Sets and Functions

Dr. Hyunyoung Lee

Based on slides by Andreas Klappenecker
Sets

Sets are the most fundamental discrete structure on which all other discrete structures are built.

We use naive set theory, rather than axiomatic set theory, since this approach is more intuitive. The drawback is that one can construct paradoxes using the naive set theory approach unless one is careful. The set theoretic complications have little bearing on the subsequent material, though, since we are mostly concerned with finite and countable sets.
Sets

A set is an unordered collection of objects, called elements, without duplication. We write \(a \in A \) to denote that \(a \) is an element in \(A \).

We can describe sets by listing their elements.

\(A = \{1,2,3,4\} \) a set of four elements

\(B = \{1,2,3,...,99\} \) a set of all natural numbers < 100
We denote the empty set {} by \emptyset.

A set can be an element of another set.

{\emptyset} is the set containing one element, namely \emptyset.

Note that \emptyset and {\emptyset} are different sets, since they contain different elements (the first one none, and the second one contains the element \emptyset).

The set {\emptyset, {\emptyset}} contains two elements.
Common Sets

\[N = \{0,1,2,3,4,...\} \text{ natural numbers (according to our book)} \]

[Note that in 50% of the literature N contains 0 and in the other 50% it does not. This will not change, since each view has its merits.]

\[Z = \{..., -2,-1,0,1,2,...\} \text{ set of integers} \]

\[R, \text{ set of real numbers} \]

\[C, \text{ set of complex numbers} \]
Set Builder Notation

The **set builder notation** describes all elements as a subset of a set having a certain property.

\[Q = \{ \frac{p}{q} \in \mathbb{R} \mid p \in \mathbb{Z}, \ q \in \mathbb{Z}, \ \text{and} \ q \neq 0 \} \]

\([a,b] = \{ x \in \mathbb{R} \mid a \leq x \leq b \}\]

\([a,b) = \{ x \in \mathbb{R} \mid a \leq x < b \}\]

\((a,b] = \{ x \in \mathbb{R} \mid a < x \leq b \}\]

\((a,b) = \{ x \in \mathbb{R} \mid a < x < b \}\]
Equality of Sets

Two sets \(A \) and \(B \) are called \textbf{equal} if and only if they have the same elements.

\[A = B \iff \forall x (x \in A \iff x \in B) \]

[To prove \(A = B \), it is sufficient to show that both \(\forall x (x \in A \rightarrow x \in B) \) and \(\forall x (x \in B \rightarrow x \in A) \) hold. Why?]
A set A is a **subset** of B, written $A \subseteq B$, if and only if every element of A is an element of B.

Thus, $A \subseteq B \text{ if and only if } \forall x(x \in A \rightarrow x \in B)$
Example

Theorem: For every set S, we have $\emptyset \subseteq S$.

Proof: We have to show that

$$\forall x (x \in \emptyset \rightarrow x \in S)$$

is true. Since the empty set does not contain any elements, the premise is always false; hence, the implication $x \in \emptyset \rightarrow x \in S$ is always true. Therefore, $\forall x (x \in \emptyset \rightarrow x \in S)$ is true; hence, the claim follows.
Cardinality of a Set

Let S be a set with a finite number of elements. We say that the set has \textbf{cardinality n} if and only if S contains n elements. We write $|S|$ to denote the cardinality of the set.

For example, $|\emptyset| = 0$.
Given a set S, the **power set** $P(S)$ of S is the set of all subsets of S.

Example: $P(\{1\}) = \{\emptyset, \{1\}\}$

$P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$

$P(\emptyset) = \{\emptyset\}$ since every set contains the empty set as a subset, even the empty empty set.

$P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$.
Quiz

Determine the set $P(\{ \emptyset, \{\emptyset\}\})$.

Answer: $\{ \emptyset, \{ \emptyset \}, \{\{\emptyset\}\}, \{ \emptyset, \{\emptyset\}\} \}$
Let A and B be sets. The **Cartesian product** of A and B, denote $A \times B$, is the set of all pairs (a,b) with $a \in A$ and $b \in B$.

$$A \times B = \{ (a,b) \mid a \in A \land b \in B \}$$
Let $A = \{1,2,3\}$.

What elements does the set $A \times \emptyset$ contain?

Answer: None
Set Operations
Union and Intersection

Let A and B be sets.

The **union** of A and B, denoted $A \cup B$, is the set that contains those elements that are in A or in B, or in both.

The **intersection** of A and B, denoted $A \cap B$, is the set that contains those elements that are in both A and B.
Let A and B be sets. The **difference** between A and B, denoted $A-B$ or $A\setminus B$, is the set

$$A-B = \{ x \in A \mid x \notin B \}.$$
Universe and Complement

A set which has all the elements in the universe of discourse is called a **universal set**.

