
Discriminative	Estimation
(Maxent models and perceptron)

Generative	vs.	Discriminative	
models

Many slides  are adapted from slides by Christopher Manning and perceptron slides by Alan Ritter



Introduction

¥ So	far	we’ve	looked	at	“generative	models”
¥ Naive	Bayes

¥ But	there	is	now	much	use	of	conditional	or	discriminative	
probabilistic	models	in	NLP,	Speech,	IR	(and	ML	generally)

¥ Because:
¥ They	give	high	accuracy	performance
¥ They	make	it	easy	to	incorporate	lots	of	linguistically	important	features
¥ They	allow	automatic	building	of	language	independent,	retargetable	NLP	
modules



Joint	vs.	Conditional	Models

¥ We	have	some	data	{(! ,	")}	of	paired	observations	
! and	hidden	classes	".

¥ Joint	(generative)	models	place	probabilities	over	
both	observed	data	and	the	hidden	stuff	(gene-
rate	the	observed	data	from	hidden	stuff):	
¥ All	the	classic	StatNLP models:

¥ #-gram	models,	Naive	Bayes	classifiers,	hidden	
Markov	models,	probabilistic	context-free	grammars,	
IBM	machine	translation	alignment	models

P(c,d)



Joint	vs.	Conditional	Models

¥ Discriminative	(conditional)	models	take	the	data	
as	given,	and	put	a	probability	over	hidden	
structure	given	the	data:

¥ Logistic	regression,	conditional	loglinear or	maximum	
entropy	models,	conditional	random	fields

¥ Also,	SVMs,	(averaged)	perceptron,	etc.	are	
discriminative	classifiers	(but	not	directly	probabilistic)

P(c|d)



Bayes	Net/Graphical	Models

¥ Bayes	net	diagrams	draw	circles	for	random	variables,	and	lines	for	direct	
dependencies

¥ Some	variables	are	observed;	some	are	hidden
¥ Each	node	is	a	little	classifier	(conditional	probability	table)	based	on	

incoming	arcs
c
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Conditional	vs.	Joint	Likelihood

¥ A	$%&#'model	gives	probabilities	P(!(" )	and	tries	to	maximize	this	
joint	likelihood.
¥ It	turns	out	to	be	trivial	to	choose	weights:	just	relative	frequencies.

¥ A	"%#!&'&%#)*model	gives	probabilities	P("|! ).	It	takes	the	data	
as	given	and	models	only	the	conditional	probability	of	the	class.
¥ We	seek	to	maximize	conditional	likelihood.
¥ Harder	to	do	(as	we’ll	see…)
¥ More	closely	related	to	classification	error.



Maxent Models	and	
Discriminative	
Estimation

Generative	vs.	Discriminative	
models



Discriminative	Model	
Features

Making	features	from	text	for	
discriminative	NLP	models



Features

¥ In	these	slides	and	most	maxent work:	+,)'-.,/ f are	elementary	
pieces	of	evidence	that	link	aspects	of	what	we	observe	! with	a	
category	" that	we	want	to	predict

¥ A	feature	is	a	function	with	a	bounded	real	value:	f: C ! D ! !

A Belief: to create a data partition



Features

¥ In	NLP	uses,	usually	a	feature	specifies
1. an	indicator	function	– a	yes/no	boolean matching	function	– of	

properties	of	the	input	and
2. a	particular	class

fi(c, d) " [! (d) # c = cj] [Value	is	0	or	1]

¥ Each	feature	picks	out	a	data	subset	and	suggests	a	label	for	it



Example	features

¥ f1(c, d) " [c = LOCATION # w-1 = AþinAÿ# isCapitalized(w)]
¥ f2(c, d) " [c = LOCATION # hasAccentedLatinChar(w)]
¥ f3(c, d) " [c = DRUG # ends(w, AþcAÿ)]

¥ Models	will	assign	to	each	feature	a	0,&12'3
¥ A	positive	weight	votes	that	this	configuration	is	likely	correct
¥ A	negative	weight	votes	that	this	configuration	is	likely	incorrect

LOCATION
in QuŽbec

PERSON
saw Sue

DRUG
taking Zantac

LOCATION
in Arcadia



Feature-Based	Models
¥ The	decision	about	a	data	point	is	based	only	on	the	

features active	at	that	point.

