CSCE 314
Programming Languages
Final Review Part I

Dr. Hyunyoung Lee
Programming Language Characteristics

- Different approaches to describe computations, to instruct computing devices
 - E.g., Imperative, declarative, functional

- Different approaches to communicate ideas between humans
 - E.g., Procedural, object-oriented, domain-specific languages

- Programming languages need to have a specification: meaning (semantics) of all sentences (programs) of the language should be unambiguously specified
Evolution of Programming Languages

- 1940’s: connecting wires to represent 0’s and 1’s
- 1950’s: assemblers, FORTRAN, COBOL, LISP
- 1960’s: ALGOL, BCPL (→ B → C), SIMULA
- 1970’s: Prolog, FP, ML, Miranda
- 1980’s: Eiffel, C++
- 1990’s: Haskell, Java, Python
- 2010’s: Agda, Coq
- . . .

Evolution has been and is toward higher level of abstraction
Implementing a Programming Language – How to Undo the Abstraction

- Lexer
- Parser
- Type checker
- Interpreter
- Optimizer
- Code generator
- Virtual machine
- Machine
- Bytecode
- Machine code
- I/O
- JIT

Source program
Phases of Compilation/Execution Characterized by Errors Detected

- **Lexical analysis:**

  ```
  5abc
  a === b
  ```

- **Syntactic analysis:**

  ```
  if + then;
  int f(int a][];
  ```

- **Type checking:**

  ```
  void f(); int a; a + f();
  ```

- **Execution time:**

  ```
  int a[100]; a[101] = 5;
  ```
What Is a Programming Language?

- Language = syntax + semantics

- The syntax of a language is concerned with the form of a program: how expressions, commands, declarations etc. are put together to result in the final program.

- The semantics of a language is concerned with the meaning of a program: how the programs behave when executed on computers.

- Syntax defines the set of valid programs, semantics how valid programs behave.
Language Syntax

• Statement is a sequence of tokens
• Token is a sequence of characters
• Lexical analyzer produces a sequence of tokens from a character sequence
• Parser produces a statement representation from the token sequence
• Statements are represented as parse trees (abstract syntax tree)
Backus–Naur Form (BNF)

- BNF is a common notation to define programming language grammars
- A BNF grammar $G = (N, T, P, S)$
 - A set of non-terminal symbols N
 - A set of terminal symbols T (tokens)
 - A set of grammar rules P
 - A start symbol S
- Grammar rule form (describe context-free grammars):
 <non-terminal>
 ::= <sequence of terminals and non-terminals>
A grammar is ambiguous if there exists a string which gives rise to more than one parse tree.

E.g., infix binary operators ‘–’

\[
<\text{expr}> ::= <\text{num}> \mid <\text{expr}> \, '–' \, <\text{expr}>
\]

Now parse \(1 - 2 - 3\)

As (1–2)–3

As 1–(2–3)
Resolving Ambiguities

1. Between two calls to the same binary operator
 • Associativity rules
 • left-associative: \(a \ op \ b \ op \ c \) parsed as \((a \ op \ b) \ op \ c\)
 • right-associative: \(a \ op \ b \ op \ c \) parsed as \(a \ op (b \ op \ c)\)
 • By disambiguating the grammar
 \(<expr> ::= <num> \mid <expr> \ '-' <expr>\)
 vs.
 \(<expr> ::= <num> \mid <expr> \ '-' <num>\)

2. Between two calls to different binary operator
 • Precedence rules
 • if \(op1 \) has higher-precedence than \(op2 \) then
 \(a \ op1 \ b \ op2 \ c \) \Rightarrow \((a \ op1 \ b) \ op2 \ c\)
 • if \(op2 \) has higher-precedence than \(op1 \) then
 \(a \ op1 \ b \ op2 \ c \) \Rightarrow \(a \ op1 (b \ op2 \ c)\)
Resolving Ambiguities (Cont.)

- Rewriting the ambiguous grammar:

 `<expr> ::= <num> | <expr> + <expr>
 | <expr> * <expr>
 | <expr> == <expr>`

- Let us give `*` the highest precedence, `+` the next highest, and `==` the lowest

 `<expr> ::= <sum> { == <sum> }
 <sum> ::= <term> | <sum> + <term>
 <term> ::= <num> | <term> * <num>`
Chomsky Hierarchy

Four classes of grammars that define particular classes of languages

1. Regular grammars
2. Context free grammars
3. Context sensitive grammars
4. Phrase-structure (unrestricted) grammars

Ordered from less expressive to more expressive (but faster to slower to parse)

Regular grammars and CF grammars are of interest in theory of programming languages
Summary of the Productions

1. Phrase-structure (unrestricted) grammars
 A → B where A is string in V* containing at least one nonterminal symbol, and B is a string in V*.

