIs. To achieve a good coverage,
PScout [12] adopts static analysis to extract API-permission lists
from Android source code. Although PScout’s API-permission
list is relatively complete, it is not accurate enough, because an
Android API could use different permissions at runtime according
to its arguments, which is also acknowledged by its authors [12].
To implement a both complete and accurate E-PUP Identifier, we
need to design a new technique, as described below.

3.1.1 E-PUP Identification Strategy
Based on our definition of E-PUP, we propose a straightfor-

ward identification strategy. First, our technique identifies the
application-system interface, which is a code boundary between
application code and system code. Based on the application-system
interface, E-PUP Identifier could intercept all calls to Android
APIs. Then, by monitoring permission check events in Android’s

Application System

LocationManagerService

.getAllProviders()

No Permission Checked

App.getLocationProviders()

Normal Point

Application-System Interface

App.getLastLocation()

ACCESS_FINE_LOCATION

Permission Checked

Explicit Permission Use Point:

ACCESS_FINE_LOCATION

LocationManagerService

.getLastKnownLocation()

VeVV tDroiid.getPeeermChCC eeeckTaTT gs()((VetDroid.getPermCheckTags()

VetDroid.clearPermCheckTags()

VetDroid.clearPermCheckTags()

VeVV tDroiid.getPeermChCC eeeckTaTT gs()((VetDroid.getPermCheckTags()

Figure 2: An example of identifying E-PUPs.

permission enforcement system during the execution of an API
and propagating the exact permission check information to the
application side, E-PUP Identifier could completely identify all the
E-PUPs with accurate permission use information, including those
invoked through Java reflection or Java Native Interface.

Figure 2 shows an example of identifying E-PUPs at the ap-
plication side. In this example, App.getLastLocation() invokes
getLastKnownLocation() API of LocationManagerService to get
the last known location. Before invoking this API, VetDroid
clears the permission check information in the thread-local storage
using VetDroid.clearPermCheckTags(). During the execution of
this API, Android’s permission enforcement system performs a
permission check on ACCESS_FINE_LOCATION permission. At
last, after the execution of getLastKnownLocation() API, VetDroid
invokes VetDroid.getPermCheckTags() to propagate the permission
check information from the enforcement system to the application
side. With the propagated permission check information, this
callsite in App.getLastLocation() is identified as an E-PUP of
ACCESS_FINE_LOCATION permission.

The application-system interface is recognized at every function
call site by checking whether the caller is application code and
the callee is system code. As Android apps are mostly developed
in the Java language and run on the Dalvik virtual machine, we
instrument Dalvik to monitor all function calls. The algorithm to
perform code origin checks should be very efficient, otherwise a
huge performance penalty would be introduced. Fortunately, we
find an efficient way to differentiate application code from system
code by checking their class loader, because system code is loaded
by a distinct class loader in Dalvik to ensure the VM integrity.

3.1.2 Acquire Permission Check Information
The complete identification of permission checks is the key to

identify E-PUPs. With the permission check information, it’s easy
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Figure 3: Two kinds of permission checks in Android’s
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to judge whether an application-system interface is an E-PUP or a
normal call site (see App.getLocationProviders() in Figure 2).

Android’s permission system is enforced by two modules: An-
droid system services and Linux kernel. According to the different
permission enforcing techniques, we differentiate two kinds of
permission checks in Android’s permission enforcement system:
Android permission check and Kernel permission check. Figure 3
illustrates these two kinds of permission checks:

Android Permission Check (AndPermChk). When an app tries
to access system resources that are protected by Android system
services such as contacts and locations, AndPermChks occurred.
Figure 3 gives an example of AndPermChk. App_1 tries to acquire
the current location by invoking an interface of LocationMan-
agerService via Binder. LocationManagerService first checks
whether App_1 has been granted ACCESS_FINE_LOCATION
permission by invoking the general permission check interface of
ActivityManagerService. The AndPermChk requests are finally
redirected to PackageManagerService except the permission re-
quests from the system itself are granted immediately. PackageM-
anagerService handles the permission check request by looking up
a table that records all the granted permissions for each application
when it is installed. According to the permission check result,
LocationManagerService judges whether to accept or deny the
request from App_1.

Kernel Permission Check (KerPermChk). The permissions to
protect file system and network are enforced by the Linux kernel.
As Figure 3 shows, the accesses to these resources should pass
KerPermChks. In Android, a unique GID is assigned to each
kernel-enforced permission. An app is checked to verify whether it
has the corresponding GID before accessing the protected resource.

Our identification of permission checks is implemented in An-
droid’s permission enforcement system, while E-PUP Identifier
needs to acquire permission check information at the application
side to judge whether a callsite is an E-PUP and what permission
is used by an E-PUP. For the two types of permission checks, the
permission check information is propagated differently:

Propagate AndPermChk Information. As Figure 3 shows, And-
PermChk is performed in a separate Android process. The ap-
plication side has no idea about what permission is checked by
what system service. It is difficult to automatically propagate the
permission check information from a separate service process to the
application. Since Android apps employ Binder to invoke remote
interfaces of a service process and the result is also returned via
Binder, we choose to extend the Binder driver and its communica-
tion protocol to propagate the permission check information during

the IPC procedure. As all AndPermChks are finally handled by
ActivityManagerService, we instrument its permission check logic
to convey the permission check information to the Binder driver.
With the extended Binder driver, this permission check information
can be propagated back to the application side.