BUSINESS: Stocks 
hit a yearly low …

Data

Features
{…, stocks, hit, a, 
yearly, low, …}

Label: BUSINESS

Text 
Categorization

… to restructure 
bank:MONEY debt.

Data

Features
{…, w-1=restructure, 
w+1=debt, …}

Label: MONEY

Word-Sense 
Disambiguation

DT      JJ       NN …
The previous fall …

Data

Features
{w=fall, t-1=JJ w-

1=previous}

Label: NN

POS Tagging



Example:	Text	Categorization

(Zhang	and	Oles 2001)
¥ Features	are	presence	of	each	word in	a	document	and	the	document	class	

(they	do	feature	selection	to	use	reliable	indicator	words)
¥ Tests	on	classic	Reuters	data	set	(and	others)

¥ Naïve	Bayes:	77.0%	F1
¥ Linear	regression:	86.0%
¥ Logistic	regression:	86.4%
¥ Support	vector	machine:	86.5%

¥ Paper	emphasizes	the	importance	of	.,1-*).&4)'&%#(smoothing)	for	successful	
use	of	discriminative	methods	(not	used	in	much	early	NLP/IR	work)



Other	Maxent Classifier	Examples

¥ You	can	use	a	maxent classifier	whenever	you	want	to	assign	data	points	to	
one	of	a	number	of	classes:
¥ Sentence	boundary	detection	(Mikheev 2000)

¥ Is	a	period	end	of	sentence	or	abbreviation?
¥ Sentiment	analysis	(Pang	and	Lee	2002)

¥ Word	unigrams,	bigrams,	POS	counts,	…
¥ PP	attachment	(Ratnaparkhi 1998)

¥ Attach	to	verb	or	noun?	Features	of	head	noun,	preposition,	etc.
¥ Parsing	decisions	in		general	(Ratnaparkhi 1997;	Johnson	et	al.	1999,	etc.)



Discriminative	Model	
Features

Making	features	from	text	for	
discriminative	NLP	models



Feature-based	Linear	
Classifiers

How	to	put	features	into	a	
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Feature-Based	Linear	Classifiers

¥ Linear	classifiers	at	classification	time:
¥ Linear function from feature sets { fi} to classes { c}.
¥ Assign a weight $i to each feature fi.

¥ We consider each class for an observed datum d
¥ For a pair (c,d), features vote with their weights: 

¥ vote(c) = %$ifi(c,d)

¥ Choose the class c which maximizes %$ifi(c,d)

LOCATION
in QuŽbec

DRUG
in QuŽbec

PERSON
in QuŽbec



Feature-Based	Linear	Classifiers

¥ Linear	classifiers	at	classification	time:
¥ Linear function from feature sets { fi} to classes { c}.
¥ Assign a weight $i to each feature fi.

¥ We consider each class for an observed datum d
¥ For a pair (c,d), features vote with their weights: 

¥ vote(c) = %$ifi(c,d)

¥ Choose the class c which maximizes %$ifi(c,d) = LOCATION

1.8                      –0.6
0.3LOCATION

in QuŽbec
DRUG

in QuŽbec
PERSON

in QuŽbec



Feature-Based	Linear	Classifiers

There	are	many	ways	to	chose	weights	for	features
With	different	loss	functions	as	the	optimization	goal

¥ Perceptron:	find	a	currently	misclassified	example,	and	
nudge	weights	in	the	direction	of	its	correct	classification

¥ Margin-based	methods	(Support	Vector	Machines)



Feature-Based	Linear	Classifiers
¥ Exponential	(log-linear,	maxent,	logistic,	Gibbs)	models:

¥ Make	a	probabilistic	model	from	the	linear	combination	%$ifi(c,d)

¥ P(LOCATION|&#5-67," ) = e1.8e–0.6/(e1.8e–0.6 + e0.3 + e0) = 0.586

¥ P(DRUG|&#5-67," ) = e0.3 /(e1.8e–0.6 + e0.3 + e0) = 0.238

¥ P(PERSON|&#5-67," ) = e0 /(e1.8e–0.6 + e0.3 + e0) = 0.176

¥ The weights are the parameters of the probability 
model, combined via a “soft max” function
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Aside:	logistic	regression

