Discriminative Estimation
(Maxent models and perceptron)

Generative vs. Discriminative
models

Many slides are adapted from slides by Christopher Manning and perceptron slides by Alan Ritter



Introduction

¥ So far we’ve looked at “generative models”
¥ Naive Bayes

¥ But there is now much use of conditional or discriminative
probabilistic models in NLP, Speech, IR (and ML generally)
¥ Because:
¥ They give high accuracy performance

¥ They make it easy to incorporate lots of linguistically important features

¥ They allow automatic building of language independent, retargetable NLP
modules



Joint vs. Conditional Models

¥ We have some data {(!, ")} of paired observations
I and hidden classes ".

¥ Joint (generative) models place probabilities over P(c,d)
both observed data and the hidden stuff (gene-
rate the observed data from hidden stuff):
¥ All the classic StatNLP models:

¥ #-gram models, Naive Bayes classifiers, hidden
Markov models, probabilistic context-free grammars,
IBM machine translation alignment models



Joint vs. Conditional Models

¥ Discriminative (conditional) models take the data P(c|d)
as given, and put a probability over hidden
structure given the data:

¥ Logistic regression, conditional loglinear or maximum
entropy models, conditional random fields

¥ Also, SVMs, (averaged) perceptron, etc. are
discriminative classifiers (but not directly probabilistic)



Bayes Net/Graphical Models

Bayes net diagrams draw circles for random variables, and lines for direct
dependencies

Some variables are observed; some are hidden
Each node is a little classifier (conditional probability table) based on

incoming arcs e G
ONC @) @ @

Naive Bayes Logistic Regression

Generative Discriminative



Conditional vs. Joint Likelihood

¥ A $%&model gives probabilities P(!(" ) and tries to maximize this
joint likelihood.

¥ It turns out to be trivial to choose weights: just relative frequencies.

¥ A"%#HI&'&Yomiodel gives probabilities P("|! ). It takes the data
as given and models only the conditional probability of the class.
¥ We seek to maximize conditional likelihood.
¥ Harder to do (as we’ll see...)

¥ More closely related to classification error.



Maxent Models and
Discriminative
Estimation

Generative vs. Discriminative
models



Discriminative Model
Features

Making features from text for
discriminative NLP models



Features

¥ Inthese slides and most maxent work: +,)'-.,/ fare elementary
pieces of evidence that link aspects of what we observe ! with a

category " that we want to predict

¥ A feature is a function with a bounded real value:f: C! D! |

A Belief: to create a data partition



Features
¥ In NLP uses, usually a feature specifies

1. anindicator function —a yes/no boolean matching function — of
properties of the input and

2. aparticular class

fi(c,g" [! (d)#c=c]

¥ Each feature picks out a data subset and suggests a label for it



Example features

¥ fl(C’ CD !
¥f(c,d"
¥ fy(c, 0"

[c=LOCATION # w_, = ApA¥t isCapitalize@w)]
[c = LOCATION # hasAccentedLatinChew)]

[c = DRUG # ends(v, AQAY

Q\rcadia @g Za@ saw Sue

¥ Models will assign to each feature a 0,&12'3
¥ A positive weight votes that this configuration is likely correct

¥ A negative weight votes that this configuration is likely incorrect



Feature-Based Models

¥ The decision about a data point is based only on the
features active at that point.

Data Data Data
BUSINESS: Stocks ... to restructure DT J] NN ...
hit a yearly low ... bank:MONEY debt. The previous fall ...
Label: BUSINESS Label: MONEY Label: NN
Features Features Features
{..., stocks, hit, a, {..., w,=restructure, {w=fall, t ;=] w.
yearly, low, ...} w,,=debt, ...} ,=previous}
Text Word-Sense POS Tagging

Categorization Disambiguation



Example: Text Categorization

(Zhang and Oles 2001)

¥ Features are presence of each word in a document and the document class
(they do feature selection to use reliable indicator words)

¥ Tests on classic Reuters data set (and others)
¥ Naive Bayes: 77.0% F,
¥ Linear regression: 86.0%
¥ Logistic regression: 86.4%
¥ Support vector machine: 86.5%