Let A be a set. The complement of A, denoted A^c or \overline{A}, is given by $U - A$.
Set Identities

Let U be the universal set.

Identity laws:

- $A \cap U = A$
- $A \cup \emptyset = A$

Domination laws:

- $A \cup U = U$
- $A \cap \emptyset = \emptyset$

Idempotent laws:

- $A \cup A = A$
- $A \cap A = A$

Also:

- Commutative Laws
- Associative Laws
- Distributive Laws
De Morgan Laws

\[\overline{A \cap B} = \overline{A} \cup \overline{B} \]

Proof:

\[\overline{A \cap B} = \{x \mid x \notin A \cap B\} \text{ by definition of complement} \]
\[= \{x \mid \neg(x \in A \cap B)\} \]
\[= \{x \mid \neg(x \in A \land x \in B)\} \text{ by definition of intersection} \]
\[= \{x \mid \neg(x \in A) \lor \neg(x \in B)\} \text{ de Morgan’s law from logic} \]
\[= \{x \mid (x \notin A) \lor (x \notin B)\} \text{ by definition of } \notin \]
\[= \{x \mid x \in \overline{A} \lor x \in \overline{B}\} \text{ by definition of complement} \]
\[= \{x \mid x \in \overline{A} \cup \overline{B}\} \text{ by definition of union} \]
\[= \overline{A} \cup \overline{B} \]
Generalized Unions and Intersections

\[
\bigcup_{k=1}^{n} A_k = A_1 \cup A_2 \cup \cdots \cup A_n
\]

\[
\bigcap_{k=1}^{n} A_k = A_1 \cap A_2 \cap \cdots \cap A_n
\]
More Unions and Intersections

Example:

If $A_k = \{1, 2, \ldots, k\}$ then

$$\bigcup_{k=1}^{\infty} A_k = A_1 \cup A_2 \cup A_3 \cup \cdots = \{1, 2, 3, \ldots\}$$
Computer Representations of Sets
Suppose that the universal set U is small.

Order the elements of U, say $a_1, a_2, ..., a_n$.

Represent a subset A of U by a bit string of length n. The k-th bit is equal to 1 if and only if a_k is contained in A.
Let $U = \{1,2,3,4,5,6\}$ be the universal set.

$A = \{1,2\}$

Represent each subset of U by a bit-string of length 6.
Let A and B be sets represented by the bit strings a and b, respectively.

The complement A^c is represented by negating the bits of a.

The intersection $A \cap B$ is represented by $(a_k \land b_k)_{k=1..n}$

The union $A \cup B$ is represented by $(a_k \lor b_k)_{k=1..n}$
The bit string representation of sets is particularly efficient if the size of the universal set can be represented with a few machine words.

If many set operations beside union, intersection, and complement are needed, then this representation might not be such a good choice.
Functions
Functions

Let A and B be nonempty sets.

A function f from A to B is an assignment of precisely one element of B to each element of A.

We write $f: A \to B$ for a function from A to B.
Let \(f: A \to B \) be a function.

We call

- \(A \) the **domain** of \(f \) and
- \(B \) the **codomain** of \(f \).

The **range** of \(f \) is the set

\[
\mathcal{R}(f) = \{ f(a) : a \in A \}
\]
Injective Functions

A function \(f: A \to B \) is called **injective** or **one-to-one** if and only if \(f(a) = f(b) \) implies that \(a = b \).

In other words, \(f \) is injective if and only if different arguments have different values. [Contrapositive!]
A function f is \textit{injective} if any distinct pair of elements in the domain get mapped to distinct elements in the codomain.
A function f **fails** to be injective if there exist two distinct arguments that get mapped to the same value.
A function $f: A \rightarrow B$ is called surjective or onto if and only if $f(A)=B$.

In other words, f is surjective if and only if for each element b in the codomain B there exists an element a in A such that $f(a)=b$.
A function f is **surjective** if any element in the codomain is in the range of f.

![Diagram of surjective function]
Examples

The function $f : \mathbb{N} \to \mathbb{N}$ with $f(x) = x^2$ is not surjective, since 3 is not a perfect square. It is injective, since any two distinct arguments have a distinct value.

The function $f : \mathbb{Z} \to \mathbb{Z}$ with $f(x) = x^2$ is not injective, since we have $f(1) = f(-1)$. Thus, to answer questions about injectivity and surjectivity you need to know the domain and codomain!!!
A function is called a bijection or one-to-one correspondence if and only if it is injective and surjective.
Composition of Functions

Let $g: A \rightarrow B$ and $f: B \rightarrow C$ be functions.