2. Context sensitive grammars
 lAr → lwr where A is a nonterminal symbol, and w a nonempty string in V*. Can contain S → λ if S does not occur on RHS of any production.

3. Context free grammars
 A → B where A is a nonterminal symbol.

4. Regular grammars
 A → aB or A → a where A, B are nonterminal symbols and a is a terminal symbol. Can contain S → λ.
Haskell
Lazy
Pure
Functional Language
The Standard Prelude

Haskell comes with a large number of standard library functions. In addition to the familiar numeric functions such as + and *, the library also provides many useful functions on lists.

-- Select the first element of a list:

```haskell
> head [1,2,3,4,5]
1
```

-- Remove the first element from a list:

```haskell
> tail [1,2,3,4,5]
[2,3,4,5]
```
-- Select the nth element of a list:

> [1,2,3,4,5] !! 2
3

-- Select the first n elements of a list:

> take 3 [1,2,3,4,5]
[1,2,3]

-- Remove the first n elements from a list:

> drop 3 [1,2,3,4,5]
[4,5]

-- Append two lists:

> [1,2,3] ++ [4,5]
[1,2,3,4,5]
-- Reverse a list:

```
> reverse [1,2,3,4,5]
[5,4,3,2,1]
```

-- Calculate the length of a list:

```
> length [1,2,3,4,5]
5
```

-- Calculate the sum of a list of numbers:

```
> sum [1,2,3,4,5]
15
```

-- Calculate the product of a list of numbers:

```
> product [1,2,3,4,5]
120
```
Basic Types

Haskell has a number of basic types, including:

- **Bool** - logical values
- **Char** - single characters
- **String** - lists of characters
 type String = [Char]
- **Int** - fixed-precision integers
- **Integer** - arbitrary-precision integers
- **Float** - single-precision floating-point numbers
- **Double** - double-precision floating-point numbers
List Types

A list is a sequence of values of the same type:

\[
\begin{align*}
\text{[False, True, False]} & \quad :: \quad \text{[Bool]} \\
\text{['a', 'b', 'c']} & \quad :: \quad \text{[Char]} \\
\text{“abc”} & \quad :: \quad \text{[Char]} \\
\text{[[True, True], []]} & \quad :: \quad \text{[[[Bool]]]}
\end{align*}
\]

Note:

- \([t]\) has the type list with elements of type \(t\)
- The type of a list says nothing about its length
- The type of the elements is unrestricted
- Composite types are built from other types using type constructors
- Lists can be infinite: \(l = [1..]\)
Tuple Types

A tuple is a sequence of values of different types:

- (False, True) :: (Bool, Bool)
- (False, 'a', True) :: (Bool, Char, Bool)
- (“Howdy”, (True, 2)) :: ([Char], (Bool, Int))

Note:

- \((t_1, t_2, \ldots, t_n)\) is the type of \(n\)-tuples whose \(i\)-th component has type \(t_i\) for any \(i\) in \(1 \ldots n\)
- The type of a tuple encodes its size
- The type of the components is unrestricted
- Tuples with arity one are not supported: \((t)\) is parsed as \(t\), parentheses are ignored
Function Types

A **function** is a mapping from values of one type (T1) to values of another type (T2), with the type T1 -> T2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not</td>
<td>Bool -> Bool</td>
</tr>
<tr>
<td>isDigit</td>
<td>Char -> Bool</td>
</tr>
<tr>
<td>toUpper</td>
<td>Char -> Char</td>
</tr>
<tr>
<td>(&&)</td>
<td>Bool -> Bool -> Bool</td>
</tr>
</tbody>
</table>

Note:

- The argument and result types are unrestricted. Functions with multiple arguments or results are possible using lists or tuples:

 - **add** :: (Int,Int) -> Int
 add (x,y) = x+y
 - **zeroto** :: Int -> [Int]
 zeroto n = [0..n]

- Only single parameter functions!
Curried Functions

Functions with multiple arguments are also possible by returning functions as results:

```haskell
add :: (Int,Int) → Int
add (x,y) = x+y

add' :: Int → (Int → Int)
add' x y = x+y
```

Note:

• add and add’ produce the same final result, but add takes its two arguments at the same time, whereas add’ takes them one at a time
• Functions that take their arguments one at a time are called curried functions, celebrating the work of Haskell Curry on such functions.
Why is Currying Useful?

