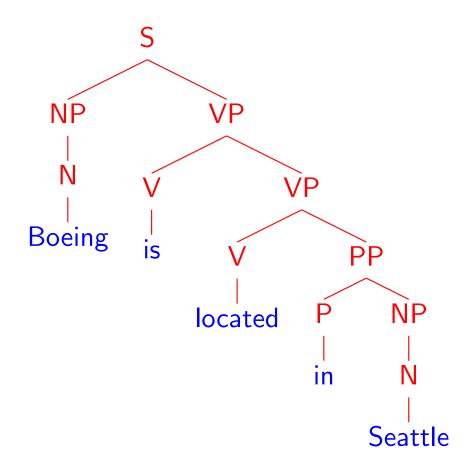
Context Free Grammars

Overview


- ► An introduction to the parsing problem
- Context free grammars
- ► A brief(!) sketch of the syntax of English
- Examples of ambiguous structures

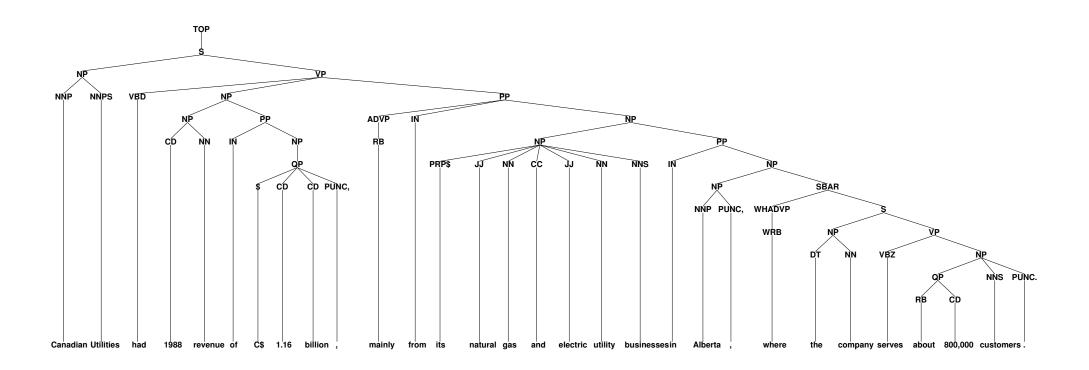
Parsing (Syntactic Structure)

INPUT:

Boeing is located in Seattle.

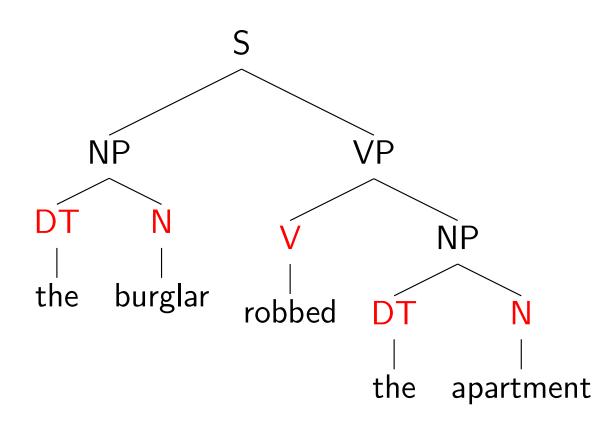
OUTPUT:

Syntactic Formalisms

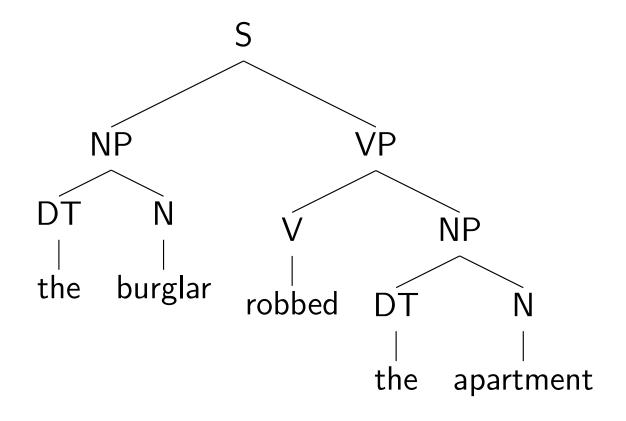

Work in formal syntax goes back to Chomsky's PhD thesis in the 1950s

► Examples of current formalisms: minimalism, lexical functional grammar (LFG), head-driven phrase-structure grammar (HPSG), tree adjoining grammars (TAG), categorial grammars

