Machine Translation

Many slides from Michael Collins, Chris Calison-Burch, Alan Ritter, Thang Luong
He also explained that consumer spending was the main engine of the economy that has been hit by two years of political turmoil.

He pointed out that there is a near absence of foreign direct investment (FDI) in the first half of the fiscal year, and that to achieve economic growth of 7% country needs investment rate of at least 22%.
Overview

- Challenges in machine translation
- Classical machine translation
- A brief introduction to statistical MT
Challenges: Lexical Ambiguity
(Example from Dorr et. al, 1999)

book the flight ⇒ reservar
read the book ⇒ libro

Spanish

kill a man ⇒ matar
kill a process ⇒ acabar

Portuguese
Challenges: Differing Word Orders

- English word order is *subject – verb – object*

- Japanese word order is *subject – object – verb*

English: IBM bought Lotus
Japanese: *IBM Lotus bought*

English: Sources said that IBM bought Lotus yesterday
Japanese: *Sources yesterday IBM Lotus bought that said*
Syntactic Structure is not Preserved Across Translations (Example from Dorr et. al, 1999)

The bottle floated into the cave

↓

La botella entro a la cuerva flotando
(the bottle entered the cave floating)
Syntactic Ambiguity Causes Problems

(Example from Dorr et. al, 1999)

John hit the dog with the stick

↓

John golpeo el perro con el palo/que tenia el palo
Pronoun Resolution (Example from Dorr et. al, 1999)

The computer outputs the data; it is fast.

La computadora imprime los datos; es rapida

The computer outputs the data; it is stored in ascii.

La computadora imprime los datos; estan almacenados en ascii
Overview

- Challenges in machine translation
- Classical machine translation
- A brief introduction to statistical MT
Direct Machine Translation

- Translation is word-by-word

- Very little analysis of the source text (e.g., no syntactic or semantic analysis)

- Relies on a large bilingual directionary. For each word in the source language, the dictionary specifies a set of rules for translating that word

- After the words are translated, simple reordering rules are applied (e.g., move adjectives after nouns when translating from English to French)
An Example of a set of Direct Translation Rules

(From Jurafsky and Martin, edition 2, chapter 25. Originally from a system from Panov 1960)

Rules for translating *much* or *many* into Russian:

```plaintext
if preceding word is *how* return *skol’ko*
else if preceding word is *as* return *stol’ko zhe*
else if word is *much*
    if preceding word is *very* return *nil*
    else if following word is a noun return *mnogo*
else (word is many)
    if preceding word is a preposition and following word is noun return *mnogii*
else return *mnogo*
```
Some Problems with Direct Machine Translation

- Lack of any analysis of the source language causes several problems, for example:
 - Difficult or impossible to capture long-range reorderings
 - English: Sources said that IBM bought Lotus yesterday
 - Japanese: Sources yesterday IBM Lotus bought that said
 - Words are translated without disambiguation of their syntactic role
 - e.g., *that* can be a complementizer or determiner, and will often be translated differently for these two cases
 - They said *that* ...
 - They like *that* ice-cream
Transfer-Based Approaches

Three phases in translation:

- **Analysis**: Analyze the source language sentence; for example, build a syntactic analysis of the source language sentence.

- **Transfer**: Convert the source-language parse tree to a target-language parse tree.

- **Generation**: Convert the target-language parse tree to an output sentence.
Transfer-Based Approaches

- The “parse trees” involved can vary from shallow analyses to much deeper analyses (even semantic representations).

- The transfer rules might look quite similar to the rules for direct translation systems. But they can now operate on syntactic structures.

- It’s easier with these approaches to handle long-distance reorderings.

- The *Systran* systems are a classic example of this approach.
Sources said that IBM bought Lotus yesterday.

⇒ Japanese: Sources yesterday IBM Lotus bought that said
Sources said that IBM bought Lotus yesterday.
Two phases in translation:

- **Analysis:** Analyze the source language sentence into a (language-independent) representation of its meaning.

- **Generation:** Convert the meaning representation into an output sentence.
Interlingua-Based Translation

One Advantage: If we want to build a translation system that translates between n languages, we need to develop n analysis and generation systems. With a transfer based system, we’d need to develop $O(n^2)$ sets of translation rules.

Disadvantage: What would a language-independent representation look like?
Interlingua-Based Translation

- How to represent different concepts in an interlingua?
- Different languages break down concepts in quite different ways:

 German has two words for *wall*: one for an internal wall, one for a wall that is outside

 Japanese has two words for *brother*: one for an elder brother, one for a younger brother

 Spanish has two words for *leg*: *pierna* for a human’s leg, *pata* for an animal’s leg, or the leg of a table

- An interlingua might end up simple being an intersection of these different ways of breaking down concepts, but that doesn’t seem very satisfactory...
Overview

- Challenges in machine translation
- Classical machine translation
- A brief introduction to statistical MT
A Brief Introduction to Statistical MT

- Parallel corpora are available in several language pairs

- Basic idea: use a parallel corpus as a training set of translation examples

- Classic example: IBM work on French-English translation, using the Canadian Hansards. (1.7 million sentences of 30 words or less in length).

