Deep Learning Overview

- Fall 2016
- Yoonsuck Choe
What Is Deep Learning?

- Learning higher level abstractions/representations from data.
- Motivation: how the brain represents and processes sensory information in a hierarchical manner.

From LeCun’s Deep Learning Tutorial
Deep learning is based on neural networks.

- Weighted sum followed by nonlinear activation function.
- Weights adjusted using gradient descent ($\eta = \text{learning rate}$):

$$w_{ij} \leftarrow w_{ij} + \eta \frac{\partial E}{\partial w_{ij}}$$
Weight w_{ji} is updated as: $w_{ji} \leftarrow w_{ji} + \eta \delta_j a_i$, where

- a_i : activity at input side of weight w_{ji}.
- Hidden to output weights (thick red weight). T_k is target value.

$$\delta_k = (T_k - a_k) \sigma'(net_k)$$

- Deeper weights (green line in figure above).

$$\delta_j = \left[\sum_k w_{kj} \delta_k \right] \sigma'(net_j)$$
Deep Learning

- Complex models with large number of parameters
 - Hierarchical representations
 - More parameters = more accurate on training data
 - Simple learning rule for training (gradient-based).

- Lots of data
 - Needed to get better generalization performance.
 - High-dimensional input need exponentially many inputs (curse of dimensionality).

- Lots of computing power: GPGPU, etc.
 - Training large networks can be time consuming.
Deep Learning, in the Context of AI/ML

Deep Learning: Automating Feature Discovery

Fig: I. Goodfellow

From LeCun’s Deep Learning Tutorial
The Rise of Deep Learning

Made popular in recent years

- Andrew Ng & Jeff Dean (Google Brain team, 2012).
- Schmidhuber et al.’s deep neural networks (won many competitions and in some cases showed super human performance; 2011–). Recurrent neural networks using LSTM (Long Short-Term Memory).
Long History (in Hind Sight)

- Fukushima’s Neocognitron (1980).
History: Fukushima’s Neocognitron

- Appeared in journal *Biological Cybernetics* (1980).
- Multiple layers with local receptive fields.
- S cells (trainable) and C cells (fixed weight).
- Deformation-resistant recognition.
History: LeCun’s Convolutional Neural Nets

- Convolution kernel (weight sharing) + Subsampling
- Fully connected layers near the end.
- Became a main-stream method in deep learning.
Motivating Deep Learning: Tensorflow Demo

- http://playground.tensorflow.org

- Demo to explore why deep nnet is powerful and how it is limited.
Current Trends

- Deep belief networks (based on Boltzmann machine)
- Convolutional neural networks
- Deep Q-learning Network (extensions to reinforcement learning)
- Deep recurrent neural networks using (LSTM)
- Applications to diverse domains.
 - Vision, speech, video, NLP, etc.
- Lots of open source tools available.
Boltzmann Machine to Deep Belief Nets

- Haykin Chapter 11: Stochastic Methods rooted in statistical mechanics.
Boltzmann Machine

• Stochastic binary machine: +1 or -1.
• Fully connected symmetric connections: $w_{ij} = w_{ji}$.
• Visible vs. hidden neurons, clamped vs. free-running.
• Goal: Learn weights to model prob. dist of visible units.
• Unsupervised. Pattern completion.
Boltzmann Machine: Energy

• Network state: \(x \) from random variable \(X \).

• \(w_{ij} = w_{ji} \) and \(w_{ii} = 0 \).

• Energy (in analogy to thermodynamics):

\[
E(x) = -\frac{1}{2} \sum_i \sum_{j,i\neq j} w_{ji} x_i x_j
\]
Boltzmann Machine: Prob. of a State x

- Probability of a state x given $E(x)$ follows the *Gibbs distribution*:

$$P(X = x) = \frac{1}{Z} \exp \left(- \frac{E(x)}{T} \right),$$

- Z: *partition function* (normalization factor – hard to compute)

$$Z = \sum_{\forall x} \exp(-E(x)/T)$$

- T: temperature parameter.

- Low energy states are exponentially more probable.

- State x changed over time following the probability distribution $P(X = x)$.
Boltzmann Learning Rule

- Learning based on correlation ρ_{ji}^+ (clamped) and ρ_{ji}^- (free-running).

$$\Delta w_{ji} = \eta \frac{\partial L(w)}{\partial w_{ji}} = \eta \left(\rho_{ji}^+ - \rho_{ji}^- \right)$$

where $L(w)$ is the log likelihood of the pattern being any of the training patterns, and η is the learning rate. This is gradient ascent.
Boltzmann Machine Summary

- Theoretically elegant.

- Very slow in practice (especially the unclamped phase).
Logistic (or Directed) Belief Net

- Similar to Boltzmann Machine, but with directed, acyclic connections.

\[P(X_j = x_j | X_1 = x_1, \ldots, X_{j-1} = x_{j-1}) = P(X_j = x_j | \text{parents}(X_j)) \]

- Same learning rule:

\[\Delta w_{ji} = \eta \frac{\partial L(w)}{\partial w_{ji}} \]

- With dense connections, calculation of \(P \) becomes intractable.
Deep Belief Net (1)

- Overcomes issues with Logistic Belief Net. Hinton et al. (2006)
- Based on Restricted Boltzmann Machine (RBM): visible and hidden layers, with layer-to-layer full connection but no within-layer connections.
- RBM Back-and-forth update: update hidden given visible, then update visible given hidden, etc., then train \mathbf{w} based on

$$\frac{\partial L(\mathbf{w})}{\partial w_{ji}} = \rho_{ji}^{(0)} - \rho_{ji}^{(\infty)}$$
Deep Belief Net (2)

Deep Belief Net = Layer-by-layer training using RBM.

Hybrid architecture: Top layer = undirected, lower layers directed.

1. Train RBM based on input to form hidden representation.

2. Use hidden representation as input to train another RBM.

3. Repeat steps 2-3.

* Similar approach: Stacked denoising autoencoders.

Applications: NIST digit recognition, etc.
Deep Convolutional Neural Networks (1)

- Krizhevsky et al. (2012)
- Applied to ImageNet competition (1.2 million images, 1,000 classes).
- Network: 60 million parameters and 650,000 neurons.
- Top-1 and top-5 error rates of 37.5% and 17.0%.
- Trained with backprop.
Deep Convolutional Neural Networks (2)

- Learned kernels (first convolutional layer).
- Resembles mammalian RFs: oriented Gabor patterns, color opponency (red-green, blue-yellow).
Deep Convolutional Neural Networks (3)

- Left: Hits and misses and close calls.
- Right: Test (1st column) vs. training images with closest hidden representation to the test data.
Deep Q-Network (DQN)

- Latest application of deep learning to a reinforcement learning domain (*Q* as in *Q*-learning).

- Applied to *Atari 2600* video game playing.
DQN Overview

- Input: video screen; Output: $Q(s, a)$; Reward: game score.

- $Q(s, a)$: action-value function
 - Value of taking action a when in state s.
DQN Overview

- Input preprocessing

- Experience replay (collect and replay state, action, reward, and resulting state)

- Delayed (periodic) update of Q.

- Moving target \hat{Q} value used to compute error (loss function L, parameterized by weights θ_i).
 - Gradient descent:
 $$\frac{\partial L}{\partial \theta_i}$$
Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode $= 1, M$ do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For $t = 1, T$ do

With probability ϵ select a random action a_t
otherwise select $a_t = \text{argmax}_a Q(\phi(s_t),a;\theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j + 1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For
- Superhuman performance on over half of the games.
DQN Hidden Layer Representation (t-SNE map)

- Similar perception, similar reward clustered.
• Value vs. game state; Game state vs. action value.
Deep Recurrent Neural Networks

Feedforward

- Feedforward: No memory of past input.

Recurrent

- Recurrent:
 - Good: Past input affects present output.
 - Bad: Cannot remember far into the past.
RNN Training: Backprop in Time

- Can unfold recurrent loop: Make it into a feedforward net.
- Use the same backprop algorithm for training.
- Again, cannot remember too far into the past.

Fig from http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Long Short-Term Memory

LSTM to the rescue (Hochreiter and Schmidhuber, 2017).

- Built-in recurrent memory that can be written (Input gate), reset (Forget gate), and outputted (Output gate).

From http://www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf
Long Short-Term Memory

- Long-term retention possible with LSTM.

From http://www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf
Long Short-Term Memory in Action

- Unfold in time and use backprop as usual.

Fig from http://colah.github.io/posts/2015-08-Understanding-LSTMs/
LSTM Applications

- Sequence classification

- Sequence translation

Applications: Sequence classification, Sequence translation.

