CSCE 314
Programming Languages
Haskell: Higher-order Functions

Dr. Hyunyoung Lee
Higher-order Functions

A function is called higher-order if it takes a function as an argument or returns a function as a result.

```haskell
twice :: (a -> a) -> a -> a
twice f x = f (f x)
```

twice is higher-order because it takes a function as its first argument.

Note:
- Higher-order functions are very common in Haskell (and in functional programming).
- Writing higher-order functions is crucial practice for effective programming in Haskell, and for understanding others’ code.
Why Are They Useful?

- **Common programming idioms** can be encoded as functions within the language itself.

- **Domain specific languages** can be defined as collections of higher-order functions. For example, higher-order functions for processing lists.

- **Algebraic properties** of higher-order functions can be used to reason about programs.
The Map Function

The higher-order library function called `map` applies a function to every element of a list.

\[
\text{map} :: (a \to b) \to [a] \to [b]
\]

For example:

\[
> \text{map } (+1) [1,3,5,7] \\
[2,4,6,8]
\]

The map function can be defined in a particularly simple manner using a list comprehension:

\[
\text{map } f \text{ xs} = [f \ x \mid x \leftarrow \text{xs}]
\]

Alternatively, it can also be defined using recursion:

\[
\text{map } f \text{ []} = [] \\
\text{map } f \text{ (x:xs)} = f \ x : \text{map } f \text{ xs}
\]
The Filter Function

The higher-order library function `filter` selects every element from a list that satisfies a predicate.

\[
\text{filter} :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow [a]
\]

For example:

\[
> \text{filter even \ [1..10]} = [2,4,6,8,10]
\]

Filter can be defined using a list comprehension:

\[
\text{filter p xs = \{x \mid x \leftarrow xs, p x\}}
\]

Alternatively, it can be defined using recursion:

\[
\begin{align*}
\text{filter p []} & = [] \\
\text{filter p (x:xs)} & = \\
& | \quad \text{p x} = x : \text{filter p xs} \\
& | \quad \text{otherwise} = \text{filter p xs}
\end{align*}
\]
The foldr Function

A number of functions on lists can be defined using the following simple pattern of recursion:

\[
\begin{align*}
 f \; [] & = v \\
 f \; (x:xs) & = x \oplus f \; xs
\end{align*}
\]

f maps the empty list to some value v, and any non-empty list to some function \(\oplus \) applied to its head and f of its tail.
For example:

\[
\text{sum} \; [] = 0 \\
\text{sum} \; (x:xs) = x + \text{sum} \; xs
\]

\[
\text{product} \; [] = 1 \\
\text{product} \; (x:xs) = x \times \text{product} \; xs
\]

\[
\text{and} \; [] = \text{True} \\
\text{and} \; (x:xs) = x \&\& \text{and} \; xs
\]
The higher-order library function \texttt{foldr} (fold right) encapsulates this simple pattern of recursion, with the function \oplus and the value v as arguments.

For example:

\begin{align*}
\text{sum} &= \text{foldr} \ (+) \ 0 \\
\text{product} &= \text{foldr} \ (*) \ 1 \\
\text{or} &= \text{foldr} \ (||) \ False \\
\text{and} &= \text{foldr} \ (&&) \ True
\end{align*}
foldr itself can be defined using recursion:

\[
\text{foldr} :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
\]

\[
\text{foldr } f \ v \ [] \ = \ v
\]

\[
\text{foldr } f \ v \ (x:xs) \ = \ f \ x \ (\text{foldr } f \ v \ xs)
\]

However, it is best to think of \text{foldr} \underline{non-}\underline{recursively}, as simultaneously replacing each (:) in a list by a given function, and [] by a given value.
For example:

\[
\text{sum} \ [1,2,3] \\
= \ \text{foldr} \ (+) \ 0 \ [1,2,3] \\
= \ \text{foldr} \ (+) \ 0 \ (1:(2:(3:[]))) \\
= \ 1+(2+(3+0)) \\
= \ 6
\]

Replace each (:) by (+) and [] by 0.
For example:

$$\text{product} \ [1,2,3]$$

$$= \ \text{foldr} \ (*) \ 1 \ [1,2,3]$$

$$= \ \text{foldr} \ (*) \ 1 \ (1:(2:(3:[]))))$$

$$= \ 1*(2*(3*1))$$

$$= \ 6$$

Replace each (:) by (*) and [] by 1.
Other foldr Examples

Even though foldr encapsulates a simple pattern of recursion, it can be used to define many more functions than might first be expected.