Data for Parsing Experiments


- ▶ Penn WSJ Treebank = 50,000 sentences with associated trees
- ▶ Usual set-up: 40,000 training sentences, 2400 test sentences

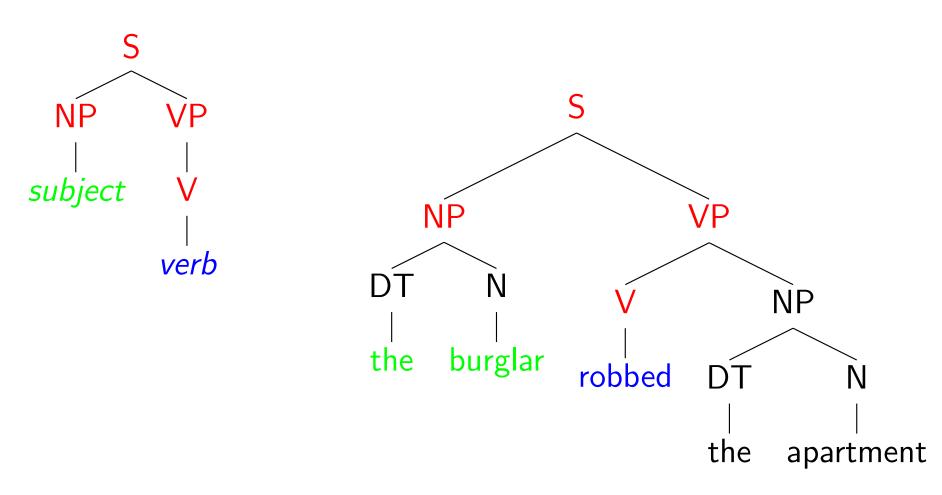
An example tree:


The Information Conveyed by Parse Trees

(1) Part of speech for each word (N = noun, V = verb, DT = determiner)

The Information Conveyed by Parse Trees (continued)

(2) Phrases


Noun Phrases (NP): "the burglar", "the apartment"

Verb Phrases (VP): "robbed the apartment"

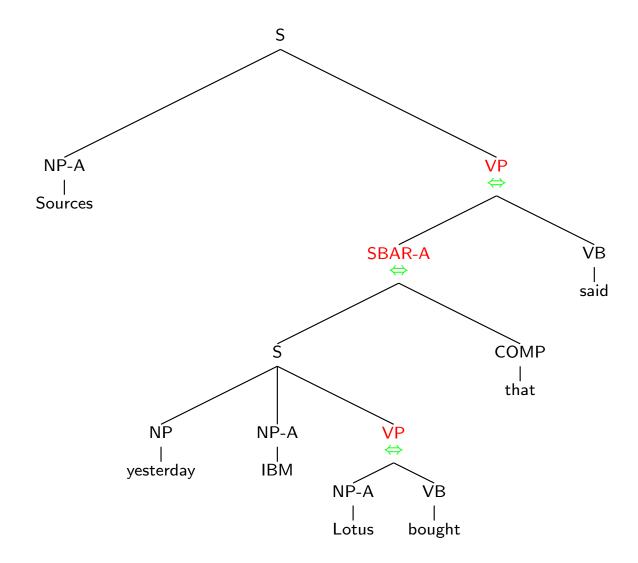
Sentences (S): "the burglar robbed the apartment"

The Information Conveyed by Parse Trees (continued)

(3) Useful Relationships

⇒ "the burglar" is the subject of "robbed"

An Example Application: Machine Translation


- ► English word order is subject verb object
- ► Japanese word order is subject object verb

English: IBM bought Lotus

Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday

Japanese: Sources yesterday IBM Lotus bought that said

Overview

- ► An introduction to the parsing problem
- Context free grammars
- ► A brief(!) sketch of the syntax of English
- Examples of ambiguous structures

Context-Free Grammars

Hopcroft and Ullman, 1979

A context free grammar $G = (N, \Sigma, R, S)$ where:

- ightharpoonup N is a set of non-terminal symbols
- $ightharpoonup \Sigma$ is a set of terminal symbols
- ▶ R is a set of rules of the form $X \to Y_1 Y_2 \dots Y_n$ for $n \ge 0$, $X \in N$, $Y_i \in (N \cup \Sigma)$
- $ightharpoonup S \in N$ is a distinguished start symbol

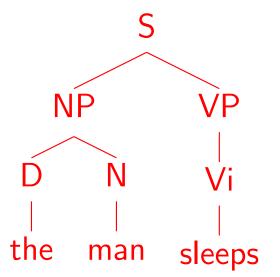
A Context-Free Grammar for English

```
N = \{ \text{S, NP, VP, PP, DT, Vi, Vt, NN, IN} \} S = \text{S} \Sigma = \{ \text{sleeps, saw, man, woman, telescope, the, with, in} \}
```

	S	\rightarrow	NP	VP
	VP	\rightarrow	Vi	
	VP	\rightarrow	Vt	NP
R =	VP	\rightarrow	VP	PP
	NP	\rightarrow	DT	NN
	NP	\rightarrow	NP	PP
	PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition


Left-Most Derivations

A left-most derivation is a sequence of strings $s_1 \dots s_n$, where

- $ightharpoonup s_1 = S$, the start symbol
- $ightharpoonup s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
- ▶ Each s_i for $i=2\dots n$ is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \to \beta$ is a rule in R

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP], [the man Vi], [the man sleeps]

Representation of a derivation as a tree:

DERIVATION

RULES USED

DERIVATION

S

NP VP

RULES USED

 $S \rightarrow NP VP$

DERIVATION

S

NP VP

DT N VP

RULES USED

 $S \rightarrow NP VP$

 $NP \rightarrow DT N$

DERIVATION

S

NP VP

DT N VP

the N VP

RULES USED

 $S \rightarrow NP VP$

 $NP \rightarrow DT N$

 $\mathsf{DT} \to \mathsf{the}$

DERIVATION

S

NP VP

DT N VP

the N VP

the dog VP

RULES USED

 $S \rightarrow NP VP$

 $NP \rightarrow DT N$

 $\mathsf{DT} \to \mathsf{the}$

 $N \to dog$

DERIVATION

S

NP VP

DT N VP

the N VP

the dog VP

the dog VB

RULES USED

 $S \rightarrow NP VP$

 $NP \rightarrow DT N$

 $\mathsf{DT} \to \mathsf{the}$

 $N \to dog$

 $\mathsf{VP} \to \mathsf{VB}$

DERIVATION

S

NP VP

DT N VP

the N VP

the dog VP

the dog VB

the dog laughs

RULES USED

 $S \rightarrow NP VP$

 $NP \rightarrow DT N$

 $\mathsf{DT} \to \mathsf{the}$

 $N \to dog$

 $\mathsf{VP} \to \mathsf{VB}$

 $VB \rightarrow laughs$

DERIVATION

S

NP VP

DT N VP

the N VP

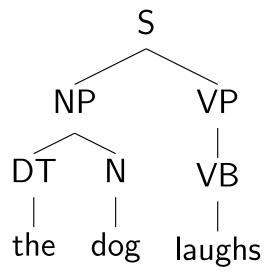
the dog VP

the dog VB

the dog laughs

RULES USED

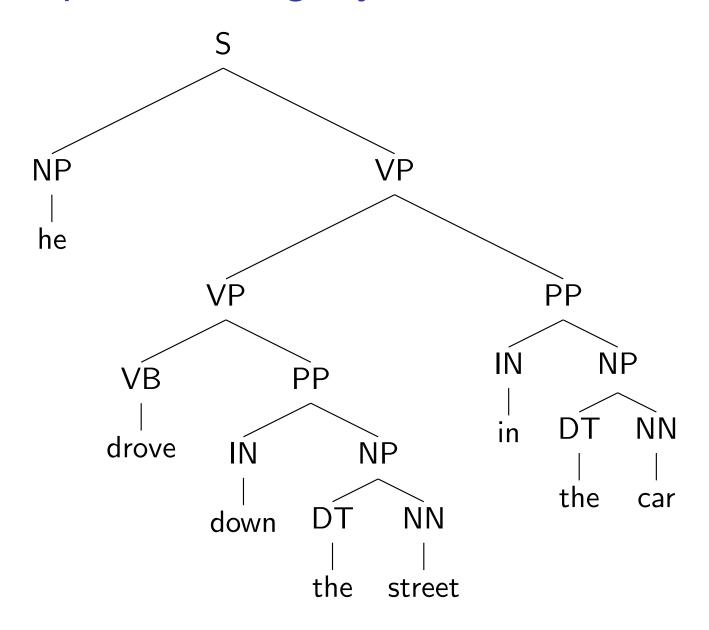
 $S \rightarrow NP VP$

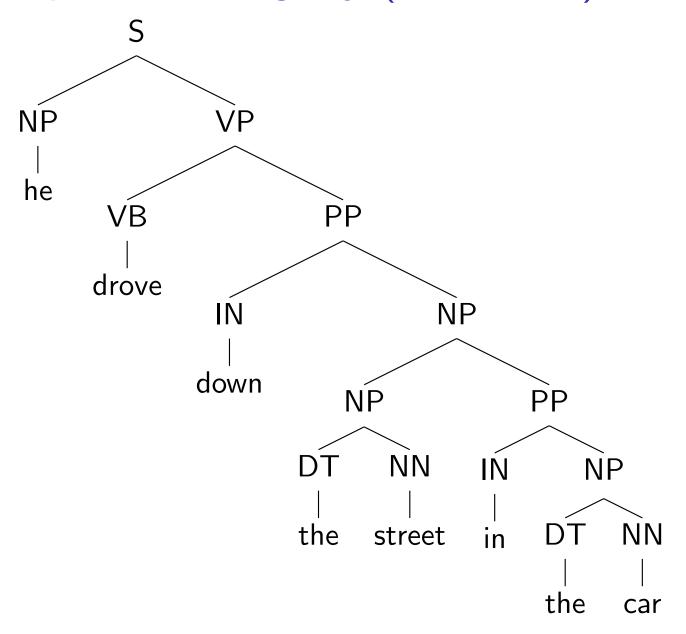

 $NP \rightarrow DT N$

 $\mathsf{DT} \to \mathsf{the}$

 $N \to dog$

 $\mathsf{VP} \to \mathsf{VB}$

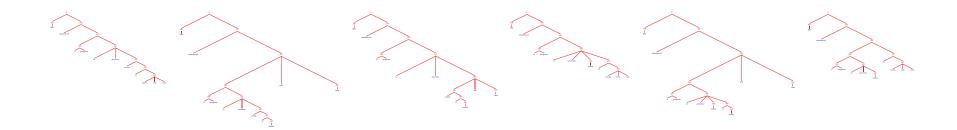

 $VB \rightarrow laughs$


Properties of CFGs

- A CFG defines a set of possible derivations
- \blacktriangleright A string $s\in\Sigma^*$ is in the language defined by the CFG if there is at least one derivation that yields s
- ► Each string in the language generated by the CFG may have more than one derivation ("ambiguity")

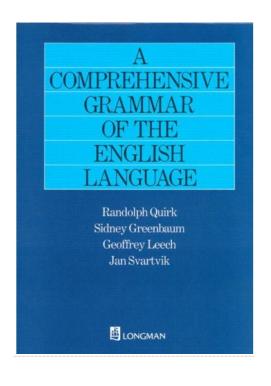
An Example of Ambiguity

An Example of Ambiguity (continued)


The Problem with Parsing: Ambiguity

INPUT:

She announced a program to promote safety in trucks and vans


POSSIBLE OUTPUTS:

And there are more...

Overview

- ► An introduction to the parsing problem
- Context free grammars
- ► A brief(!) sketch of the syntax of English
- Examples of ambiguous structures

Product Details (from Amazon)

Hardcover: 1779 pages

Publisher: Longman; 2nd Revised edition

Language: English

ISBN-10: 0582517346

ISBN-13: 978-0582517349

Product Dimensions: 8.4 x 2.4 x 10 inches

Shipping Weight: 4.6 pounds

A Brief Overview of English Syntax

Parts of Speech (tags from the Brown corpus):