Curried functions are more flexible than functions on tuples, because useful functions can often be made by partially applying a curried function.

For example:

```
add' 1 :: Int -> Int
take 5 :: [a] -> [a]
drop 5 :: [a] -> [a]
```

```
map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
```

```
> map (add' 1) [1,2,3]
[2,3,4]
```
Polymorphic Functions

A function is called polymorphic ("of many forms") if its type contains one or more type variables. Thus, polymorphic functions work with many types of arguments.

- `length :: [a] → Int` for any type `a`, `length` takes a list of values of type `a` and returns an integer
- `id :: a → a` for any type `a`, `id` maps a value of type `a` to itself
- `head :: [a] → a`
- `take :: Int → [a] → [a]`

a is a type variable
Polymorphic Types

Type variables can be instantiated to different types in different circumstances:

\[
\begin{align*}
> \text{length} & \ [\text{False, True}] \\
& 2 \\
> \text{length} & \ [1, 2, 3, 4] \\
& 4
\end{align*}
\]

- \(a = \text{Bool} \)
- \(a = \text{Int} \)

<table>
<thead>
<tr>
<th>expression</th>
<th>polymorphic type</th>
<th>type variable bindings</th>
<th>resulting type</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>(a \to a)</td>
<td>(a = \text{Int})</td>
<td>(\text{Int} \to \text{Int})</td>
</tr>
<tr>
<td>id</td>
<td>(a \to a)</td>
<td>(a = \text{Bool})</td>
<td>(\text{Bool} \to \text{Bool})</td>
</tr>
<tr>
<td>length</td>
<td>([a] \to \text{Int})</td>
<td>(a = \text{Char})</td>
<td></td>
</tr>
<tr>
<td>fst</td>
<td>((a, b) \to a)</td>
<td>(a = \text{Char}, \ b = \text{Bool})</td>
<td></td>
</tr>
<tr>
<td>snd</td>
<td>((a, b) \to b)</td>
<td>(a = \text{Char}, \ b = \text{Bool})</td>
<td></td>
</tr>
<tr>
<td>([], [])</td>
<td>(([a], [b]))</td>
<td>(a = \text{Char}, \ b = \text{Bool})</td>
<td></td>
</tr>
</tbody>
</table>

Type variables must begin with a lower-case letter, and are usually named \(a, b, c, \) etc.
Overloaded Functions

A polymorphic function is called overloaded if its type contains one or more class constraints.

\[\text{sum} :: \text{Num } a \Rightarrow [a] \rightarrow a \]

for any numeric type \(a \), sum takes a list of values of type \(a \) and returns a value of type \(a \).

Constrained type variables can be instantiated to any types that satisfy the constraints:

\[> \text{sum } [1,2,3] \]
6
\[> \text{sum } [1.1,2.2,3.3] \]
6.6
\[> \text{sum } ['a','b','c'] \]
ERROR

\(a = \text{Int} \)

\(a = \text{Float} \)

Char is not a numeric type
Class Constraints

Recall that polymorphic types can be instantiated with all types, e.g.,

id :: t -> t
length :: [t] -> Int

This is when no operation is subjected to values of type t

What are the types of these functions?

min :: Ord a => a -> a -> a
min x y = if x < y then x else y

elem :: Eq a => a -> [a] -> Bool
elem x (y:ys) | x == y = True
elem x (y:ys) = elem x ys
elem x [] = False

Ord a and Eq a are class constraints

Type variables can only be bound to types that satisfy the constraints
Type Classes

Constraints arise because values of the generic types are subjected to operations that are not defined for all types:

\[\text{min} :: \text{Ord} \ a \Rightarrow a \rightarrow a \rightarrow a \]
\[\text{min} \ x \ y = \text{if} \ x < y \ \text{then} \ x \ \text{else} \ y \]

\[\text{elem} :: \text{Eq} \ a \Rightarrow a \rightarrow [a] \rightarrow \text{Bool} \]
\[\text{elem} \ x \ (y:ys) \mid x == y = \text{True} \]
\[\text{elem} \ x \ (y:ys) = \text{elem} \ x \ ys \]
\[\text{elem} \ x \ [] = \text{False} \]

\text{Ord} \text{ and Eq are type classes:}

\textbf{Num (Numeric types)}
\[(+) :: \text{Num} \ a \Rightarrow a \rightarrow a \rightarrow a \]

\textbf{Eq (Equality types)}
\[(==) :: \text{Eq} \ a \Rightarrow a \rightarrow a \rightarrow \text{Bool} \]