From http://machinelearning.ru
LSTM Applications

handwriting -> handwriting

Next pen position (we predict parameters):
\(x_1, x_2\) - mixture of bivariate Gaussians
\(x_3\) - Bernoulli distribution

Current pen position:
\(x_1, x_2\) – pen offset
\(x_3\) – is it end of the stroke

Applications: Sequence prediction

From: http://machinelearning.ru
LSTM Applications

- Applications: Sequence classification, Sequence prediction, Sequence translation.

From http://machinelearning.ru
Deep Learning Applications: Vision

- ConvNet sweeping image recognition challenges.

From LeCun’s Deep Learning Tutorial

<table>
<thead>
<tr>
<th>2012 Teams</th>
<th>%error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervision (Toronto)</td>
<td>15.3</td>
</tr>
<tr>
<td>ISI (Tokyo)</td>
<td>26.1</td>
</tr>
<tr>
<td>VGG (Oxford)</td>
<td>26.9</td>
</tr>
<tr>
<td>XRCE/INRIA</td>
<td>27.0</td>
</tr>
<tr>
<td>UvA (Amsterdam)</td>
<td>29.6</td>
</tr>
<tr>
<td>INRIA/LEAR</td>
<td>33.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2013 Teams</th>
<th>%error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarifai (NYU spinoff)</td>
<td>11.7</td>
</tr>
<tr>
<td>NUS (Singapore)</td>
<td>12.9</td>
</tr>
<tr>
<td>Zeiler-Fergus (NYU)</td>
<td>13.5</td>
</tr>
<tr>
<td>A. Howard</td>
<td>13.5</td>
</tr>
<tr>
<td>OverFeat (NYU)</td>
<td>14.1</td>
</tr>
<tr>
<td>UvA (Amsterdam)</td>
<td>14.2</td>
</tr>
<tr>
<td>Adobe</td>
<td>15.2</td>
</tr>
<tr>
<td>VGG (Oxford)</td>
<td>15.2</td>
</tr>
<tr>
<td>VGG (Oxford)</td>
<td>23.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2014 Teams</th>
<th>%error</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoogLeNet</td>
<td>6.6</td>
</tr>
<tr>
<td>VGG (Oxford)</td>
<td>7.3</td>
</tr>
<tr>
<td>MSRA</td>
<td>8.0</td>
</tr>
<tr>
<td>A. Howard</td>
<td>8.1</td>
</tr>
<tr>
<td>DeeperVision</td>
<td>9.5</td>
</tr>
<tr>
<td>NUS-BST</td>
<td>9.7</td>
</tr>
<tr>
<td>TTIC-ECP</td>
<td>10.2</td>
</tr>
<tr>
<td>XYZ</td>
<td>11.2</td>
</tr>
<tr>
<td>UvA</td>
<td>12.1</td>
</tr>
</tbody>
</table>
Deep Learning Applications: Speech

The dramatic impact of Deep Learning on Speech Recognition (according to Microsoft)

- Deep learning led to major improvement in speech recognition.

From LeCun’s Deep Learning Tutorial
Deep Learning Applications: Speech

- ConvNet applied to speech recognition.
- Use spectrogram and treat it like a 2D image.

From LeCun’s Deep Learning Tutorial
Deep Learning Applications: NLP

- Based on encoding/decoding and attention.

Deep Learning Applications: NLP

- Google’s LSTM-based machine translation.

Limitations

- Discriminative vs. generative learning.
 - Discriminative: \(P(\text{class}|\text{data}) \). Can easily be fooled with adversarial input.
 - Generative:
 \[
 P(\text{class}, \text{data}) = P(\text{class}|\text{data})P(\text{data}).
 \]
 Explicitly models the data.

- Deep neural nets mostly use discriminative learning, so can be fooled by adversarial input. Generative adversarial learning can overcome this (Goodfellow et al. *arXiv:1406.2661* (2014)).
Deep Learning Tools

- Kaffe: UC Berkeley’s deep learning tool box
- TensorFlow (Google)
- Deep learning modules for Torch (Facebook)
- Microsoft CNTK (Computational Network Tool Kit)
- Other: Apache Mahout (MapReduce-based ML)
Summary

● Deep convolutional networks: High computational demand, over the board great performance.

● Deep recurrent neural networks: sequence learning. LSTM a powerful mechanism.

● Diverse applications. Top performance.

● Flood of deep learning tools available.