Recall the length function:

\[
\text{length} \quad :: \quad [a] \rightarrow \text{Int} \\
\text{length} \quad [] \quad = \quad 0 \\
\text{length} \quad (_:\text{xs}) \quad = \quad 1 \quad + \quad \text{length} \quad \text{xs}
\]
For example:

\[
\text{length } [1,2,3] \\
= \text{length } (1:(2:(3:[]))) \\
= 1+(1+(1+0)) \\
= 3
\]

Hence, we have:

\[
\text{length } = \text{foldr } (\lambda n \rightarrow 1+n) 0
\]
Now the reverse function:

\[
\begin{align*}
\text{reverse } [] & = [] \\
\text{reverse } (x : xs) & = \text{reverse } xs ++ [x]
\end{align*}
\]

For example:

\[
\begin{align*}
\text{reverse } [1,2,3] & = \text{reverse } (1:(2:(3:[]))) \\
& = ([[] ++ [3]] ++ [2]) ++ [1] \\
& = [3,2,1]
\end{align*}
\]

Hence, we have:

\[
\text{reverse } = \text{foldr } (\lambda x \ xs \rightarrow x s ++ [x]) \ []
\]

Here, the append function (++) has a particularly compact definition using foldr:

\[
(+) ys = \text{foldr } (:) ys
\]
Why Is foldr Useful?

- Some recursive functions on lists, such as sum, are simpler to define using foldr.

- Properties of functions defined using foldr can be proved using algebraic properties of foldr.

- Advanced program optimizations can be simpler if foldr is used in place of explicit recursion.
foldr and foldl

\[\text{foldr} :: (a \to b \to b) \to b \to [a] \to b \]
\[\text{foldr} \ f \ v \ [\] \ = \ v \]
\[\text{foldr} \ f \ v \ (x:x)s) = f \ x \ (\text{foldr} \ f \ v \ xs) \]

\[\text{foldl} :: (a \to b \to a) \to a \to [b] \to a \]
\[\text{foldl} \ f \ v \ [\] \ = \ v \]
\[\text{foldl} \ f \ v \ (x:x)s) = \text{foldl} \ f \ (f \ v \ x) \ xs \]

- \[\text{foldr} \ 1 \ 2 \ 3 \ [\] \Rightarrow (1 + (2 + (3 + 0))) \]
- \[\text{foldl} \ 1 \ 2 \ 3 \ [\] \Rightarrow (((0 + 1) + 2) + 3) \]
Other Library Functions

The library function \((.)\) returns the composition of two functions as a single function.

\[
(\cdot) :: (b \to c) \to (a \to b) \to (a \to c)
\]

\[
f \cdot g = \lambda x \to f (g x)
\]

For example:

\[\text{odd} :: \text{Int} \to \text{Bool}\]
\[\text{odd} = \text{not} \cdot \text{even}\]

Exercise: Define \text{filterOut} \ p \ xs that retains elements that do not satisfy \(p\).

\[
\text{filterOut} \ p \ xs = \text{filter} \ (\text{not} \cdot p) \ xs
\]

> \text{filterOut odd [1..10]}
\[[2,4,6,8,10]\]
The library function \texttt{all} decides if every element of a list satisfies a given predicate.

\begin{alltt}
\texttt{all} :: (a \rightarrow \texttt{Bool}) \rightarrow \texttt{[a]} \rightarrow \texttt{Bool}
\texttt{all p xs} = \texttt{and [p x | x \leftarrow xs]}
\end{alltt}

For example:

\begin{alltt}
> \texttt{all even [2,4,6,8,10]}
\texttt{True}
\end{alltt}
Dually, the library function `any` decides if at least one element of a list satisfies a predicate.

\[
\text{any} :: (a \to \text{Bool}) \to [a] \to \text{Bool}
\]
\[
\text{any } p \text{ xs } = \text{or } [p \ x \mid x \leftarrow \text{xs}]
\]

For example:

```
> any isSpace "abc def"
True
```
The library function `takeWhile` selects elements from a list while a predicate holds of all the elements.

```
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
  | p x       = x : takeWhile p xs
  | otherwise = []
```

For example:

```
> takeWhile isAlpha "abc def"
"abc"
```
Dually, the function `dropWhile` removes elements while a predicate holds of all the elements.

```hs
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p (x:xs)
    | p x = dropWhile p xs
    | otherwise = x:xs
```

For example:

```
> dropWhile isSpace "   abc"
"abc"
```
filter, map and foldr

Typical use is to select certain elements, and then perform a mapping, for example,

```
sumSquaresOfPos ls
    = foldr (+) 0 (map (^2) (filter (>= 0) ls))

> sumSquaresOfPos [-4,1,3,-8,10]
110
```

In pieces:

```
keepPos = filter (>= 0)
mapSquare = map (^2)
sum = foldr (+) 0
sumSquaresOfPos ls = sum (mapSquare (keepPos ls))
```

Alternative definition:

```
sumSquaresOfPos = sum . mapSquare . keepPos
```