\textbf{Ord (Ordered types)}
\[(<) :: \text{Ord} \ a \Rightarrow a \rightarrow a \rightarrow \text{Bool} \]
Conditional Expressions

As in most programming languages, functions can be defined using conditional expressions:

\[
\text{if } \text{cond} \text{ then } \text{e1} \text{ else } \text{e2}
\]

- \(\text{e1}\) and \(\text{e2}\) must be of the same type
- else branch is always present

\[
\begin{align*}
\text{abs} & :: \text{Int} \rightarrow \text{Int} \\
\text{abs } n & = \text{if } n \geq 0 \text{ then } n \text{ else } -n \\
\text{max} & :: \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
\text{max } x \ y & = \text{if } x \leq y \text{ then } y \text{ else } x \\
\text{take} & :: \text{Int} \rightarrow \text{[a]} \rightarrow \text{[a]} \\
\text{take } n \ xs & = \text{if } n \leq 0 \text{ then } [] \\
& \text{ else if } xs == [] \text{ then } [] \\
& \text{ else } (\text{head} \ xs) : \text{take} \ (n-1) \ (\text{tail} \ xs)
\end{align*}
\]
Guarded Equations

As an alternative to conditionals, functions can also be defined using guarded equations.

```
abs n | n >= 0    = n
     | otherwise = -n

Prelude:
otherwise = True
```

Guarded equations can be used to make definitions involving multiple conditions easier to read:

```
signum n | n < 0     = -1
         | n == 0    = 0
         | otherwise = 1
```

compare with ...

```
signum n = if n < 0 then -1 else
          if n == 0 then 0 else 1
```
List Patterns

Internally, every non-empty list is constructed by repeated use of an operator (:) called “cons” that adds an element to the start of a list.

\[[1,2,3,4] \quad \text{Means } 1:(2:(3:(4:[])))) \]

Functions on lists can be defined using \(x:xs \) patterns.

\[
\begin{align*}
\text{head} & : [a] \rightarrow a \\
\text{head} (x:_&) &= x \\
\text{tail} & : [a] \rightarrow [a] \\
\text{tail} (_:xs) &= xs
\end{align*}
\]

head and tail map any non-empty list to its first and remaining elements.

is this definition complete?
Lambda Expressions

Functions can be constructed without naming the functions by using lambda expressions.

\(\lambda x \rightarrow x + x \)

This nameless function takes a number \(x \) and returns the result \(x + x \).

- The symbol \(\lambda \) is the Greek letter lambda, and is typed at the keyboard as a backslash \(\backslash \).
- In mathematics, nameless functions are usually denoted using the \(\mapsto \) symbol, as in \(x \mapsto x + x \).
- In Haskell, the use of the \(\lambda \) symbol for nameless functions comes from the lambda calculus, the theory of functions on which Haskell is based.
List Comprehensions

- A convenient syntax for defining lists
- Set comprehension – In mathematics, the comprehension notation can be used to construct new sets from old sets. E.g.,
 \[\{(x^2, y^2) | x \in \{1,2,...,10\}, y \in \{1,2,...,10\}, x^2 + y^2 \leq 101\}\]
- Same in Haskell: new lists from old lists
 \[[(x^2, y^2) | x <- [1..10], y <- [1..10], x^2 + y^2 \leq 101]\]
generates:
 \[[(1,1),(1,4),(1,9),(1,16),(1,25),(1,36),(1,49),(1,64),(1,81),(1,100),(4,1),(4,4),(4,9),(4,16),
 (4,25),(4,36),(4,49),(4,64),(4,81),(9,1),(9,4),(9,9),(9,16),(9,25),(9,36),(9,49),(9,64),(9,81),
 (16,1),(16,4),(16,9),(16,16),(16,25),(16,36),(16,49),(16,64),(16,81),(25,1),(25,4),(25,9),
 (25,16),(25,25),(25,36),(25,49),(25,64),(36,1),(36,4),(36,9),(36,16),(36,25),(36,36),
 (36,49),(36,64),(49,1),(49,4),(49,9),(49,16),(49,25),(49,36),(49,49),(64,1),(64,4),(64,9),
 (64,16),(64,25),(64,36),(81,1),(81,4),(81,9),(81,16),(100,1)]\]
Recursive Functions

Functions can also be defined in terms of themselves. Such functions are called recursive.