Propagate KerPermChk Information. With a unique GID as-
signed to every kernel-enforced permission, KerPermChk is en-
forced by the GID isolation mechanism. We instrument the GID
isolation logic to record the checked GID into a kernel thread-local
storage. The checked permission can be recognized by mapping
the checked GID to the corresponding permission reversely. To
acquire the permission check information from the kernel at the
application-system interface, two system calls are added to access
and clear the checked GID in the kernel thread-local storage.

Thus, with permission check information propagated to the
application side, E-PUP Identifier could identify all E-PUPs with
accurate permission use information.

3.2 I-PUP Tracker
While E-PUPs represent the behaviors of how an application

use permissions to request sensitive resources, I-PUPs capture
the internal behaviors of how the application manipulates these
protected resources. To track the resources use points inside an
app, I-PUP Tracker first needs to recognize the delivery point for
each requested resource in the application.

3.2.1 Recognize Resource Delivery Point
Android’s programming model complicates the identification of

resource delivery points in the application. Callbacks are heavily
used in Android to monitor privileged system events, such as
location change events and phone state change events. There
are three types of callbacks in Android that can be registered to
deliver system resources: BroadcastReceiver, PendingIntent, and
Listener. BroadcastReceiver is one of the four types of components
defined in the Android application model, as described in §2.
PendingIntent [7] is a special Intent that can be sent back from a
separate process on behalf of its creator. According to the ways of
instantiating, a PendingIntent can be sent to an Activity, a Service
or a BroadcastReceiver. Listener is a specialized class to handle
callbacks that can be triggered remotely.

For most cases, BroadcastReceivers are declared in the app’s
manifest file and registered to the system when the app is installed.
Android also provides APIs to register BroadcastReceivers at
runtime. PendingIntents and Listeners are registered via specific
Android APIs. Since callbacks are used by a small number of
Android APIs, we choose to recognize the resource delivery point
by monitoring those APIs that may register callbacks.

Although PScout’s privileged API list [12] is not accurate e-
nough for E-PUP Identifier, it provides a complete list for picking
out APIs that register callbacks. However, there are more than
10,000 distinct APIs in PScout’s API list for every Android version,
so it is hard to manually check every API. Thus, we use an auto-
matic method to filter out most APIs that definitely cannot register
callbacks, and manually check a small number of remaining APIs.

Since only one specific API can register BroadcastReceivers
at runtime, our automatic filtering method mainly selects APIs
that register PendingIntents or Listeners. Our selection strategy
is to find all potential APIs whose arguments may contain a
PendingIntent or a Listener. We observe that Listeners can be
invoked from a separate/remote process, so they are Binder objects.
Our selection algorithm first finds all the subclasses that extend
android.os.Binder. As an API may declare an interface as the
argument type, our algorithm further collects a list for the interfaces



that each Binder subclass implements. At last, our filtering method
looks up PScout’s API list to select those APIs with an argument
type contained in the subclass list or the interface list. For Android
2.3, our filtering method finds 232 APIs that may register Listeners.
PendingIntent is easy to handle, because it is defined as a final
class in Android. After a search on PScout’s API list, our method
finds 58 APIs whose arguments contain a PendingIntent. Then
we manually verify the total 286 APIs (4 APIs register both
PendingIntents and Listeners), and eventually we confirm 89 APIs
register PendingIntents or Listeners to acquire protected system
resources. In this procedure, our automatic API filtering method
greatly reduces the manual efforts.

For our selected APIs that register callbacks, the resource deliv-
ery point is the registered callback. While for other APIs, the E-
PUP is also the resource delivery point. Since BroadcastReceiver
can be registered by the manifest file, we parse the manifest file
of each analyzed app to collect declared BroadcastReceivers and
mark their onReceive() functions as the resource delivery points.
After the resource delivery points are recognized, the I-PUPs can
be tracked by following the resource usage inside the app.

3.2.2 Permission-based Taint Analysis
After the resource is delivered to the application, it can be used

in different ways with application-specific logic that makes the
identification of I-PUPs quite difficult. To solve this problem, we
use dynamic taint tracking to capture the resource usage inside the
application. However, traditional taint analysis cannot be applied
directly. The key challenge is to automatically taint related data
for each delivered resource with permission information. Our
permission-based taint analysis works in the following steps.

Tag Allocation. A taint tag is allocated at each E-PUP to
mark the requested resource with corresponding permission check
information. The taint tag is represented as a 32-bit integer. Each
bit of the tag corresponds to a unique E-PUP. Our tag allocation
is context-sensitive, which means the same tag will be assigned to
E-PUPs with the same calling context. The reason for this strategy
is to prevent the explosion of tag bits while different E-PUPs are
still distinguishable.

Automatic Data Tainting. After a taint bit is allocated for an
E-PUP, the corresponding acquired system resource needs to be
automatically tainted with the tag. The automatic data tainting
occurs at the resource delivery point for each E-PUP. For APIs
that register callbacks, a wrapper is added around each registered
callback to taint the delivered protected data according to the
concrete type of the callback so that the related data gets tainted
only when the callback is triggered. For other APIs, two kinds
of data are automatically tainted according to the signature of the
API: 1) The return value of the API at each E-PUP should be
tainted with the corresponding tag. 2) As Java is an object-oriented
language, the state of an object may be modified by instance
methods. For instance APIs, we also taint the invoked object with
the tag allocated at the E-PUP.

