CSCE 314
Programming Languages
Functors, Applicatives, and Monads

Dr. Hyunyoung Lee
Motivation – Generic Functions

A common programming pattern can be abstracted out as a definition.

For example:

\[
\begin{align*}
 \text{inc} & :: [\text{Int}] \rightarrow [\text{Int}] \\
 \text{inc} \ [\] & = [\] \\
 \text{inc} \ (n:\text{ns}) & = n+1 : \text{inc} \ \text{ns} \\
 \text{sqr} & :: [\text{Int}] \rightarrow [\text{Int}] \\
 \text{sqr} \ [\] & = [\] \\
 \text{sqr} \ (n:\text{ns}) & = n^2 : \text{sqr} \ \text{ns}
\end{align*}
\]

Both functions are defined in the same manner!
Using map

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (n:ns) = f n : map f ns

inc :: [Int] -> [Int]
inc [] = []
inc (n:ns) = n+1 : inc ns

sqr :: [Int] -> [Int]
sqr [] = []
sqr (n:ns) = n^2 : sqr ns

inc = map (+1)
sqr = map (^2)
Functors

Class of types that support mapping of function. For example, lists and trees.

class Functor f where
 fmap :: (a -> b) -> f a -> f b

fmap takes a function of type (a->b) and a structure of type (f a), applies the function to each element of the structure, and returns a structure of type (f b).

Functor instance example 1: the list structure []

instance Functor [] where
 -- fmap :: (a -> b) -> [a] -> [b]
 fmap = map

(f a) is a data structure that contains elements of type a
Functor instance example 2: the Maybe type

```haskell
data Maybe a = Nothing | Just a

instance Functor Maybe where
  -- fmap :: (a -> b) -> Maybe a -> Maybe b
  fmap _ Nothing    = Nothing
  fmap g (Just x)  = Just (g x)
```

Now, you can do

```haskell
> fmap (+1) Nothing
Nothing
> fmap not (Just True)
Just False
```
Functor instance example: the Maybe type (Cont.)

Picture source:
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
Functor instance example 3: the Tree type

data Tree a = Leaf a | Node (Tree a) (Tree a)
 deriving show

instance Functor Tree where
 -- fmap :: (a -> b) -> Tree a -> Tree b
 fmap g (Leaf x) = Leaf (g x)
 fmap g (Node l r) = Node (fmap g l) (fmap g r)

Now, you can do

> fmap (+1) (Node (Leaf 1) (Leaf 2))
Node (Leaf 2) (Leaf 3)
> fmap (even) (Node (Leaf 1) (Leaf 2))
Node (Leaf False) (Leaf True)
Functor laws

1. \(\text{fmap id} = \text{id} \)
2. \(\text{fmap (g . h)} = \text{fmap g . fmap h} \)

1. \text{fmap} preserves the identity function

2. \text{fmap} also preserves the function composition, where \(g \) has type \(b \rightarrow c \) and \(h \) has type \(a \rightarrow b \)

3. The functor laws ensure that \text{fmap} does perform a mapping operation, without altering the natural property of the data structure.
Benefits of Functors

1. `fmap` can be used to process the elements of any structure that is functorial.
2. Allows us to define generic functions that can be used with any functor.

Example: increment (inc) function can be used with any functor with Int type elements

```
inc :: Functor f => f Int -> f Int
inc = fmap (+1)
> inc (Just 1)
Just 2
> inc [1,2,3]
[2,3,4]
> inc (Node (Leaf 1) (Leaf 2))
Node (Leaf 2) (Leaf 3)
```
Functors abstract the idea of mapping a function over each element of a structure.

```haskell
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```

The first argument of `fmap` is a function that takes one argument, but we want more flexibility! We want to be able to use functions that take any number of arguments.

```haskell
class Functor f => Applicative f where
    pure :: a -> f a
    (<*>) :: f (a -> b) -> f a -> f b
```

Want to be more flexible?

Only one argument function!
Applicative

class (Functor f) => Applicative f where
 pure :: a -> f a
 (\(*)\) :: f (a -> b) -> f a -> f b

The function pure takes a value of any type as its argument and returns a structure of type \(f \ a \), that is, an applicative functor that contains the value.

The operator \(\ast \) is a generalization of function application for which the argument function, the argument value, and the result value are all contained in \(f \) structure.

\(\ast \) associates to the left: \((\ (g \ast x) \ast y) \ast z \)

\(\text{fmap } g \ x = \text{pure } g \ast x = g \ <$> x \)
Applicative functor instance example 1: Maybe

```
data Maybe a = Nothing | Just a

instance Applicative Maybe where
    -- pure :: a -> Maybe a
    pure = Just
    -- (<>*) :: Maybe (a->b) -> Maybe a -> Maybe b
    Nothing  <*> _     = Nothing
    (Just g) <*> mx   = fmap g mx

> pure (+1) <*> Nothing
Nothing
> pure (+) <*> Just 2 <*> Just 3
Just 5
> mult3 x y z = x*y*z
> pure mult3 <*> Just 1 <*> Just 2 <*> Just 4
Just 8
```
Applicative functor instance example: Maybe (Cont.)

Picture source:
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
Applicative functor instance example 2: list type []

instance Applicative [] where
 -- pure :: a -> [a]
pure x = [x]
 -- (<*>) :: [a -> b] -> [a] -> [b]
gs <*> xs = [g x | g <- gs, x <- xs]

pure transforms a value into a singleton list.
<*> takes a list of functions and a list of arguments, and
applies each function to each argument in turn, returning
all the results in a list.

> pure (+1) <*> [1,2,3]
[2,3,4]
> pure (+) <*> [1,3] <*> [2,5]
[3,6,5,8]
> pure (:) <*> "ab" <*> ["cd","ef"]
["acd","aef","bcd","bef"]
Applicative functor instance example: [] (Cont.)

> [(*2), (+3)] <*> [1,2,3]
[2,4,6,4,5,6]

Picture source:
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
Applicative laws

pure id <*> x = x
pure (g x) = pure g <*> pure x
x <*> pure y = pure (\g -> g y) <*> x
x <*> (y <*> z) = (pure (.) <*> x <*> y) <*> z

1. pure preserves the identity function
2. pure also preserves function application
3. When an effectful function is applied to a pure argument, the order in which the two components are evaluated does not matter.
4. The operator <*> is associative.
Monads

class (Applicative m) => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b
 return = pure

- Roughly, a monad is a strategy for combining computations into more complex computations.

- Another pattern of effectful programming (applying pure functions to (side-)effectful arguments)

- (>>=) is called “bind” operator.

- Note: return may be removed from the Monad class in the future, and become a library function instead.
Monad instance example 1: Maybe

```haskell
data Maybe a = Nothing | Just a

instance Monad Maybe where

  -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

  Nothing >>= _ = Nothing

  (Just x) >>= f = f x

  div2 x = if even x then Just (x `div` 2) else Nothing

> (Just 10) >>= div2
Just 5
> (Just 10) >>= div2 >>= div2
Nothing
> (Just 10) >>= div2 >>= div2 >>= div2
Nothing
```
Monad instance example 2: list type []

instance Monad [] where
 -- (>>=):: [a] -> (a -> [b]) -> [b]
 xs >>= f = [y | x <- xs, y <- f x]

pairs :: [a] -> [b] -> [(a,b)]
pairs xs ys = do x <- xs
 y <- ys
 return (x,y)

> pairs [1,2] [3,4]
[(1,3),(1,4),(2,3),(2,4)]
Monad laws

\[
\text{return } x \gg= f = f \ x \quad \text{-- left identity}
\]
\[
\text{mx } \gg= \text{return } = mx \quad \text{-- right identity}
\]
\[
(\text{mx } \gg= f) \gg= g = \text{mx } \gg= (\lambda x \rightarrow (f \ x \gg= g))
\]

1. If we return a value and then feed it into a monadic function, this should give the same result as simply applying the function to the value.

2. If we feed the result of a monadic computation into the function return, this should give the same result as simply performing the computation.

3. \(\gg=\) is associative