\[
\text{factorial } 0 = 1 \\
\text{factorial } n = n \times \text{factorial } (n-1)
\]

\[
\begin{align*}
\text{factorial } 3 & = 3 \times \text{factorial } 2 \\
& = 3 \times (2 \times \text{factorial } 1) \\
& = 3 \times (2 \times (1 \times \text{factorial } 0)) \\
& = 3 \times (2 \times (1 \times 1)) \\
& = 3 \times (2 \times 1) \\
& = 3 \times 2 \\
& = 6
\end{align*}
\]
Recursion on Lists

Lists have naturally a recursive structure. Consequently, recursion is used to define functions on lists.

\[
\text{product} :: [\text{Int}] \rightarrow \text{Int} \\
\text{product} \; [] = 1 \\
\text{product} \; (n:ns) = n \ast \text{product} \; ns
\]

\[
\text{product} \; [2,3,4] = 2 \ast \text{product} \; [3,4] \\
= 2 \ast (3 \ast \text{product} \; [4]) \\
= 2 \ast (3 \ast (4 \ast \text{product} \; [])) \\
= 2 \ast (3 \ast (4 \ast 1)) \\
= 24
\]

product maps the empty list to 1, and any non-empty list to its head multiplied by the product of its tail.
Using the same pattern of recursion as in product we can define the `length` function on lists.

```haskell
length :: [a] → Int
length [] = 0
length (_:xs) = 1 + length xs
```

length maps the empty list to 0, and any non-empty list to the successor of the length of its tail.

```
length [1,2,3]
= 1 + length [2,3]
= 1 + (1 + length [3])
= 1 + (1 + (1 + length []))
= 1 + (1 + (1 + 0))
= 3
```
Higher-order Functions

A function is called higher-order if it takes a function as an argument or returns a function as a result.

\[
\text{twice} :: (a \rightarrow a) \rightarrow a \rightarrow a \\
\text{twice } f \ x = f (f \ x)
\]

Note:

- Higher-order functions are very common in Haskell (and in functional programming).
- Writing higher-order functions is crucial practice for effective programming in Haskell, and for understanding others’ code.
The map Function

The higher-order library function called `map` applies a function to every element of a list.

\[
\text{map} :: (a \to b) \to [a] \to [b]
\]

For example:

\[
\text{map } (+1) \text{ } [1,3,5,7] = [2,4,6,8]
\]

The map function can be defined in a particularly simple manner using a list comprehension:

\[
\text{map } f \text{ } xs = [f x \mid x \leftarrow xs]
\]

Alternatively, it can also be defined using recursion:

\[
\text{map } f \text{ } [] = []
\]

\[
\text{map } f \text{ } (x:xs) = f x : \text{map } f \text{ } xs
\]
The filter Function

The higher-order library function `filter` selects every element from a list that satisfies a predicate.

```
filter :: (a -> Bool) -> [a] -> [a]
```

For example:

```
> filter even [1..10]
[2,4,6,8,10]
```

Filter can be defined using a list comprehension:

```
filter p xs = [x | x <- xs, p x]
```

Alternatively, it can be defined using recursion:

```
filter p []    = []
filter p (x:xs)
  | p x       = x : filter p xs
  | otherwise  = filter p xs
```
The foldr Function

A number of functions on lists can be defined using the following simple pattern of recursion:

\[
\begin{align*}
 f \; [] & = v \\
 f \; (x:xs) & = x \oplus f \; xs
\end{align*}
\]

f maps the empty list to some value v, and any non-empty list to some function \(\oplus \) applied to its head and f of its tail.
filter, map and foldr

Typical use is to select certain elements, and then perform a mapping, for example,

```haskell
sumSquaresOfPos ls  
  = foldr (+) 0 (map (^2) (filter (>= 0) ls))

> sumSquaresOfPos [-4,1,3,-8,10]
110
```

In pieces:

```haskell
keepPos = filter (>= 0)
mapSquare = map (^2)
sum = foldr (+) 0
sumSquaresOfPos ls = sum (mapSquare (keepPos ls))
```

Alternative definition:

```haskell
sumSquaresOfPos = sum . mapSquare . keepPos
```
Defining New Types

Three constructs for defining types:

1. **data** – Define a new algebraic data type from scratch, describing its constructors

2. **type** – Define a synonym for an existing type (like typedef in C)

3. **newtype** – A restricted form of data that is more efficient when it fits (if the type has exactly one constructor with exactly one field inside it). Used for defining “wrapper” types
Data Declarations

A completely new type can be defined by specifying its values using a **data declaration**.

```
data Bool = False | True
```

- The two values False and True are called the **constructors** for the data type `Bool`.
- Type and constructor names must begin with an upper-case letter.
- Data declarations are similar to context free grammars. The former specifies the values of a type, the latter the sentences of a language.

