CSCE 314
Programming Languages
Syntactic Analysis

Dr. Hyunyoung Lee
What Is a Programming Language?

• Language = syntax + semantics

• The syntax of a language is concerned with the form of a program: how expressions, commands, declarations etc. are put together to result in the final program.

• The semantics of a language is concerned with the meaning of a program: how the programs behave when executed on computers.

• Syntax defines the set of valid programs, semantics how valid programs behave.
Programming Language Definition

• **Syntax**: grammatical structure
 - **lexical** – how words are formed
 - **phrasal** – how sentences are formed from words

• **Semantics**: meaning of programs
 - **Informal**: English documents such as reference manuals
 - **Formal**:
 1. **Operational semantics**: execution on an abstract machine, e.g.,
 \[<x:=c,s>\rightarrow [\ s[x \mapsto s(c)] \]\]
 2. **Denotational semantics**: meaning defined as a mathematical function from input to output, definition compositional, e.g.,
 \[\[(x:=c))(s)\rightarrow s[x \mapsto [[c]]_s]\]
 3. **Axiomatic semantics**: each construct is defined by pre- and post- conditions, e.g., \{y \leq x\} z:=x; z:=z+1 \{y < z\}
Language Syntax

• Defines *legal* programs:
 programs that can be executed by machine
• Defined by *grammar rules*
 Define how to make “sentences” out of “words”
• For programming languages
 • Sentences are called statements, expressions, terms, commands, and so on
 • Words are called tokens
 • Grammar rules describe both tokens and statements
• Often, grammars alone cannot capture exactly the set of valid programs. Grammars combined with additional rules are a common approach.
Language Syntax (Cont.)

- Statement is a sequence of tokens
- Token is a sequence of characters
- Lexical analyzer
 produces a sequence of tokens from a character sequence
- Parser
 produces a statement representation from the token sequence
- Statements are represented as parse trees (abstract syntax tree)
Backus–Naur Form (BNF)

• BNF is a common notation to define programming language grammars

• A BNF grammar $G = (N, T, P, S)$
 • A set of non-terminal symbols N
 • A set of terminal symbols T (tokens)
 • A set of grammar rules P
 • A start symbol S

• Grammar rule form (describe context-free grammars):
 <non-terminal>
 ::= <sequence of terminals and non-terminals>
Examples of BNF

• BNF rules for robot commands
 A robot arm accepts any command from the set
 \{up, down, left, right\}

• Rules:
 <move> ::= <command> | <command> <move>
 <command> ::= up
 <command> ::= down
 <command> ::= left
 <command> ::= right

• Examples of accepted sequences
 • up
 • down left up up right
How to Read Grammar Rules

- From left to right
- Generates the following sequence
 - Each terminal symbol is added to the sequence
 - Each non-terminal is replaced by its definition
 - For each |, pick any of the alternatives
- Note that a grammar can be used to both generate a statement, and verify that a statement is legal
- The latter is the task of parsing – find out if a sentence (program) is in a language, and how the grammar generates the sentence
Extended BNF

- **Constructs and notation:**
 - $<x>$: nonterminal x
 - $<x> ::= \text{Body}$: $<x>$ is defined by Body
 - $<x> <y>$: the sequence $<x>$ followed by $<y>$
 - $\{<x>\}$: the sequence of **zero or more** occurrences of $<x>$
 - $\{<x>\}+$: the sequence of **one or more** occurrences of $<x>$
 - $[<x>]$: **zero or one** occurrence of $<x>$

- **Example**
 - $<\text{expression}> ::= <\text{variable}> | <\text{integer}>$
 - $<\text{expression}> ::= <\text{expression}> + <\text{expression}> | ...$
 - $<\text{statement}> ::= \text{if } <\text{expression}> \text{ then } <\text{statement}>$

 $\{ \text{ elseif } <\text{expression}> \text{ then } <\text{statement}> \}+$
 $[\text{ else } <\text{statement}>] \text{ end } | ...$
 - $<\text{statement}> ::= <\text{expression}> | \text{return } <\text{expression}> | ...$
Example Grammar Rules (Part of C++ Grammar)

A.5 Statements
statement:
 labeled-statement
 expression-statement
 compound-statement
 selection-statement
 iteration-statement
 jump-statement
 declaration-statement
 try-block
labeled-statement:
 identifier : statement
 case constant-expression : statement
default : statement
expression-statement:
 expression_opt :
compound-statement:
 { statement-seq_opt }
statement-seq:
 statement
 statement-seq statement
selection-statement:
 if (condition) statement
 if (condition) statement else statement
 switch (condition) statement
condition:
 expression
type-specifier-seq declarator = assignment-expression
iteration-statement:
 while (condition) statement
 do statement while (expression) ;
 for (for-init-statement ; condition_opt ; expression_opt) statement
for-init-statement:
 expression-statement
 simple-declaration
jump-statement:
 break ;
 continue ;
 return expression_opt ;
go to identifier ;
declaration-statement:
 block-declaration
Context Free Grammars

• A grammar $G = (N, T, S, P)$ with the set of alphabet V is called context free if and only if all productions in P are of the form

 $A \rightarrow B$

 where A is a single nonterminal symbol and B is in V^*.

• The reason this is called “context free” is that the production $A \rightarrow B$ can be applied whenever the symbol A occurs in the string, no matter what else is in the string.

• Example: The grammar $G = (\{S\}, \{a,b\}, S, P)$ where $P = \{ S \rightarrow ab \mid aSb \}$ is context free. The language generated by G is $L(G) = \{ a^n b^n \mid n \geq 1 \}$.

Concrete vs. Abstract Syntax

• Concrete syntax tree
 • Result of using a PL grammar to parse a program is a parse tree
 • Contains every symbol in the input program, and all non-terminals used in the program’s derivation

• Abstract syntax tree (AST)
 • Many symbols in input text are uninteresting (punctuation, such as commas in parameter lists, etc.)
 • AST only contains “meaningful” information
 • Other simplifications can also be made, e.g., getting rid of syntactic sugar, removing intermediate non-terminals, etc.
Ambiguity (1)

- A grammar is ambiguous if there exists a string which gives rise to more than one parse tree
- E.g., infix binary operators ‘-’
 \[
 \text{<expr>} ::= \text{<num>} \mid \text{<expr>} \text{ ‘-’ } \text{<expr>}
 \]
- Now parse 1 - 2 - 3

As (1-2)-3

As 1-(2-3)
Ambiguity (2)

- E.g., infix binary operators `+` and `*`

 \[
 \langle \text{expr} \rangle ::= \langle \text{num} \rangle \mid \langle \text{expr} \rangle + \langle \text{expr} \rangle \mid \langle \text{expr} \rangle * \langle \text{expr} \rangle \mid \langle \text{expr} \rangle == \langle \text{expr} \rangle
 \]

- Now parse 1 + 2 * 3

 As (1+2)*3

 As 1+(2*3)
Resolving Ambiguities

1. Between two calls to the same binary operator
 • Associativity rules
 • left-associative: a op b op c parsed as (a op b) op c
 • right-associative: a op b op c parsed as a op (b op c)
 • By disambiguating the grammar
 \[\text{<expr> ::= <num> | <expr> '-' <expr>} \]
 vs.
 \[\text{<expr> ::= <num> | <expr> '-' <num>} \]

2. Between two calls to different binary operator
 • Precedence rules
 • if op1 has higher-precedence than op2 then
 a op1 b op2 c => (a op1 b) op2 c
 • if op2 has higher-precedence than op1 then
 a op1 b op2 c => a op1 (b op2 c)
Resolving Ambiguities (Cont.)

- Rewriting the ambiguous grammar:
 `<expr> ::= <num> | <expr> + <expr> | <expr> * <expr> | <expr> == <expr>`

- Let us give * the highest precedence, + the next highest, and == the lowest

 `<expr> ::= <sum> { == <sum> }`
 `<sum> ::= <term> | <sum> + <term>`
 `<term> ::= <num> | <term> * <num>`
Dangling-Else Ambiguity

- Ambiguity in grammar is not a problem occurring only with binary operators.

- For example,
 \[\langle S \rangle ::= \text{if } \langle E \rangle \text{ then } \langle S \rangle | \]
 \[\quad \text{if } \langle E \rangle \text{ then } \langle S \rangle \text{ else } \langle S \rangle \]

- Now consider the string:

 \[
 \text{if } A \text{ then if } B \text{ then } X \text{ else } Y \\
 \]

 1. \(\text{if } A \text{ then (if } B \text{ then } X \text{ else } Y) ? \)
 2. \(\text{if } A \text{ then (if } B \text{ then } X) \text{ else } Y ? \)
Chomsky Hierarchy

Four classes of grammars that define particular classes of languages

1. Regular grammars
2. Context free grammars
3. Context sensitive grammars
4. Phrase-structure (unrestricted) grammars

• Ordered from less expressive to more expressive (but faster to slower to parse)
• Regular grammars and CF grammars are of interest in theory of programming languages
Regular Grammar

• Productions are of the form
 \(A \rightarrow aB \) or
 \(A \rightarrow a \)
 where \(A, B \) are nonterminal symbols and \(a \) is a terminal symbol. Can contain \(S \rightarrow \lambda \).

• Example regular grammar \(G = (\{A, S\}, \{a, b, c\}, S, P) \),
 where \(P \) consists of the following productions:
 \(S \rightarrow aA \)
 \(A \rightarrow bA | cA | a \)

• \(G \) generates the following words
 \(aa, aba, aca, abba, abca, acca, abbba, abbca, abcba, \ldots \)

• The language \(L(G) \) in regular expression: \(a(b+c)^*a \)
Regular Languages

The following three formalisms all express the same set of (regular) languages:

1. Regular grammars
2. Regular expressions
3. Finite state automata

Not very expressive. For example, the language

$$L = \{ a^n b^n \mid n \geq 1 \}$$

is not regular.

Question: Can you relate this language L to parsing programming languages?
Answer: balancing parentheses
A finite state automaton $M=(S, I, f, s_0, F)$ consists of:
- a finite set S of states
- a finite set of input alphabet I
- a transition function $f: S \times I \rightarrow S$ that assigns to a given current state and input the next state of the automaton
- an initial state s_0, and
- a subset F of S consisting of accepting (or final) states

Example:
1. Regular grammar

 $S \rightarrow aA$
 $A \rightarrow bA \mid cA \mid a$

2. Regular expression

 $a(b+c)^*a$

3. FSA

 ![Finite State Automata Diagram]
Why a Separate Lexer?

• Regular languages are not sufficient for expressing the syntax of practical programming languages, so why use them?

• Simpler (and faster) implementation of the tedious (and potentially slow) “character-by-character” processing: DFA gives a direct implementation strategy

• Separation of concerns – deal with low level issues (tabs, linebreaks, token positions) in isolation: grammars for parsers need not go below token level
Summary of the Productions

1. Phrase-structure (unrestricted) grammars
 \[A \rightarrow B \text{ where } A \text{ is string in } V^* \text{ containing at least one nonterminal symbol, and } B \text{ is a string in } V^*. \]

2. Context sensitive grammars
 \[lAr \rightarrow lwr \text{ where } A \text{ is a nonterminal symbol, and } w \text{ a nonempty string in } V^*. \text{ Can contain } S \rightarrow \lambda \text{ if } S \text{ does not occur on RHS of any production.} \]

3. Context free grammars
 \[A \rightarrow B \text{ where } A \text{ is a nonterminal symbol.} \]

4. Regular grammars
 \[A \rightarrow aB \text{ or } A \rightarrow a \text{ where } A, B \text{ are nonterminal symbols and } a \text{ is a terminal symbol. Can contain } S \rightarrow \lambda. \]