Identify I-PUPs. Dynamic taint tracking is employed to follow
the propagation of tainted resource data. I-PUP is identified by
recognizing the use point of tainted data. The granularity of the
identification is quite important to the quality and efficiency of
the I-PUP Tracker. It could be performed at the instruction-level,
but a single instruction is too fine-grained to depict a meaningful
action. Thus, we choose to identify I-PUP at the function-level.
We intercept all function invocations in the Dalvik virtual machine
and compute a taint tag for each function. The tag for a function
is calculated by a bitwise OR operation on the taint tags of its

parameter values. If the tag is non-zero, the function is an I-PUP
for the permission represented by the tag.

After identifying resource delivery points and performing the
permission-based taint analysis, I-PUP Tracker could trace all the
use points of resources with accurate permission information.

3.3 Application Driver
Unlike traditional applications, there is no single entry point for

an Android app. It brings problems to automatically executing
Android apps. Our Application Driver adopts a component-based
testing strategy. It automatically extracts Activities and Services
from the application and runs each component in the sandbox for
a while (the time depends on the concrete hardware platform).
Additionally, Monkey [9] is used to exercise the user interface for
each Activity.

Furthermore, some behaviors of Android apps are triggered by
events. Our Application Driver also injects fake events (such as
the arrival of new SMS, location change) during the monitoring
when certain callbacks are registered. With the runtime injected
events, Permission Use Analysis module could reconstruct more
permission use behaviors from the application.

It is worth noting that our Application Driver could not guarantee
a complete coverage over all possible behaviors. In fact, this is
generally a difficult problem for all dynamic analysis work. This
paper tries to design a better behavior approximation for analyzing
Android apps, and leaves the coverage problem as our future work
(as discussed in §5).

3.4 Behavior Profiler
During the execution of the application in VetDroid sandbox, Log

Tracer collects the behaviors reported by Permission Use Analysis
module with runtime information to a log file. Behavior Profiler
analyzes the log file offline to automatically generate permission
use graphs for further analysis.

Behavior Profiler first identifies all the E-PUPs from the log
file. For each E-PUP, Behavior Profiler further collects all I-PUPs
for the requested permission by tracking the same tag bit. By
connecting these permission use points according to the execution
orders, Behavior Profiler could draw a permission use graph for
each permission.

As Android adopts a fine-grained permission model [30] to
protect system resources, our insight is that applications usually
need to use multiple permissions together to accomplish a mean-
ingful behavior. Based on this observation, Behavior Profiler
searches all the permission use graphs to connect those graphs
with an overlapped node (which uses at least two permissions)
to form a new permission use graph. The permission use graph
with multiple permissions captures interesting behaviors for anal-
ysis, as will be demonstrated later in the evaluation. Behavior
Profiler automatically discards permission use graphs that use
only a single (less interesting) permission with the exception of
those graphs using a high-risk permission such as SEND_SMS,
CALL_PHONE. The profiled permission use graphs capture the
behaviors of using permissions inside an application, especially
when multiple permissions are intertwined. With such permission
use graphs, experts could inspect the internal logic of Android apps
to analyze suspicious behaviors, verify programming logic, etc.

4. PROTOTYPE & EVALUATION
A prototype of VetDroid is implemented based on Gingerbread

(Android 2.3).1 This prototype currently supports running on

1Note that our techniques are not limited to this specific version.



Samsung Nexus S phones and emulators. The Application Driv-
er and Behavior Profiler are implemented in Python. E-PUP
Identifier instruments the Dalvik virtual machine to intercept all
API invocations, and enhances the Linux kernel as well as the
Binder driver to acquire accurate permission use information at the
application side. I-PUP Tracker modifies the Android framework
to monitor registrations and invocations of application callbacks,
and extends the taint tracking logic in TaintDroid [24] to implement
the permission-based taint analysis (as described before). In
all, VetDroid modifies and enhances several main components in
Android including the Linux kernel, the Binder driver, the Dalvik
virtual machine, to implement a systematic permission use analysis
framework.

We evaluate VetDroid from three aspects. We first apply Vet-
Droid to real-world Android malware and analyze their internal
malicious behaviors with permission use graphs. Next, we report
our findings on vetting more than one thousand top free apps
in Google Play with VetDroid. Finally, we measure the runtime
overhead of VetDroid.

4.1 Real-World Malware Study
We have used VetDroid to analyze 600 Android malware samples

that we have collected from Malware Genome Project [59]. To
efficiently construct permission use behaviors, Application Driver
runs these samples in 10 emulators and each component is executed
for 120 seconds. Our hardware platform is an AMD server with
4*4 cores (2GHz) and 16GB memory. In all, 5,990 components
are executed, which last totally about 22 hours (i.e., 2.2 minutes per
sample). The reconstructed behaviors are automatically classified
by their E-PUPs and further manually confirmed and categorized.

Table 1 lists six example categories of interesting malicious
behaviors [59] captured by VetDroid. We can find that these
malware either steals users’ sensitive data or incurs financial
charge. We also compare the analysis results with those reported
by Malware Genome Project [59]. Unfortunately, the Command
and Control (C&C) servers [58] used by some samples were
not available during the analysis and some malicious behaviors
are only triggered under certain contexts, so some behaviors
reported in [59] were not observed. In all, VetDroid successfully
analyzed 21 malware families and more importantly reconstructed
their detailed behaviors, demonstrating its effectiveness in aiding
malware analysis. More interestingly, VetDroid captured some
previously unreported behaviors in dissected malware samples. For
example, we found 38 BaseBridge samples exhibit SMS Stealing
behavior and 1 Zitmo sample has SMS Blocking behavior, which
have not been reported by Malware Genome Project yet. This
further illustrates the advantages of our new analysis technique to
help reveal undesirable behaviors.