More examples from standard Prelude:

```
data () = () -- unit datatype
data Char = ... | ‘a’ | ‘b’ | ...
```
Constructors with Arguments

The constructors in a data declaration can also have parameters. For example, given

```
data Shape = Circle Float | Rect Float Float
```

we can define:

```
square :: Float → Shape
square n = Rect n n

area :: Shape → Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y
```

- Shape has values of the form `Circle r` where `r` is a float, and `Rect x y` where `x` and `y` are floats.
- Circle and Rect can be viewed as functions that construct values of type Shape:

```
Circle :: Float → Shape
Rect :: Float → Float → Shape
```
Parameterized Data Declarations

Not surprisingly, data declarations themselves can also have parameters. For example, given

\[
data \text{ Pair } a \ b = \text{ Pair } a \ b
\]

we can define:

\[
x = \text{ Pair } 1 \ 2 \\
y = \text{ Pair } "\text{Howdy}" \ 42
\]

\[
\text{first} :: \text{ Pair } a \ b \to a \\
\text{first} \ (\text{Pair} \ x \ _) = x
\]

\[
\text{apply} :: (a \to a')\to(b \to b') \to \text{ Pair } a \ b \to \text{ Pair } a' \ b' \\
\text{apply} \ f \ g \ (\text{Pair} \ x \ y) = \text{ Pair } (f \ x) \ (g \ y)
\]
Another example:
Maybe type holds a value (of any type) or holds nothing

```haskell
data Maybe a = Nothing | Just a
```

a is a type parameter, can be bound to any type

- `Just True :: Maybe Bool`
- `Just “x” :: Maybe [Char]`
- `Nothing :: Maybe a`

we can define:

- `safediv :: Int -> Int -> Maybe Int`
 - `safediv _ 0 = Nothing`
 - `safediv m n = Just (m `div` n)`

- `safehead :: [a] -> Maybe a`
 - `safehead [] = Nothing`
 - `safehead xs = Just (head xs)`
Recursive Data Types

New types can be declared in terms of themselves. That is, data types can be recursive.

```haskell
data Nat = Zero | Succ Nat
```

Nat is a new type, with constructors Zero :: Nat and Succ :: Nat -> Nat.

A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is, Nat contains the following infinite sequence of values:

Zero
Succ Zero
Succ (Succ Zero)
...

Example function:

```haskell
add :: Nat -> Nat -> Nat
add Zero n = n
add (Succ m) n = Succ (add m n)
```
Showable, Readable, and Comparable Weekdays

data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
 deriving (Show, Read, Eq, Ord, Bounded, Enum)

*Main> show Wed
"Wed"

*Main> read "Fri" :: Weekday
Fri

*Main> Sat Prelude.== Sun
False

*Main> Sat Prelude.== Sat
True

*Main> Mon < Tue
True

*Main> Tue < Tue
False

*Main> Wed `compare` Thu
LT
Bounded and Enumerable Weekdays

data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
 deriving (Show, Read, Eq, Ord, Bounded, Enum)

*Main> minBound :: Weekday
Mon
*Main> maxBound :: Weekday
Sun
*Main> succ Mon
Tue
*Main> pred Fri
Thu
*Main> [Fri .. Sun]
[Fri,Sat,Sun]
*Main> [minBound .. maxBound] :: [Weekday]
[Mon,Tue,Wed,Thu,Fri,Sat,Sun]
Modules

• A Haskell program consists of a collection of modules. The purposes of using a module are:
 1. To control namespaces.
 2. To create abstract data types.

• A module contains various declarations: First, import declarations, and then, data and type declarations, class and instance declarations, type signatures, function definitions, and so on (in any order)

• Module names must begin with an uppercase letter

• One module per file
Example of a Module

module Tree (Tree(Leaf, Branch), fringe) where

data Tree a = Leaf a | Branch (Tree a) (Tree a)

fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch left right) = fringe left ++ fringe right

- A module declaration begins with the keyword `module`
- The module name may be the same as that of the type
- Same indentation rules as with other declarations apply
- The type name and its constructors need be grouped together, as in `Tree(Leaf, Branch); short-hand possible, Tree(..)`
- Now, the Tree module may be imported:

module Main (main) where
import Tree (Tree(Leaf, Branch), fringe)
main = print (fringe (Branch (Leaf 1) (Leaf 2)))

import list:
- omitting it will cause all `entities` exported from Tree to be imported
Functors