The composition of the functions f and g, denoted $f \circ g$, is a function from A to C given by

$$f \circ g (x) = f(g(x))$$

for all x in A.
Floor and Ceiling Functions
Floor Function

The **floor** function \[\lfloor \rfloor : \mathbb{R} \to \mathbb{Z} \] assigns to a real number \(x \) the largest integer \(\leq x \).

\[
\lfloor 3.2 \rfloor = 3
\]
\[
\lfloor -3.2 \rfloor = -4
\]
\[
\lfloor 3.99 \rfloor = 3
\]
The **ceiling** function \([\cdot]\): \(\mathbb{R} \rightarrow \mathbb{Z}\) assigns to a real number \(x\) the smallest integer \(\geq x\).

\[
\begin{align*}
[3.2] &= 4 \\
[-3.2] &= -3 \\
[0.5] &= 1
\end{align*}
\]
Remark

The floor and ceiling functions are ubiquitous in computer science. You will have to become familiar with these functions. Moreover, you need to know how to prove facts involving floor and ceiling functions.
Basic Facts (1)

We have $[x] = n$ if and only if $n \leq x < n+1$.

Theorem: Let m be an integer, x a real number such that $[x] = n$. Then $[x+m] = n+m$.

Proof: We have $[x] = n$ if and only if $n \leq x < n+1$. Adding m yields $n+m \leq x+m < n+m+1$. This shows that $[x+m] = n+m$.
Basic Facts (2)

We have \([x] = n \) if and only if \(n \leq x < n+1 \).

We have \([x] = n \) if and only if \(n-1 < x \leq n \).

We have \([x] = n \) if and only if \(x-1 < n \leq x \).

We have \([x] = n \) if and only if \(x \leq n < x+1 \).
Example 1

Theorem: For each real number x, we have

$$\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor.$$

Proof: Express the number x in the form $x = n + d$, where n is an integer and d is a real number such that $0 \leq d < 1$.

Case 1 Suppose that d is in the range $0 \leq d < 1/2$. Then $2x = 2n + 2d$, and $0 \leq 2d < 1$. Thus, $\lfloor 2x \rfloor = 2n$.

We have $\lfloor x \rfloor = n$, and $\lfloor x + 1/2 \rfloor = \lfloor n + d + 1/2 \rfloor = n$, since $0 \leq d + 1/2 < 1$.

Therefore, $\lfloor 2x \rfloor = 2n = n + n = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor$.

Example 1 (cont.)

Recall that we expressed \(x \) in the form \(x = n + d \), where \(n \) is an integer and \(d \) is a real number such that \(0 \leq d < 1 \).

Case 2 Suppose that \(d \) is in the range \(1/2 \leq d < 1 \). Then \(2x = 2n + 2d \), and \(1 \leq 2d < 2 \). Thus, \(\lfloor 2x \rfloor = 2n + 1 \).

We have \(\lfloor x \rfloor = n \), and \(\lfloor x + 1/2 \rfloor = \lfloor n + d + 1/2 \rfloor = n + 1 \), since \(1 \leq d + 1/2 < 2 \).

Therefore, \(\lfloor 2x \rfloor = 2n + 1 = n + n + 1 = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor \).

Since Case 1 and Case 2 exhaust the possibilities for \(d \), we can conclude that the theorem holds.
Theorem: For all real numbers x, we have $[-x] = -[x]$

Proof: Let $n=\lfloor -x \rfloor$. Then $n \leq -x < n+1$.

Multiplying by -1 yields $-n \geq x > -n-1$.

Therefore, $-n = [x]$ or $n = -[x]$.

Hence we can conclude that $[-x] = n = -[x]$ holds.
Prove or disprove:

\[\lfloor \sqrt{\lfloor x \rfloor} \rfloor = \lfloor \sqrt{x} \rfloor \]
Let $m = \lfloor \sqrt{x} \rfloor$

Hence, $m \leq \sqrt{x} < m + 1$

Thus, $m^2 \leq \lfloor x \rfloor < (m + 1)^2$

It follows that $m^2 \leq x < (m + 1)^2$

Therefore, $m \leq \sqrt{x} < m + 1$

Thus, we can conclude that $m = \lfloor \sqrt{x} \rfloor$

This proves our claim.
Example 4

For an integer \(n \), we have \(n = \lfloor n/2 \rfloor + \lceil n/2 \rceil \)

Indeed, this is clear if \(n \) is even.

If \(n \) is odd, say \(n=2k+1 \) for some integer \(k \), then we have
\[
n = 2k+1 = (k + 1) + k = \lfloor k+1/2 \rfloor + \lceil k+1/2 \rceil \\
= \lfloor (2k+1)/2 \rfloor + \lceil (2k+1)/2 \rceil = \lfloor n/2 \rfloor + \lceil n/2 \rceil.
\]

Thus, the claim holds for all integers \(n \).