Due to space limit, we can only present some interesting case s-
tudies analyzed by VetDroid with permission use graphs: GGTrack-
er, SMSReplicator, TapSnake. The permission use graphs capture
the complete execution flow related to the malicious behaviors.2

The nodes with filled colors represent E-PUPs, while other nodes
represent I-PUPs. The edges in the graph depict the flow among
permission use points.
1) Analysis of GGTracker.

GGTracker is known for its intent to automatically sign up
infected users to premium services. Due to the second-confirmation
policy required in some countries, GGTracker needs to stealthily
reply to an acknowledge SMS message sent from the service

2In this paper we only present partial permission use graphs.

Behaviors # Malware Families
Steal SMS 46 BaseBridge, SMSReplicator, Zitmo, Gone60
Steal Phone
Number 38 ADRD, YZHC, GoldDream, Pjapps, GGTracker

GingerMaster, DroidDream, DroidKungFu[1-4]
Steal Contact 8 Zitmo, Gone60, Walkinwat

Track Loc. 9 TapSnake, DroidDream, DroidKungFu1
Bgserv, DroidKungFu2, DroidKungFu4

Send SMS 43 Pjapps, Zsone, Walkinwat, RogueSPPush
GGTracker, FakePlayer, SMSReplicator

Block SMS 22 Zitmo, RogueSPPush, GGTracker, Zsone

Table 1: Example behaviors analyzed by VetDroid

RECEIVE_SMS

android.permission.RECEIVE_SMS, Tag: 0x1

RECEIVE_SMS

com.android.internal.telephony.SmsMessageBase;getOriginatingAddress(X1)

X1=0x40521098(type=com.android.internal.telephony.gsm.SmsMessage, 

tag=0x1)

t4t.power.management.activity.SmsReceiver;onReceive(X1, X2,X3)

X1=0x40519b10(type=t4t.power.management.activity.SmsReceiver, tag=0x1),

X2=0x40520050(type=android.app.ReceiverRestrictedContext),

X3=0x405144f8(android.content.Intent)

java.lang.String;equals(X1, X2)

X1="99735"(type=java.lang.String, tag=0x1)

X2="99735"(type=java.lang.String, tag=0x0)

RECEIVE_SMS

t4t.power.management.activity.SmsReceiver; abortBroadcast(X1)

X1=0x40519b10(type=t4t.power.management.activity.SmsReceiver, tag=0x1),

Dangerous API !

It blocks SMS !

Figure 4: SMS Blocking behavior in GGTracker.

provider to sign up a premium-rate service. This behavior is critical
to understand the internal logic of this malware.

We observe two kinds of behaviors in GGTracker with VetDroid.
Figure 4 shows the SMS blocking behavior. When a new SMS
arrives, t4t.power.management.activity.SmsReceiver is triggered.
Then getOriginatingAddress is invoked to get the sender’s number
of this message. The permission use graph clearly expresses
the constraints on the sender’s number in this malware. If this
SMS is sent from "99735", this message is blocked by invoking
abortBroadcast(). This function suppresses the broadcasting of the
event about the arrival of a new SMS. Since GGTracker registers
its BroadcastReceiver with the highest priority, this SMS is hidden
from the user. By checking the constraints on the sender’s number
from the graph, we can direct the Application Driver to inject
faked SMS from other numbers (this can be easily implemented
with an emulator [8]) to cover more interested behaviors. At last,
we confirm GGTracker also blocks SMS from "46621", "96512",
"33335", "36397", etc.

Besides, we also observe SMS Auto Reply behavior by iteratively
changing the sender’s number of the faked SMS. From Figure 5, we
could find that when the malware intercepts a SMS from "41001",
it automatically replies an SMS to "41001" with the content "YES"
using the sendTextMessage API. The SMS Auto Reply behavior is
critical in this kind of malware that stealthily signs up infected
users to premium services. With VetDroid, this behavior is clearly
revealed, enabling the detection and prevention of such attacks.

System Call Trace. To have a brief comparison with syscall-
based analysis, we use strace to collect system call trace during the
execution of SMS Auto Reply behavior, as showed in Table 2. From
the collected 33 system calls, it’s hard to recognize them as SMS
Auto Reply behavior due to the loss of fine-grained semantic and
context information, while VetDroid can clearly reconstruct such
behavior with the analysis of permission use points and behaviors.



android.permission.RECEIVE_SMS, Tag: 0x1

RECEIVE_SMS

com.android.internal.telephony.SmsMessageBase;getOriginatingAddress(X1)

X1=0x40521098(type=com.android.internal.telephony.gsm.SmsMessage, 

tag=0x1)

t4t.power.management.activity.SmsReceiver;onReceive(X1, X2,X3)

X1=0x40519b10(type=t4t.power.management.activity.SmsReceiver, tag=0x1),

X2=0x40520050(type=android.app.ReceiverRestrictedContext),

X3=0x405144f8(android.content.Intent)

android.permission.SEND_SMS, Tag: 0x2

X1=0x40526820(type=android.telephony.SmsManager)

X2="41001"(type=java.lang.String, tag=0x1)

X3="YES"(type=java.lang.String)

t4t.power.management.activity.SmsReceiver;onReceive()VLL---->

android.telephony.SmsManager;sendTextMessage(X1,X2,X3)

java.lang.String;equals(X1, X2)

X1="41001"(type=java.lang.String, tag=0x1)

X2="99735"(type=java.lang.String, tag=0x0)

RECEIVE_SMS

RECEIVE_SMS

java.lang.String;equals(X1, X2)

X1="41001"(type=java.lang.String, tag=0x1)

X2="41001"(type=java.lang.String, tag=0x0)

RECEIVE_SMS

Figure 5: SMS Auto Reply behavior in GGTracker.

syscall # Comments
ioctl 8 Binder communication
stat64,access 9 app’s resource file
getpid,gettid 8 process information
clock_gettime 7 time information
writev 1 log operation

Table 2: System call trace for SMS Auto Reply behavior.

2) Analysis of SMSReplicator.
SMSReplicator [3] is a spyware app targeting infected users’

incoming short messages. This malware protects itself by hiding its
icon. SMSReplicator not only leaks SMS messages, but also incurs
additional financial charge. As Figure 6 shows, all the incoming
SMS messages are intercepted by this malware using a Broadcas-
tReceiver (com.dlp.SMSReplicatorSecret.SMSReceiver). The SMS
is instantiated using createFromPdu() function of SmsMessage.
SMSReplicator further queries the contacts to find the sender of
the intercepted message. The name of the sender and the message
body is concatenated to send to a number specified by the attacker
via SMS. This graph clearly shows the permission use points of
three critical permissions (RECEIVE_SMS, READ_CONTACTS,
SEND_SMS). It is relatively easy to recognize this behavior as SMS
Forwarding. We can find that SMS Auto Reply behavior and SMS
Forwarding behavior are similar in intercepting and sending SMS.
However, with the reconstructed permission use behaviors which
track the internal application logic (Figure 5 and Figure 6), their
divergent malicious intents get clearly differentiated.
3) Analysis of TapSnake.

TapSnake [2] tracks the infected user by sending the latest loca-
tion to a remote server. To hide its malicious intent, this malware
disguises itself as the classic "snake" video game. During the instal-
lation, this malware asks users to grant ACCESS_FINE_LOCATION
and INTERNET permissions. Considering these permissions are
required by most legitimate advertising libraries [37], most users
choose to grant these permissions without any idea about how these
permissions will be used.

As showed in Figure 7, TapSnake first registers a callback
(net.maxicom.android.snake.LocationListener) for the location change

RECEIVE_SMS

READ_CONTACTS

READ_CONTACTSRECEIVE_SMS

android.telephony.SmsMessage; createFromPdu(X1)

X1=0x405224d8(type=[B,tag=0x1)

RECEIVE_SMS

X1=0x40528158(type=java.lang.StringBuilder, tag=0x3),

X2="***" (tag=0x3, display name queryed from the CONTACTS)

java.lang.StringBuilder; append(X1,X2)

android.permission.READ_CONTACTS, Tag: 0x2

com.dlp.SMSReplicatorSecret.SMSReceiver;onReceive()VLL---->

android.content.ContentResolver;query(X1,X2,X3,X4,X5)

X1=0x4051b8c8(type=android.app.ContextImpl$ApplicationContentResolver),

X2=0x40526a38(type=android.net.Uri$HierarchicalUri),

X3=0x40526b00(type=Ljava/lang/String,tag=0x1),X4=null,X5="display_name"

android.permission.SEND_SMS, Tag: 0x4

com.dlp.SMSReplicatorSecret.SMSReceiver;onReceive()VLL---->

android.telephony.SmsManager;sendTextMessage(X1,X2,X3,X4,X5)

X1=0x40538068(type=android/telephony/SmsManager),

X2="***"(attacker NO.), X3="***"(tag=0x3, SMS msg.),X4=null,X5=null

RECEIVE_SMS

android.permission.RECEIVE_SMS, Tag: 0x1

com.dlp.SMSReplicatorSecret.SMSReceiver;onReceive(X1, X2,X3)

X1=0x4051bd18(type=com.dlp.SMSReplicatorSecret.SMSReceiver,tag=0x1),

X2=0x405222c0(type=android.app.ReceiverRestrictedContext),

X3=0x40519958(type=android.content.Intent)

Figure 6: SMS Forwarding behavior in SMSReplicator.

android.permission.ACCESS_FINE_LOCATION, Tag: 0x4

net.maxicom.android.snake.SnakeService$1; run()V ---->

android.location.LocationManager; requestLocationUpdates(X1, X2,X3,X4)

X1="gps",X2=1L,X3=250.0F,X4=0x40528310(type=net.maxicom.android.sn

ake.LocationListener)

LOCATION

LOCATION

LOCATION

android.permission.INTERNET, Tag: 0x8

X1=0x4052f008(type=org.apache.http.impl.client.DefaultHttpClient),

X2=0x4053f238(type=org.apache.http.client.methods.HttpPost),

X3=0x400210c8(type=org.apache.http.impl.client.DefaultHttpClient)

net.maxicom.android.snake.SnakeService$1$1; handleMessage()VL---->

org.apache.http.impl.client.AbstractHttpClient; execute(X1,X2,X3)

java.net.URI; <init>(X1, X2)

X1=0x40529aa0(type=java.net.URI),

X2="?email=%22**%40gmail.com%22&code=%***%22&time=***&lat=*

*&lng=**&pro=gps&acc=0.01"(tag=0x4)

X1=0x40310548(type=org.apache.harmony.luni.platform.OSNetworkSystem, tag=0x8),

X2=0x4053fd20(type=java.io.FileDescriptor),X3=0x4056ac88(type=[B, tag=0x4),X4=0x0I,X5=0x140I

org.apache.harmony.luni.platform.OSNetworkSystem;writeImpl(X1,X2,X3,X4,X5)

INTERNET

net.maxicom.android.snake.LocationListener; onLocationChanged(X1,X2)

X1=0x40528310(type=net.maxicom.android.snake.LocationListener),

X2=0x40527568(type=android.location.Location, tag=0x4)

Figure 7: Location Track behavior in TapSnake.

event. When location changes, the onLocationChanged function is
invoked asynchronously by Android to deliver the latest location.
TapSnake further performs some string operations on the location
object to encode the location into a URL. The encoded URL is
passed to the execute() function of AbstractHttpClient. The latest
location that is encoded in the URL is eventually exfiltrated to the
server http://gpsdatapoints.appspot.com.

4.2 Vetting Market Apps
Next, we use VetDroid to vet 1,249 top (benign) apps crawled

from Google Play official store. These apps are top free apps
crawled from 32 different categories such as games, education,
entertainment, finance, social, sports, tools. We also use multiple
emulators to parallelize the process of reconstructing permission
use behaviors for these apps. There are several interesting findings.



Leak Resource TaintDroid VetDroid
IMEI 135 135
Phone Number 7 7
Location 17 24
Network State 0 28

Table 3: Information leakage results.

Finding 1: VetDroid can assist in finding more information
leaks than TaintDroid. Based on the reconstructed permission
use behaviors, we implement a simple permission-based filter that
selects permission use graphs with at least one permission to read
system resource and one permission to exfiltrate data to a remote
party. The selected graphs are further classified with regard to E-
PUPs. We manually check these classified behaviors and confirm
four kinds of information leaks, as listed in Table 3.

We also use TaintDroid [24] to run these apps with the exact
same inputs to the Application Driver. The results are also
presented in Table 3. We can see that VetDroid detects 7 more
location leaks than TaintDroid. After a further investigation
on these cases, we find that the cell location (acquired through
TelephonyManager.getCellLocation() API) is leaked in these cases
while TaintDroid does not treat this kind of location as sensitive
data. Since an app needs to use ACCESS_COARSE_LOCATION
permission to get the cell location, VetDroid could automatically
tracks the behaviors of leaking such kind of sensitive resource by
following the permission usage. VetDroid also detects 28 cases that
leak the device’s network state to a remote party while TaintDroid’s
current implementation does not support detecting leaks of such
sensitive resource. It is worth noting that TaintDroid could be
improved to detect these leaks if we proactively and manually
add ad-hoc logic to taint these sources. However, different from
TaintDroid, VetDroid can automatically track such resources as
long as they are in permission use behaviors. This experiment
clearly demonstrates that using permissions to automatically and
systematically capture application behaviors is superior to tradi-
tional simple taint analysis without permission in consideration.

Finding 2: VetDroid can inspect the fine-grained causes of
information leakage. Our permission use behavior captures the
internal logic of permission usages inside an app, thus enables
us to analyze the fine-grained procedure of information leakage.
We manually analyze the permission use behaviors of several
information leaks reported by VetDroid to investigate the contexts
of reading and leaking sensitive information. In this experiment,
we mainly focus on Phone Number and Location leakage cases
because they are relatively interesting.

Based on the context of information leakage, we find that many
such information leaks are actually not caused by the app itself.
Table 4 shows our analysis results. From this table, we could find
that 15 out of 24 location leaks are actually caused by mobiles ads
and payments. There is also one case that sends the phone number
to a mobile promotion and publishing company (Mobile Public).
Cell locations that are not tracked by TaintDroid are also used by
Vserv and Handmark for better advertising.

Compared with TaintDroid that could only alert information
leaks, the results show that VetDroid is capable of inspecting the
fine-grained causes of sensitive information leakage by tracing the
context of permission usage.

Finding 3: VetDroid can help detect subtle application vul-
nerabilities. Since SMS service is unique and quite important for
smartphones, we analyze 33 apps that request both RECEIVE_SMS
and SEND_SMS permissions by running these apps in VetDroid. By

Leak Resource # Leak Cause

Location 12

Inner-Active Ads
Wetter Ads
Flurry Ads
Google Ads
InMobi Ads
Fortumo Payments

CellLocation 3 Vserv Ads
Handmark

Phone Number 1 Mobile Public

Table 4: Information leak analysis results.

RECEIVE_SMS

RECEIVE_SMS

android.permission.RECEIVE_SMS, Tag: 0x400

com.viber.voip.registration.ActivationSmsReceiver;onReceive(X1, X2,X3)

X1=0x407eaf20(type=com.viber.voip.registration.ActivationSmsReceiver, 

tag=0x400),

X2=0x406deb10(type=android.app.ReceiverRestrictedContext),

X3=0x407df3a0(android.content.Intent)

android.telephony.SmsMessage; createFromPdu(X1)

X1=0x407d9cb8(type=[B, tag=0x400)

com.android.internal.telephony.SmsMessageBase;getMessageBody(X1)

X1=0x407de1c8(type=com.android.internal.telephony.gsm.SmsMessage, 

tag=0x400)

java.util.regex.Pattern;matcher(X1, X2)

X1=0x40792580(type=java.util.regex.Pattern),

X2="Your Viber code is: 8873, close this message and enter the code into Viber 

to activate your account.[CEG]"(type=java.lang.String, tag=0x400)

com.viber.voip.registration.RegistrationActivity;activationCodeReceived(X1, X2)

X1=0x407eaf20(type=com.viber.voip.registration.ActivationSmsReceiver, 

tag=0x400),

X2="8873"(type=java.lang.String, tag=0x400)

RECEIVE_SMS

RECEIVE_SMS

Figure 8: SMS Activation behavior in Viber.

carefully examining the permission use behaviors, we find that the
Viber application is vulnerable to Account Hijack attack.

According to the website of Google Play, Viber is a free VoIP
app that has been downloaded nearly 100 million times in recent 30
days worldwide. Viber provides users with free calls and messages
to other Viber users. It also requests its user to bind his/her phone
number which is used as his/her identity. When a call/message
arrives, Viber will look up the sender’s profile in the contact with
the sender’s phone number for a friendly notification.

To prevent a user from binding others’ phone numbers, Viber
server sends an activation SMS to the phone number. By verifying
the activation code in the SMS, Viber can confirm whether the
user owns the phone number or not. The activation phase is
quite important for a popular communication app such as Viber.
Otherwise, an attacker could bind a victim’s phone number and
send fake messages/calls to the victim’s friends on behalf of the
victim. This kind of Account Hijack attack could cause the same
damage as Facebook Account Hijack [4].

We use VetDroid to reconstruct the permission use behavior
of the activation process, as shown in Figure 8. As this figure
shows, Viber intercepts incoming SMS messages in Activation-
SmsReceiver, and extracts the activation code from the message
body using a regular expression. Once an activation code is
matched, the activation process is proceeded in the Registration-
Activity.activationCodeReceived() function.

By carefully examining the permission use behavior in Figure
8, it is easy to find that Viber does not check the origin of an
activation SMS. Thus, an attacker could pass the activation by



E-PUP I-PUP Log ALL
Time 18.124% 10.385% 3.785% 32.294%
Mem. 0.100% 13.573% 0.637% 14.110%

Table 5: Results of execution time and memory footprint
overhead on CaffeineMark benchmark.

intercepting the activation SMS from the victim and sending it to
the attacker’s Viber client, causing the victim’s account hijacked.
It is not hard to steal an SMS from a victim, especially when the
Account Hijack attack on the victim could lead to a reasonable
profit. SMS stealing could be possibly implemented by malware
such as SMSReplicator [3], Zitmo [10] or social engineering. To
further confirm this vulnerability, we perform an experiment to
hijack the Viber account of a volunteer in our group. By stealthily
replacing an app in his smartphone into our repackaged version
(which has the similar SMS Blocking and Stealing behavior as
Zitmo), the activation SMS from Viber server is forwarded by
our repackaged app to the attacker’s device. After binding the
volunteer’s phone number to the attacker’s device, free calls and
messages are successfully initiated to his friends on behalf of his
identity. Interestingly, in a security study [52] that performed
network traffic analysis of nine popular VoIP apps, Viber was
considered to be immune from Account Hijack attacks, because
the activation code was generated in the Viber server and thus
cannot be hijacked by a man-in-the-middle attack. However, our
internal permission use behavior analysis on Viber reveals that the
missing check on the origin of activation SMS actually makes Viber
vulnerable to Account Hijack attack.

4.3 Performance Overhead Evaluation
Due to the inline instrumentation on Android, our analysis tool

incurs some extra runtime overhead. We perform experiments
on our Nexus S to measure the overhead from two aspects:
execution speed and memory footprint. Table 5 shows the results
on CaffeineMark, a standard performance benchmark. Compared
with the original Android system, VetDroid slows down the entire
execution of the application by 32.294%, while increases the
memory footprint by 14.110%. The main overhead of I-PUP
Tracker is caused by our permission-based taint analysis which
inherits the overhead of TaintDroid [24]. We believe this is a very
reasonable and acceptable overhead for an offline analysis tool.

To measure the performance penalty in the worst case, we also
write a benchmark app that invokes a privileged Android API
10,000 times and opens a socket 10,000 times. This case is used
to measure the pure overhead caused by our permission check
identification module. By measuring the execution time, we find
the identification of AndPermChks and KerPermChks incurs an
overhead of 80.108% and 238.870%, respectively. As the execution
time of privileged calls represent only a small portion of the
whole execution, VetDroid is quite efficient, especially as an offline
analysis tool.

5. DISCUSSION
In this paper we focus on providing a new perspective for

analyzing Android apps. To enlarge the analysis scope, our
Application Driver utilizes several key features of Android, such
as component-based programming model, event triggers. However,
our technique alone could not guarantee all possible behaviors
are captured within the short time an app is executed. The
Application Driver could be enhanced with an automatic input
generation system such as AppsPlayground [48], AppInspector

[34], Dynodroid [43], or guided analysis technique such as multi-
path exploration [44], forced/informed execution [54, 55].

Our I-PUP Tracker is built upon TaintDroid, thus inheriting
similar limitations of TaintDroid such as incapable of tracking
native code and implicit flows, which we leave as our future work.
One possible way to solve the native code problem is to build a
taint analysis system that seamlessly tracks Java code and native
code. In addition, implicit flows can also be accurately tracked by
selectively propagating tainted control dependencies as in DTA++
[38]. Furthermore, our E-PUP Identifier relies on the Android
permission system for permission check identification. Thus our
current implementation could not catch those behaviors that do not
cause permission checks [35].

As our evaluation shows, VetDroid is not limited to analyze
malicious apps, but also capable of analyzing benign apps. A
key advantage of our approach is that it captures the application’s
sensitive behaviors with permission use graphs, which can signifi-
cantly reduce irrelevant/uninteresting actions and let analysts focus
on the critical behaviors when inspecting an app’s internal logic.
In practice, analysts can use VetDroid to automatically analyze a
batch of apps and write simple scripts to select interested cases for
further analysis (as demonstrated in our evaluation).

Compared with existing work, Permission Use Behavior pro-
vides a better approximation of sensitive behaviors inside an
Android app. Thus, we believe VetDroid could be integrated with
existing behavior-based malware detection techniques [14, 39] to
extract effective malware signatures for clustering and detection.

6. RELATED WORK
Malware Analysis. As mentioned before, syscall-based

solutions (e.g., syscall vector [16], syscall sequence with argu-
ments [49], temporal pattern of syscalls [14], resource access
model [40], syscall dependency graph [21, 22, 33]) are not well-
suited for the Android platform due to the inability of monitoring
Android-specific behaviors. DroidScope [56] seems to notice these
problems by seamlessly reconstructing the semantics from system
calls and Java. However, it only refines existing work, leaving the
root problems of Android’s special permission mechanism and pro-
gramming model untouched. A survey on current Android malware
characteristics was presented in [59] and [29]. DroidRanger [60]
and RiskRanker [36] were two Android malware detectors that
relied on existing knowledge about malicious symptoms. Although
they were reported to detect known and unknown malware samples,
they do not analyze the fine-grained internal behaviors of malware
samples, which is the focus of VetDroid.

To analyze apps at market-scale, Chakradeo et al. [18] proposed
app triage to efficiently allocate malware analysis resources. Vet-
Droid can be combined with this technique into a practical market-
scale application analysis solution.

Permission Analysis. Felt et al. [30] studied the effectiveness
of the time-of-use and install-time permission grant mechanism.
This work was extended in [28] to provide guidelines for platform
designers in determining the most appropriate permission-granting
mechanism for a given permission. Permission-based security rules
were used by Kirin [25] to design a lightweight certification frame-
work that could mitigate malware at install time. Apex [45] and
Saint [46] were two extensions to the Android’s permission system
by introducing runtime constraints on the granted permissions.

To help end users understand application behaviors at install
time, AppProfiler [50] devised a two-step translation technique
which maps API calls to high-level behavior profiles. While
VetDroid also tries to provide better behavior understanding, it is
a tool provided for different users (security analysts) and it uses



a different new technique/perspective (permission use behavior)
to precisely capture application-system interactions and sensitive
behaviors inside an app.

Barrera et al. [13] performed an empirical analysis on the expres-
siveness of Android’s permission sets and discussed some potential
improvements for Android’s permission model. Felt et al. [27]
proposed the first solution to systematically detect overprivileged
permissions in Android apps and one-third of the applications in
this study were found to be overprivileged. Probabilistic models
of permission request patterns [32] or permission request sets [47]
were also used to indicate the risk of new applications. To extract
permission specifications for Android, Stowaway [27] used API
fuzz testing while PScout [12] adopted static analysis on Android
source code. However, these two permission specifications were
limited in either completeness or preciseness, making them not
well-suited for implementing E-PUP Identifier.

Permission re-delegation attack in Android was first introduced
in [23, 31]. Grace et al. [35] empirically evaluated the re-delegated
permission leaks in pre-installed apps of stock Android smart-
phones. CHEX [41] and DroidChecker [19] were two tools that
could detect such kind of capability leaks. Bugiel et al. [15]
proposed system-centric and policy-driven runtime monitoring of
communication channels between applications at both Android-
level and kernel-level, which could prevent not only re-delegation
attacks but also collusion attacks. Chen et al. [20] adopted static
analysis to extract permission event graphs and examined the
constraint conditions on events for each privileged API using model
checking. However, it could not capture the internal logic of using
permissions, especially when multiple permissions are intertwined.

Our VetDroid differs from all existing work in that it provides the
first systematic framework to analyze permission use behaviors.

7. CONCLUSION
This paper presents VetDroid, the first approach to perform

accurate permission use analysis to vet undesirable behaviors.
To construct permission use behaviors, this paper proposes a
systematic framework that completely identifies explicit and im-
plicit permission use points with accurate permission information.
VetDroid is shown to be able to clearly reconstruct malicious
behaviors of real-world apps to ease malware analysis. It can also
assist in finding information leaks, analyzing fine-grained causes
of information leaks, and detecting subtle vulnerabilities in regular
apps. In all, VetDroid provides a better vehicle for analyzing
and examining Android apps, which brings benefits to malware
analysis/detection, vulnerability analysis, and other related fields.
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