Determiners
 DT = determiner e.g., the, a, some, every

Adjectives
 JJ = adjective e.g., red, green, large, idealistic

A Fragment of a Noun Phrase Grammar

```
ar{N} \Rightarrow NN \ ar{N} \Rightarrow NN \ ar{N} \Rightarrow NN \ ar{N} \Rightarrow JJ \ ar{N} \ ar{N} \Rightarrow ar{N} \ ar{N} \Rightarrow ar{N} \ ar{N} \Rightarrow DT \ ar{N}
```

```
\begin{array}{cccc} \mathsf{NN} & \Rightarrow & \mathsf{box} \\ \mathsf{NN} & \Rightarrow & \mathsf{car} \\ \mathsf{NN} & \Rightarrow & \mathsf{mechanic} \\ \mathsf{NN} & \Rightarrow & \mathsf{pigeon} \\ \mathsf{DT} & \Rightarrow & \mathsf{the} \\ \mathsf{DT} & \Rightarrow & \mathsf{a} \end{array}
```

```
\begin{array}{cccc} \mathsf{JJ} & \Rightarrow & \mathsf{fast} \\ \mathsf{JJ} & \Rightarrow & \mathsf{metal} \\ \mathsf{JJ} & \Rightarrow & \mathsf{idealistic} \\ \mathsf{JJ} & \Rightarrow & \mathsf{clay} \end{array}
```

Prepositions, and Prepositional Phrases

Prepositions
 IN = preposition e.g., of, in, out, beside, as

An Extended Grammar

```
fast
         NN
                     NN
                               mechanic
                               pigeon
NP
                                          IN
```

Generates:

in a box, under the box, the fast car mechanic under the pigeon in the box, . . .

Verbs, Verb Phrases, and Sentences

Basic Verb Types
 Vi = Intransitive verb
 Vt = Transitive verb
 Vd = Ditransitive verb
 e.g., sleeps, walks, laughs
 e.g., sees, saw, likes
 vd = Ditransitive verb
 e.g., gave

Basic VP Rules $VP \rightarrow Vi$ $VP \rightarrow Vt \quad NP$ $VP \rightarrow Vd \quad NP \quad NP$

► Basic S Rule $S \rightarrow NP VP$

Examples of VP:

sleeps, walks, likes the mechanic, gave the mechanic the fast car

Examples of S:

the man sleeps, the dog walks, the dog gave the mechanic the fast car

PPs Modifying Verb Phrases

A new rule: $VP \rightarrow VP PP$

New examples of VP:

sleeps in the car, walks like the mechanic, gave the mechanic the fast car on Tuesday, . . .

Complementizers, and SBARs

- Complementizers
 COMP = complementizer e.g., that
- ightharpoonup SBAR
 ightharpoonup SUBAR
 ightharpoonup COMP S

Examples:

that the man sleeps, that the mechanic saw the dog . . .

More Verbs

New Verb Types
 V[5] e.g., said, reported
 V[6] e.g., told, informed
 V[7] e.g., bet

New VP Rules VP \rightarrow V[5] SBAR VP \rightarrow V[6] NP SBAR VP \rightarrow V[7] NP NP SBAR

Examples of New VPs:

said that the man sleeps told the dog that the mechanic likes the pigeon bet the pigeon \$50 that the mechanic owns a fast car

Coordination

► A New Part-of-Speech: CC = Coordinator e.g., and, or, but

New Rules

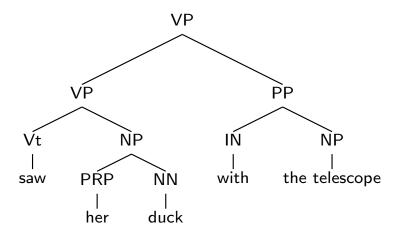
We've Only Scratched the Surface...

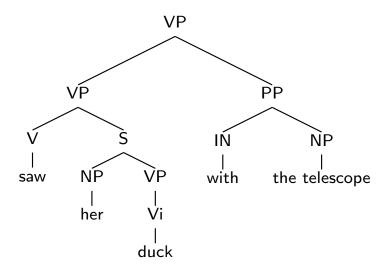
Agreement
 The dogs laugh vs. The dog laughs