- Idea goes back to Warren Weaver (1949): suggested applying statistical and cryptanalytic techniques to translation.
When I look at an article in Russian, I say: “This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.”

Warren Weaver (1949)
The Noisy Channel Model

- Goal: translation system from French to English
- Have a model $p(e \mid f)$ which estimates conditional probability of any English sentence e given the French sentence f. Use the training corpus to set the parameters.
- A Noisy Channel Model has two components:
 - $p(e)$ the language model
 - $p(f \mid e)$ the translation model
- Giving:
 \[p(e \mid f) = \frac{p(e, f)}{p(f)} = \frac{p(e)p(f \mid e)}{\sum_e p(e)p(f \mid e)} \]
 and
 \[\arg\max_e p(e \mid f) = \arg\max_e p(e)p(f \mid e) \]
More About the Noisy Channel Model

- The **language model** $p(e)$ could be a trigram model, estimated from any data (parallel corpus not needed to estimate the parameters)

- The **translation model** $p(f \mid e)$ is trained from a parallel corpus of French/English pairs.

- **Note:**
 - The translation model is backwards!
 - The language model can make up for deficiencies of the translation model.
 - Later we’ll talk about how to build $p(f \mid e)$
 - Decoding, i.e., finding

\[
\text{argmax}_ep(e)p(f \mid e)
\]

is also a challenging problem.
Translation from Spanish to English, candidate translations based on $p(\text{Spanish} \mid \text{English})$ alone:

Que hambre tengo yo

→

What hunger have $p(s \mid e) = 0.000014$

Hungry I am so $p(s \mid e) = 0.000001$

I am so hungry $p(s \mid e) = 0.0000015$

Have i that hunger $p(s \mid e) = 0.000020$

...
Example from Koehn and Knight tutorial (continued)

With $p(Spanish \mid English) \times p(English)$:

Que hambre tengo yo
→
What hunger have $p(s \mid e)p(e) = 0.000014 \times 0.000001$
Hungry I am so $p(s \mid e)p(e) = 0.000001 \times 0.0000014$
I am so hungry $p(s \mid e)p(e) = 0.0000015 \times 0.0001$

Have i that hunger $p(s \mid e)p(e) = 0.000020 \times 0.00000098$

...
Recap: The Noisy Channel Model

- Goal: translation system from French to English
- Have a model $p(e \mid f)$ which estimates conditional probability of any English sentence e given the French sentence f. Use the training corpus to set the parameters.
- A Noisy Channel Model has two components:
 - $p(e)$ the language model
 - $p(f \mid e)$ the translation model
- Giving:
 \[
p(e \mid f) = \frac{p(e, f)}{p(f)} = \frac{p(e)p(f \mid e)}{\sum_e p(e)p(f \mid e)}
 \]
 and
 \[
 \arg\max_e p(e \mid f) = \arg\max_e p(e)p(f \mid e)
 \]
IBM Model 2: The Generative Process

To generate a French string f from an English string e:

- **Step 1:** Pick an alignment $a = \{a_1, a_2 \ldots a_m\}$ with probability
 \[\prod_{j=1}^{m} q(a_j \mid j, l, m) \]

- **Step 3:** Pick the French words with probability
 \[p(f \mid a, e, m) = \prod_{j=1}^{m} t(f_j \mid e_{a_j}) \]

The final result:

\[p(f, a \mid e, m) = p(a \mid e, m)p(f \mid a, e, m) = \prod_{j=1}^{m} q(a_j \mid j, l, m)t(f_j \mid e_{a_j}) \]
Recovering Alignments

- If we have parameters \(q \) and \(t \), we can easily recover the most likely alignment for any sentence pair.

- Given a sentence pair \(e_1, e_2, \ldots, e_l, f_1, f_2, \ldots, f_m \), define

\[
a_j = \arg \max_{a \in \{0\ldots l\}} q(a|j, l, m) \times t(f_j|e_a)
\]

for \(j = 1 \ldots m \)

\[
e = \text{And the program has been implemented}
\]

\[
f = \text{Le programme a ete mis en application}
\]
The Parameter Estimation Problem

- Input to the parameter estimation algorithm: \((e^{(k)}, f^{(k)})\) for \(k = 1 \ldots n\). Each \(e^{(k)}\) is an English sentence, each \(f^{(k)}\) is a French sentence.

- Output: parameters \(t(f|e)\) and \(q(i|j,l,m)\).

- A key challenge: we do not have alignments on our training examples, e.g.,

\[
\begin{align*}
e^{(100)} &= \text{And the program has been implemented} \\
f^{(100)} &= \text{Le programme a ete mis en application}
\end{align*}
\]
Parameter Estimation if the Alignments are Observed

First: case where alignments are observed in training data.

E.g.,

\[e^{(100)} = \text{And the program has been implemented} \]

\[f^{(100)} = \text{Le programme a été mis en application} \]

\[a^{(100)} = \langle 2, 3, 4, 5, 6, 6, 6 \rangle \]

Training data is \((e^{(k)}, f^{(k)}, a^{(k)})\) for \(k = 1 \ldots n\). Each \(e^{(k)}\) is an English sentence, each \(f^{(k)}\) is a French sentence, each \(a^{(k)}\) is an alignment.

Maximum-likelihood parameter estimates in this case are trivial:

\[
t_{ML}(f|e) = \frac{\text{Count}(e, f)}{\text{Count}(e)} \quad q_{ML}(j|i, l, m) = \frac{\text{Count}(j|i, l, m)}{\text{Count}(i, l, m)}
\]
Input: A training corpus \((f^{(k)}, e^{(k)})\) for \(k = 1 \ldots n\), where
\[f^{(k)} = f_1^{(k)} \ldots f_{m_k}^{(k)}, \quad e^{(k)} = e_1^{(k)} \ldots e_{l_k}^{(k)}. \]

Initialization: Initialize \(t(f | e)\) and \(q(j | i, l, m)\) parameters (e.g., to random values).
For $s = 1 \ldots S$

- Set all counts $c(\ldots) = 0$
- For $k = 1 \ldots n$
 - For $i = 1 \ldots m_k$, For $j = 0 \ldots l_k$

 $$
c(e_j^{(k)}, f_i^{(k)}) \leftarrow c(e_j^{(k)}, f_i^{(k)}) + \delta(k, i, j)
 $$
 $$
c(e_j^{(k)}) \leftarrow c(e_j^{(k)}) + \delta(k, i, j)
 $$
 $$
c(j|i, l, m) \leftarrow c(j|i, l, m) + \delta(k, i, j)
 $$
 $$
c(i, l, m) \leftarrow c(i, l, m) + \delta(k, i, j)
 $$

where

$$
\delta(k, i, j) = \frac{q(j|i, l_k, m_k)t(f_i^{(k)}|e_j^{(k)})}{\sum_{j=0}^{l_k} q(j|i, l_k, m_k)t(f_i^{(k)}|e_j^{(k)})}
$$

- Recalculate the parameters:

$$
t(f|e) = \frac{c(e, f)}{c(e)} \quad q(j|i, l, m) = \frac{c(j|i, l, m)}{c(i, l, m)}
$$
\[\delta(k, i, j) = \frac{q(j|i, l_k, m_k) \cdot t(f_i^{(k)}|e_j^{(k)})}{\sum_{j=0}^{l_k} q(j|i, l_k, m_k) \cdot t(f_i^{(k)}|e_j^{(k)})} \]

\(e^{(100)} = \) And the program has been implemented

\(f^{(100)} = \) Le programme a ete mis en application
Justification for the Algorithm

- Training examples are \((e^{(k)}, f^{(k)})\) for \(k = 1 \ldots n\). Each \(e^{(k)}\) is an English sentence, each \(f^{(k)}\) is a French sentence.

- The log-likelihood function:

\[
L(t, q) = \sum_{k=1}^{n} \log p(f^{(k)}|e^{(k)}) = \sum_{k=1}^{n} \log \sum_{a} p(f^{(k)}, a|e^{(k)})
\]

- The maximum-likelihood estimates are

\[
\arg \max_{t,q} L(t, q)
\]

- The EM algorithm will converge to a local maximum of the log-likelihood function.
Summary

- Key ideas in the IBM translation models:
 - Alignment variables
 - Translation parameters, e.g., $t(\text{chien}|\text{dog})$
 - Distortion parameters, e.g., $q(2|1, 6, 7)$

- The EM algorithm: an iterative algorithm for training the q and t parameters

- Once the parameters are trained, we can recover the most likely alignments on our training examples

\[e = \text{And the program has been implemented} \]

\[f = \text{Le programme a ete mis en application} \]
Sixi roasted husband

Meat Muscle Stupid Bean Sprouts
Sixi roasted husband

Meat Muscle Stupid Bean Sprouts
Neural Machine Translation (NMT)

- RNNs trained end-to-end (Sutskever et al., 2014).
Neural Machine Translation (NMT)

- RNNs trained \textit{end-to-end} (Sutskever et al., 2014).

\begin{itemize}
 \item I am a student – Je suis étudiant
\end{itemize}
Neural Machine Translation (NMT)

- RNNs trained end-to-end (Sutskever et al., 2014).

I am a student — Je suis étudiant
Neural Machine Translation (NMT)

- RNNs trained end-to-end (Sutskever et al., 2014).

I am a student — Je suis étudiant
Neural Machine Translation (NMT)

- RNNs trained end-to-end (Sutskever et al., 2014).
Neural Machine Translation (NMT)

• RNNs trained **end-to-end** (Sutskever et al., 2014).
Neural Machine Translation (NMT)

• RNNs trained end-to-end (Sutskever et al., 2014).
Neural Machine Translation (NMT)

- RNNs trained end-to-end (Sutskever et al., 2014).
- Encoder-decoder approach.
Recurrent Connections

- Different across layers and encoder / decoder.
• Different across layers and encoder / decoder.
I am a student

Je suis étudiant

• Different across layers and encoder / decoder.
• Different across layers and encoder / decoder.
Training vs. Testing

- **Training**
 - Correct translations are available.

- **Testing**
 - Only source sentences are given.