Class of types that support mapping of function. For example, lists and trees.

```haskell
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```

fmap takes a function of type \((a
ightarrow b)\) and a structure of type \((f \ a)\), applies the function to each element of the structure, and returns a structure of type \((f \ b)\).

Functor instance example 1: the list structure []

```haskell
instance Functor [] where
    -- fmap :: (a -> b) -> [a] -> [b]
fmap = map
```
Functor instance example 2: the Maybe type

```haskell
data Maybe a = Nothing | Just a

instance Functor Maybe where
  -- fmap :: (a -> b) -> Maybe a -> Maybe b
  fmap _ Nothing = Nothing
  fmap g (Just x) = Just (g x)
```

Now, you can do

```haskell
> fmap (+1) Nothing
Nothing
> fmap not (Just True)
Just False
```
Applicative

class (Functor f) => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

The function pure takes a value of any type as its argument and returns a structure of type \(f \ a \), that is, an applicative functor that contains the value.

The operator \(<*>\) is a generalization of function application for which the argument function, the argument value, and the result value are all contained in \(f \) structure.

\(<*> \) associates to the left: \(((g <*> x) <*> y) <*> z\)

\(\text{fmap} \ g \ x = \text{pure} \ g \ (<*>) \ x = g \ <$> \ x \)
Applicative functor instance example 1: Maybe

data Maybe a = Nothing | Just a

instance Applicative Maybe where

 -- pure :: a -> Maybe a
 pure = Just

 -- (<*>): Maybe (a->b) -> Maybe a -> Maybe b
 Nothing <*> _ = Nothing
 (Just g) <*> mx = fmap g mx

> pure (+1) <*> Nothing
Nothing
> pure (+) <*> Just 2 <*> Just 3
Just 5
> mult3 x y z = x*y*z
> pure mult3 <*> Just 1 <*> Just 2 <*> Just 4
Just 8
Applicative functor instance example 2: list type []

instance Applicative [] where
 -- pure :: a -> [a]
 pure x = [x]
 -- (<*>): [a -> b] -> [a] -> [b]
 gs <*> xs = [g x | g <- gs, x <- xs]

pure transforms a value into a singleton list. <*>(*) takes a list of functions and a list of arguments, and applies each function to each argument in turn, returning all the results in a list.

> pure (+1) <*> [1,2,3]
[2,3,4]
> pure (+) <*> [1,3] <*> [2,5]
[3,6,5,8]
> pure (:) <*> "ab" <*> ["cd","ef"]
["acd","aef","bcd","bef"]
Monads

\[
\text{class (Applicative } m \text{) } \Rightarrow \text{ Monad } m \text{ where}
\]

\[
\begin{align*}
\text{return} & : a \to m a \\
(>>=) & : m a \to (a \to m b) \to m b
\end{align*}
\]

return = pure

- Roughly, a monad is a strategy for combining computations into more complex computations.

- Another pattern of effectful programming (applying pure functions to (side-)effectful arguments)

- (>>=) is called “bind” operator.

- Note: return may be removed from the Monad class in the future, and become a library function instead.
Monad instance example 1: Maybe

data Maybe a = Nothing | Just a

instance Monad Maybe where
 -- (>>=):: Maybe a -> (a -> Maybe b) -> Maybe b
 Nothing >>= _ = Nothing
 (Just x) >>= f = f x

div2 x = if even x then Just (x `div` 2) else Nothing

> (Just 10) >>= div2
Just 5
> (Just 10) >>= div2 >>= div2
Nothing
> (Just 10) >>= div2 >>= div2 >>= div2
Nothing
Monad instance example 2: list type []

```haskell
instance Monad [] where
    -- (>>=) :: [a] -> (a -> [b]) -> [b]
    xs >>= f = [y | x <- xs, y <- f x]

pairs :: [a] -> [b] -> [(a,b)]
pairs xs ys = do x <- xs
               y <- ys
               return (x,y)
```

> pairs [1,2] [3,4]
 [(1,3),(1,4),(2,3),(2,4)]
What is a Parser?

A **parser** is a program that takes a string of characters (or a set of tokens) as input and determines its **syntactic structure**.

\[
2 \times 3 + 4
\]

means

\[
\begin{array}{c}
 + \\
 \downarrow \\
 \times \\
 \downarrow \\
 2 \\
 \quad \\
 3
\end{array}
\]

\[
\begin{array}{c}
 4
\end{array}
\]
The Parser Type

In a functional language such as Haskell, parsers can naturally be viewed as functions.

```
type Parser = String → Tree
```

A parser is a function that takes a string and returns some form of tree.

However, a parser might not require all of its input string, so we also return any unused input:

```
type Parser = String → (Tree, String)
```

A string might be parsable in many ways, including none, so we generalize to a list of results:

```
type Parser = String → [(Tree, String)]
```
Furthermore, a parser might not always produce a tree, so we generalize to a value of any type:

```haskell
type Parser a = String → [(a,String)]
```

Finally, a parser might take token streams instead of character streams:

```haskell
type TokenParser b a = [b] → [(a,[b])]  
```

Note:
For simplicity, we will only consider parsers that either fail and return the empty list as results, or succeed and return a singleton list.
Basic Parsers (Building Blocks)

The parser `item` fails if the input is empty, and consumes the first character otherwise:

```
item :: Parser Char
-- String -> [(Char, String)]
-- [Char] -> [(Char, [Char])]  
item = \inp -> case inp of
  []     -> []
  (x:xs) -> [(x,xs)]
```

Example:

```> item "Howdy all"
[('H',"owdy all")]
```

```> item ""
[]
```
We can make it more explicit by letting the function `parse` apply a parser to a string:

```
parse :: Parser a -> String -> [(a,String)]
parse p inp = p inp -- essentially id function
```

Example:

```
> parse item "Howdy all"
[('H','owdy all')]
```
Sequencing Parser

Often, we need to combine parsers in sequence, e.g., the following grammar:

\[
<\text{if-stmt}> :: \text{if} (<\text{expr}>\text{)} \text{ then } <\text{stmt}>
\]

First parse if, then (, then <expr>, then), ...

To combine parsers in sequence, we make the Parser type into a monad:

\[
\text{instance Monad Parser where}
-- (>>=) :: \text{Parser} a \rightarrow (a \rightarrow \text{Parser} b) \rightarrow \text{Parser} b
\]

\[
p >>= f = \lambda \text{inp} \rightarrow \text{case parse } p \text{ inp of}
\]

\[
[] \rightarrow []
\]

\[
[(v,\text{out})] \rightarrow \text{parse } (f \; v) \; \text{out}
\]
Now a sequence of parsers can be combined as a single composite parser using the keyword `do`. Example:

```haskell
three :: Parser (Char,Char)
three = do x <- item
         item
         z <- item
         return (x,z)
```

Meaning: “The value of `x` is generated by the item parser.”

The parser `return v` always succeeds, returning the value `v` without consuming any input:

```haskell
return :: a -> Parser a
return v = \inp -> [(v,inp)]
```
Making Choices

What if we have to backtrack? First try to parse p, then q? The parser \(p \ <|> q \) behaves as the parser p if it succeeds, and as the parser q otherwise.

```haskell
empty :: Parser a
empty = \inp -> [] -- always fails

(<|>) :: Parser a -> Parser a -> Parser a
p <|> q = \inp -> case parse p inp of
    []    -> parse q inp
    [(v,out)] -> [(v,out)]
```

Example:

```haskell
> parse empty "abc"
[]

> parse (item <|> return ‘d’) "abc"
[(‘a','bc’)]
```
The “Monadic” Way

Parser sequencing operator

\[
(\ggg) :: \text{Parser } a \rightarrow (a \rightarrow \text{Parser } b) \rightarrow \text{Parser } b
\]

\[
p \ggg f = \ \lambda \text{inp} \rightarrow \text{case parse } p \ \text{inp of}
\]
\[
[\] \rightarrow [\]
\]
\[
[(v, \out)] \rightarrow \text{parse } (f \ v) \ \out
\]

\[p \ggg f\]

- fails if \(p\) fails
- otherwise applies \(f\) to the result of \(p\)
- this results in a new parser, which is then applied

Example

\[> \text{parse } ((\text{empty } <|> \text{ item}) \ggg (\text{_ } \rightarrow \text{ item})) \ "abc"
\]
\[[\text{('b','c')}]\]
Examples

> parse item ""
[]
> parse item "abc"
[('a',"bc")]
> parse empty "abc"
[]
> parse (return 1) "abc"
[(1,"abc")]
> parse (item <|> return 'd') "abc"
[('a',"bc")]
> parse (empty <|> return 'd') "abc"
[(d","abc")]

Key benefit: The result of first parse is available for the subsequent parsers

```haskell
parse (item >>= (\x ->
    item >>= (\y ->
        return (y:[x])))) "ab"

[(["ba",""])]
```