¥ Maxent models	in	NLP	are	essentially	the	same	as	multiclass	
logistic	regression	models	in	statistics	(or	machine	learning)

¥ The	key	role	of	feature	functions	in	NLP	and	in	this	presentation
¥ The	features	are	more	general,	with	f also	being	a	function	of	the	class

21



Quiz Question

¥ Assuming exactly the same set up (3 class decision: LOCATION, 
PERSON, or DRUG; 3 features as before, maxent), what are:
¥ P(PERSON	| 789:%6.&") = 

¥ P(LOCATION	| 789:%6.&") = 

¥ P(DRUG	| 789:%6.&")       = 

¥ 1.8    f1(c, d) " [c = LOCATION # w-1 = AþinAÿ# isCapitalized(w)]
¥ -0.6   f2(c, d) " [c = LOCATION # hasAccentedLatinChar(w)]
¥ 0.3    f3(c, d) " [c = DRUG # ends(w, AþcAÿ)]
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PERSON

by GoŽric
LOCATION
by GoŽric

DRUG
by GoŽric



Feature-based	Linear	
Classifiers

How	to	put	features	into	a	
classifier
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Building	a	Maxent
Model

The	nuts	and	bolts



Building	a	Maxent Model

¥ We	define	features	(indicator	functions)	over	data	points
¥ Features	represent	sets	of	data	points	which	are	distinctive	enough	to	
deserve	model	parameters.
¥ Words,	but	also	“word	contains	number”,	“word	ends	with	&#1”,	etc.

¥ We	will	simply	encode	each	! feature	as	a	unique	String	(index)
¥ A	datum	will	give	rise	to	a	set	of	Strings:	the	active	! features
¥ Each	feature	fi(c, d) " [! (d) # c = cj] gets	a	real	number	weight

¥ We	concentrate	on	! features	but	the	math	uses	i indices	of	fi



Building	a	Maxent	Model
¥ Features	are	often	added	during	model	development	to	target	errors

¥ Often,	the	easiest	thing	to	think	of	are	features	that	mark	bad	combinations

¥ Then,	for	any	given	feature	weights,	we	want	to	be	able	to	calculate:
¥ Data	conditional	likelihood
¥ Derivative	of	the	likelihood	wrt each	feature	weight

¥ Uses	expectations	of	each	feature	according	to	the	model

¥ We	can	then	find	the	optimum	feature	weights	(discussed	later).



Building	a	Maxent
Model
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Naive	Bayes	vs.	
Maxent models

Generative	vs.	Discriminative	
models:	The	problem	of	
overcounting evidence



Text	classification:	Asia	or	Europe

NB	FACTORS:
¥ P(A)	=	P(E)	=
¥ P(M|A)	=	
¥ P(M|E)	=
¥ P(H|A)	=	P(K|A)	=		
¥ P(H|E)	=	PK|E)	=	

Europe Asia

Class

H K

NB	Model PREDICTIONS:
! P(A,H,K,M)	=	
! P(E,H,K,M)	=	
! P(A|H,K,M)	=	
! P(E|H,K,M)	=	

Training	Data

M

Monaco 
Monaco

Monaco Monaco 
Hong 
Kong

Hong 
Kong 
Monaco

Monaco Hong 
Kong

Hong 
Kong

Monaco 
Monaco



Naive	Bayes	vs.	Maxent Models

¥ Naive	Bayes	models	multi-count	correlated	evidence
¥ Each	feature	is	multiplied	in,	even	when	you	have	multiple	features	telling	
you	the	same	thing

¥ Maximum	Entropy	models	(pretty	much)	solve	this	problem
¥ As	we	will	see,	this	is	done	by	weighting	features	so	that	model	
expectations	match	the	observed	(empirical)	expectations



Naive	Bayes	vs.	
Maxent models

Generative	vs.	Discriminative	
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Maxent Models	and	
Discriminative	
Estimation

Maximizing	the	likelihood



Feature	Expectations

¥ We	will	crucially	make	use	of	two	,;<,"')'&%#/
¥ actual	or	predicted	counts	of	a	feature	firing:

¥ Empirical	count	(expectation)	of	a	feature:

¥ Model	expectation	of	a	feature:

! "
=

),(observed),(
),()( empirical
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Goal: well fit the data



Exponential	Model	Likelihood

¥ Maximum	(Conditional)	Likelihood	Models	:
¥ Given	a	model	form,	choose	values	of	parameters	to	maximize	the	
(conditional)	likelihood	of	the	data.
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The	Likelihood	Value

¥ The	(log)	conditional	likelihood	of	iid data	(=,>)	
according	to	maxent model	is	a	function	of	the	
data	and	the	parameters	$:

¥ If	there	aren’t	many	values	of	",	it’s	easy	to	
calculate:
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The	Likelihood	Value

¥ We	can	separate	this	into	two	components:

¥ The	derivative	is	the	difference	between	the	
derivatives	of	each	component
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The	Derivative	I:	Numerator

Derivative	of	the	numerator	is:	the	empirical	count(+&(9")
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The	Derivative	II:	Denominator
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The	Derivative	III

¥ The	optimum	parameters	are	the	ones	for	which	each	feature’s	
predicted	expectation	equals	its	empirical	expectation.		The	optimum	
distribution	is:
¥ Always	unique	(but	parameters	may	not	be	unique)
¥ Always	exists	(if	feature	counts	are	from	actual	data).

¥ These	models	are	also	called	maximum	entropy	models	because	we	
find	the	model	having	maximum	entropy	and	satisfying	the	
constraints:
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Finding	the	optimal	parameters

¥ We	want	to	choose	parameters	λ1,	λ2,	λ3,	…	that	maximize	the	
conditional	log-likelihood	of	the	training	data

¥ To	be	able	to	do	that,	we’ve	worked	out	how	to	calculate	the	
function	value	and	its	partial	derivatives	(its	gradient)

)|(log)(
1

i

n

i
i dcPDCLogLik !

=

=



A	likelihood	surface



Finding	the	optimal	parameters

¥ Use	your	favorite	numerical	optimization	package….
¥ Commonly,	you	minimize the	negative	of	=?%1?&@

1. Gradient	descent	(GD);	Stochastic	gradient	descent	(SGD)
2. Iterative	proportional	fitting	methods:	Generalized	Iterative	Scaling	

(GIS)	and	Improved	Iterative	Scaling	(IIS)
3. Conjugate	gradient	(CG),	perhaps	with	preconditioning
4. Quasi-Newton	methods	– limited	memory	variable	metric	(LMVM)	

methods,	in	particular,	L-BFGS



Gradient	Descent	(GD)
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Feature	Sparsity	
Regularization

Combating	overfitting



Smoothing:	Issues	of	Scale
¥ Lots	of	features:

¥ NLP	maxent models	can	have	well	over	a	million	features.
¥ Even	storing	a	single	array	of	parameter	values	can	have	a	substantial	memory	cost.

¥ Lots	of	sparsity:
¥ Overfitting very	easy	– we	need	smoothing!
¥ Many	features	seen	in	training	will	never	occur	again	at	test	time.

¥ Optimization	problems:
¥ Feature	weights	can	be	infinite,	and	iterative	solvers	can	take	a	long	time	to	get	to	

those	infinities.



Smoothing/Priors/	Regularization



Standard	vs.	Regularized	Updates
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Feature	Sparsity	
Regularization

Combating	overfitting



Batch	vs.	Online	
Learning

GD	vs.	SGD



Stochastic	Gradient	Decent	(SGD)
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Batch vs. Online learning:



Batch	vs.	Online	
Learning

GD	vs.	SGD



Perceptron

Another	Online	Learning	
algorithem



Perceptron Algorithm
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MaxEnt v.s Perceptron

¥ Perceptron doesn’t always make updates
¥ Probabilities v.s scores
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Regularization	in	the	Perceptron	Algorithm

¥ No gradient computed,	so can’t directly include a regularizer in
an object function.

¥ Instead	run different numbers of iterations
¥ Use parameter averaging, for instance, average of all

parameters after seeing each data point

56