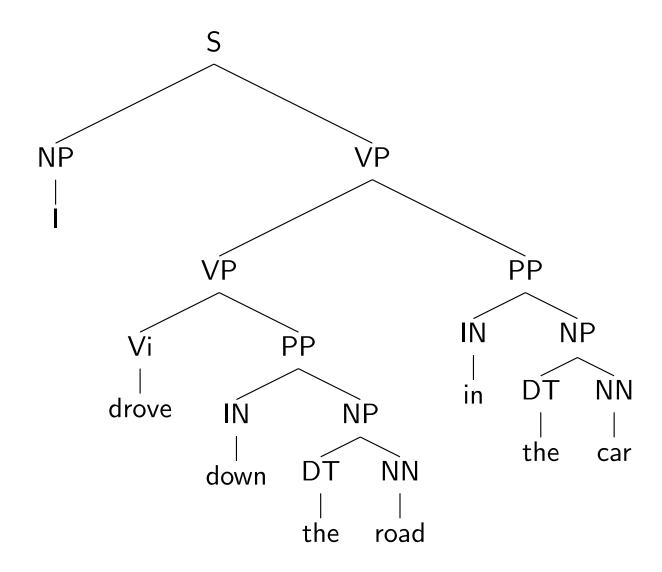
- ► Wh-movement Long-distance dependency The dog that the cat liked ___
- Active vs. passive
 The dog saw the cat vs.
 The cat was seen by the dog
- ► If you're interested in reading more:

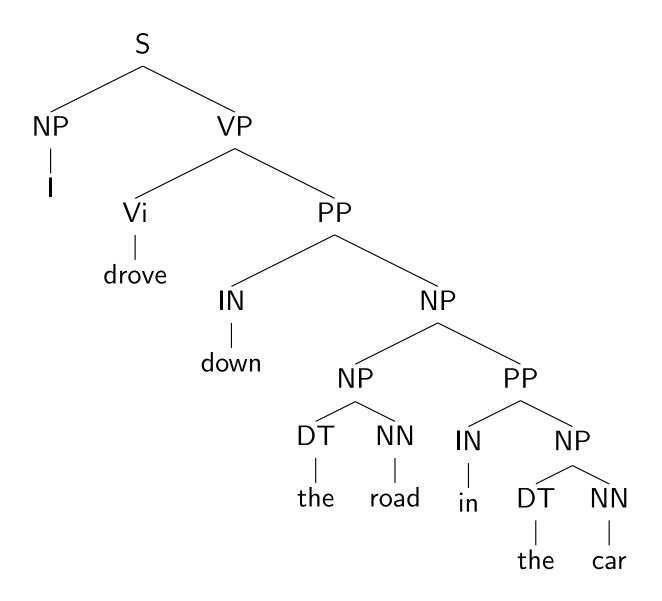
Syntactic Theory: A Formal Introduction, 2nd Edition. Ivan A. Sag, Thomas Wasow, and Emily M. Bender.

Overview

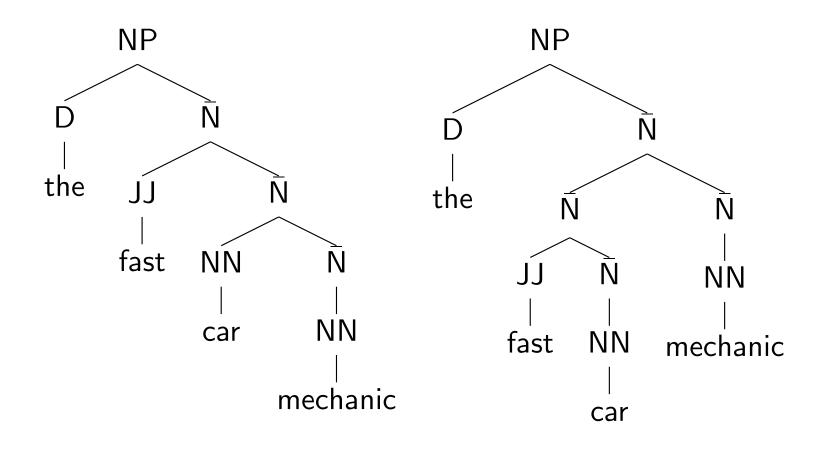

- ► An introduction to the parsing problem
- Context free grammars
- ► A brief(!) sketch of the syntax of English
- Examples of ambiguous structures


Sources of Ambiguity


Part-of-Speech ambiguity


 $NN \rightarrow duck$

 $Vi \rightarrow duck$



Two analyses for: John was believed to have been shot by Bill

With the same set of grammar rules

Sources of Ambiguity: Noun Premodifiers

► Noun premodifiers:

