CSCE 314
Programming Languages
Functors, Applicatives, and Monads

Dr. Hyunyoung Lee
Motivation – Generic Functions

A common programming pattern can be abstracted out as a definition.

For example:

```haskell
inc :: [Int] -> [Int]
inc []     = []
inc (n:ns) = n+1 : inc ns

sqr :: [Int] -> [Int]
sqr []     = []
sqr (n:ns) = n^2 : sqr ns
```

Both functions are defined in the same manner!
Using map

```
inc :: [Int] -> [Int]
inc [] = []
inc (n:ns) = n+1 : inc ns

sqr :: [Int] -> [Int]
sqr [] = []
sqr (n:ns) = n^2 : sqr ns

inc = map (+1)
sqr = map (^2)
```

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (n:ns) = f n : map f ns
```
Functors

Class of types that support mapping of function. For example, lists and trees.

```haskell
class Functor f where
  fmap :: (a -> b) -> f a -> f b
```

fmap takes a function of type \((a \rightarrow b)\) and a structure of type \((f\ a)\), applies the function to each element of the structure, and returns a structure of type \((f\ b)\).

Functor instance example 1: the list structure `[]`

```haskell
instance Functor [] where
  -- fmap :: (a -> b) -> [a] -> [b]
  fmap = map
```

\((f\ a)\) is a data structure that contains elements of type \(a\).
Functor instance example 2: the Maybe type

data Maybe a = Nothing | Just a

instance Functor Maybe where
 -- fmap :: (a -> b) -> Maybe a -> Maybe b
 fmap _ Nothing = Nothing
 fmap g (Just x) = Just (g x)

Now, you can do

> fmap (+1) Nothing
Nothing
> fmap not (Just True)
Just False
Functor instance example: the Maybe type (Cont.)

Picture source:
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
Functor instance example 3: the Tree type

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving Show

instance Functor Tree where
 -- fmap :: (a -> b) -> Tree a -> Tree b
 fmap g (Leaf x) = Leaf (g x)
 fmap g (Node l r) = Node (fmap g l) (fmap g r)

Now, you can do

> fmap (+1) (Node (Leaf 1) (Leaf 2))
Node (Leaf 2) (Leaf 3)
> fmap (even) (Node (Leaf 1) (Leaf 2))
Node (Leaf False) (Leaf True)
Functor laws

1. \(\text{fmap id} = \text{id} \)
2. \(\text{fmap}(g \cdot h) = \text{fmap } g \cdot \text{fmap } h \)

1. \(\text{fmap} \) preserves the identity function
2. \(\text{fmap} \) also preserves the function composition, where \(g \) has type \(b \rightarrow c \) and \(h \) has type \(a \rightarrow b \)
3. The functor laws ensure that \(\text{fmap} \) does perform a mapping operation, without altering the natural property of the data structure.
Benefits of Functors

1. \(\text{fmap} \) can be used to process the elements of any structure that is functorial.

2. Allows us to define generic functions that can be used with any functor.

Example: increment (\(\text{inc} \)) function can be used with any functor with Int type elements

```haskell
inc :: Functor f => f Int -> f Int
inc = fmap (+1)
> inc (Just 1)
Just 2
> inc [1,2,3]
[2,3,4]
> inc (Node (Leaf 1) (Leaf 2))
Node (Leaf 2) (Leaf 3)
```
Want to be more flexible?

Functors abstract the idea of mapping a function over each element of a structure.

```haskell
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```

The first argument of `fmap` is a function that takes one argument, but we want more flexibility! We want to be able to use functions that take any number of arguments.

```haskell
class Functor f => Applicative f where
    pure :: a -> f a
    (<*> :: f (a -> b) -> f a -> f b
```

Only one argument function!
Applicative

class (Functor f) => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

The function pure takes a value of any type as its argument and returns a structure of type f a, that is, an applicative functor that contains the value.

The operator <*> is a generalization of function application for which the argument function, the argument value, and the result value are all contained in f structure.

<*> associates to the left: ((pure g <*> x) <*> y) <*> z

fmap g x = pure g <*> x = g <$> x
Applicative functor instance example 1: Maybe

data Maybe a = Nothing | Just a

instance Applicative Maybe where
 -- pure :: a -> Maybe a
 pure = Just
 -- ('*') :: Maybe (a->b) -> Maybe a -> Maybe b
 Nothing '*_' = Nothing
 (Just g) '*' mx = fmap g mx

> pure (+1) '*' Nothing
Nothing
> pure (+) '*' Just 2 '*' Just 3
Just 5
> mult3 x y z = x*y*z
> pure mult3 '*' Just 1 '*' Just 2 '*' Just 4
Just 8
Applicative functor instance example: Maybe (Cont.)

Picture source:
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
Applicative functor instance example 2: list type `[]`

instance Applicative `[]` where
-- pure :: a -> [a]
pure x = [x]
-- (<*>) :: [a -> b] -> [a] -> [b]
gs <*> xs = [g x | g <- gs, x <- xs]

`pure` transforms a value into a singleton list.
`(<*>)` takes a list of functions and a list of arguments, and applies each function to each argument in turn, returning all the results in a list.

```haskell
> pure (+1) <*> [1,2,3]  
[2,3,4]
> pure (+) <*> [1,3] <*> [2,5]  
[3,6,5,8]
> pure (:) <*> "ab" <*> ["cd","ef"]  
["acd","aef","bcd","bef"]
```
Applicative functor instance example: [] (Cont.)

> [(*2), (+3)] <*> [1, 2, 3]
[2, 4, 6, 4, 5, 6]

Picture source:
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
Applicative laws

pure id <*> x = x
pure (g x) = pure g <*> pure x
x <*> pure y = pure (\g -> g y) <*> x
x <*> (y <*> z) = (pure (.) <*> x <*> y) <*> z

1. pure preserves the identity function
2. pure also preserves function application
3. When an effectful function is applied to a pure argument, the order in which the two components are evaluated does not matter.
4. The operator <*> is associative (modulo types that are involved).
Monads

```haskell
class (Applicative m) => Monad m where
    return :: a -> m a
    (>>=) :: m a -> (a -> m b) -> m b
    return = pure
```

- Roughly, a monad is a strategy for combining computations into more complex computations.

- Another pattern of *effectful programming* (applying pure functions to (side-)effectful arguments)

- `(>>=)` is called “bind” operator.

- Note: `return` may be removed from the Monad class in the future, and become a library function instead.
Monad instance example 1: Maybe

data Maybe a = Nothing | Just a

instance Monad Maybe where

 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 Nothing >>= _ = Nothing
 (Just x) >>= f = f x

 div2 x = if even x then Just (x `div` 2) else Nothing

> (Just 10) >>= div2
Just 5
> (Just 10) >>= div2 >>= div2
Nothing
> (Just 10) >>= div2 >>= div2 >>= div2
Nothing
Monad instance example 2: list type []

instance Monad [] where
 -- (>>=) :: [a] -> (a -> [b]) -> [b]
 xs >>= f = [y | x <- xs, y <- f x]

pairs :: [a] -> [b] -> [(a,b)]
pairs xs ys = do x <- xs
 y <- ys
 return (x,y)

> pairs [1,2] [3,4]
[(1,3),(1,4),(2,3),(2,4)]
Monad laws

<table>
<thead>
<tr>
<th>Expression</th>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>return x >>= f</code></td>
<td><code>= f x</code></td>
<td>left identity</td>
</tr>
<tr>
<td><code>mx >>= return</code></td>
<td><code>= mx</code></td>
<td>right identity</td>
</tr>
<tr>
<td><code>(mx >>= f) >>= g</code></td>
<td><code>= mx >>= (\x -> (f x >>= g))</code></td>
<td>associativity</td>
</tr>
</tbody>
</table>

1. If we return a value and then feed it into a monadic function, this should give the same result as simply applying the function to the value.

2. If we feed the result of a monadic computation into the function `return`, this should give the same result as simply performing the computation.

3. `>>=` is associative