¥ Paper emphasizes the importance of .,1-*).&4)'&%#smoothing) for successful
use of discriminative methods (not used in much early NLP/IR work)



Other Maxent Classifier Examples

¥ You can use a maxent classifier whenever you want to assign data points to
one of a number of classes:

¥ Sentence boundary detection (Mikheev 2000)
¥ |s a period end of sentence or abbreviation?
¥ Sentiment analysis (Pang and Lee 2002)
¥ Word unigrams, bigrams, POS counts, ...
¥ PP attachment (Ratnaparkhi 1998)
¥ Attach to verb or noun? Features of head noun, preposition, etc.
¥ Parsing decisions in general (Ratnaparkhi 1997; Johnson et al. 1999, etc.)



Discriminative Model
Features

Making features from text for
discriminative NLP models



Feature-based Linear
Classifiers

How to put features into a
classifier



Feature-Based Linear Classifiers

¥ Linear classifiers at classification time:

¥ Linear function from feature sets {f} to classes {c}.
¥ Assign a weight $ to each feature f..

¥ We consider each class for an observed datum d

¥ For a pair (c,d), features vote with their weights:

¥ vote(c) =%&f.(c,d)

in QuZbec in QuZbec in QuZbec

¥ Choose the class c which maximizes %&f,(c,d)



Feature-Based Linear Classifiers

¥ Linear classifiers at classification time:

¥ Linear function from feature sets {f} to classes {c}.
¥ Assign a weight $ to each feature f..

¥ We consider each class for an observed datum d

¥ For a pair (c,d), features vote with their weights:

¥ vote(c) =%&f.(c,d)

PERSON 7 o ~TOCATIONy » 0.3 DRUG
in QuZbec "~ \in QuZbec ' in QuZbec

¥ Choose the class c which maximizes %#f,(c,d) = LOCATION




Feature-Based Linear Classifiers

There are many ways to chose weights for features

With different loss functions as the optimization goal

¥ Perceptron: find a currently misclassified example, and
nudge weights in the direction of its correct classification

¥ Margin-based methods (Support Vector Machines)



Feature-Based Linear Classifiers

¥ Exponential (log-linear, maxent, logistic, Gibbs) models:
¥ Make a probabilistic model from the linear combination %f.(c,d)

eXp! " f.(c,d) «— Makes votes positive

P(c|d,!)=
' eXp! fi(c',d) «— Normalizes votes
c' [
¥ P( |&#5-67," ) = e1-8¢706/(e1-8¢70-6 + €03 + g0) = 0.586
¥ P( |&#5-67," ) = 03 /(e1-8e06 + 03 + 0) = 0.238
¥ P( |&#5-67," ) = €9 /(e1-8e 06 + €03 + €9) = 0.176

¥ The weights are the parameters of the probability
model, combined via a “soft max” function



Aside: logistic regression

¥ Maxent models in NLP are essentially the same as multiclass
logistic regression models in statistics (or machine learning)

¥ The key role of feature functions in NLP and in this presentation

¥ The features are more general, with f also being a function of the class

21



Quiz Question

¥ Assuming exactly the same set up (3 class decision: LOCATION,
PERSON, or DRUG,; 3 features as before, maxent), what are:

¥ P( | 789%6.8) =
¥ P( | 78966.8) =
¥ P( | 78966.8) =

¥ 1.8 fi(c,d" [c=LOCATION # w_, = ApA¥ isCapitalize@w)]
¥ -0.6 fy(c,d" [c=LOCATION # hasAccentedLatinChew)]
¥ 0.3 fy(c,0" [c=DRUG# ends{, AAY

expl " f(c,d
P(c]d.!) = p.l fi(c,d)
. | expl " f(cd)



Feature-based Linear
Classifiers

How to put features into a
classifier



Building a Maxent
Model

The nuts and bolts



Building a Maxent Model

¥ We define features (indicator functions) over data points

¥ Features represent sets of data points which are distinctive enough to
deserve model parameters.

¥ Words, but also “word contains number”, “word ends with &#1, etc.

¥ We will simply encode each ! feature as a unique String (index)
¥ A datum will give rise to a set of Strings: the active ! features
¥ Each feature fi(c, d " [! (d)# c = ¢] gets a real number weight

¥ We concentrate on! features but the math uses i indices of f;



Building a Maxent Model

¥ Features are often added during model development to target errors
¥ Often, the easiest thing to think of are features that mark bad combinations

¥ Then, for any given feature weights, we want to be able to calculate:
¥ Data conditional likelihood
¥ Derivative of the likelihood wrt each feature weight
¥ Uses expectations of each feature according to the model

¥ We can then find the optimum feature weights (discussed later).



Building a Maxent
Model

The nuts and bolts



Naive Bayes vs.
Maxent models

Generative vs. Discriminative
models: The problem of
overcounting evidence



Text classification: Asia or Europe

Training Data

Monaco Monaco Monaco Monaco
Monaco Monaco Egrr]lg 5%?]%00 i :20“3 Eong
: ICTIONS:
NB Model NB FACTORS PREDICTIONS
¥ P(A)=P(E)= | P(AH,K,M) =
@ o PMIA)- | P(EH,KM) =
¥ P(MJE)=
(OGO | 4 = om -
¥ P(H|E)=PK|E)= I P(E|H,K,M) =




Naive Bayes vs. Maxent Models

¥ Naive Bayes models multi-count correlated evidence

¥ Each feature is multiplied in, even when you have multiple features telling
you the same thing

¥ Maximum Entropy models (pretty much) solve this problem

¥ As we will see, this is done by weighting features so that model
expectations match the observed (empirical) expectations



Naive Bayes vs.
Maxent models

Generative vs. Discriminative
models: The problem of
overcounting evidence



Maxent Models and
Discriminative
Estimation

Maximizing the likelihood



Feature Expectations

¥ We will crucially make use of two ,;<,"")'&%#/
¥ actual or predicted counts of a feature firing:

¥ Empirical count (expectation) of a feature: ~ Goal: well fit the data

empiricalE(f) =1 f.(c,d)

(c,d)" observedC,D)
¥ Model expectation of a feature:

E(f)=1 P(c,d) f;(c,d)

(c,d)' (C,D)



Exponential Model Likelihood

¥ Maximum (Conditional) Likelihood Models :

¥ Given a model form, choose values of parameters to maximize the
(conditional) likelihood of the data.

expl " fi(c,d)

logP(C|D,#) = | logP(c|d,#= 1| log '
(c,d)" (C.D) (c.d)" (C.D) | expl " f(c',d)

Cc |




The Likelihood Value

¥ The (log) conditional likelihood of iid data (=,>)
according to maxent model is a function of the
data and the parameters $:

logP(C|D,$)=log " P(c|d,$)= | logP(c|d,$)

(c,d#(C,D) (c,d#(C,D)
¥ |f there aren’t many values of ", it’s easy to
calculate: expl " f(c,d)

logP(C|D,#)= | log |
(c,d)" (C,D) | expl " f(c',d)

c



The Likelihood Value

¥ We can separate this into two components:

ogP(C|D,7)= | logexp! #f(cd): | logl expl #f(c,d)

(c,d)'(C,D) [ (c,d)'(C,D) ¢

logP(C|D,!)=N(/)1 M(!)

¥ The derivative is the difference between the
derivatives of each component



The Derivative I: Numerator

" # logexp#f ! fi(cd) v # #11f(d)

"N(/) __ (cd)$(C.D) _  (cd)$(C.D) |

"I_ "I_ "!i
" "

# %1 (c,d)
. i
(c.d)" (C.D) #$

= | fi(cd)

(c,d)' (C,D)

Derivative of the numerator is: the empirical count(+{9)



The Derivative Il: Denominator
H# log# exp#t !, f(c',d)

"M (I) — (c,d)$(C,D) c' i
n !i " !i
1 #1 expl $f(c'.d)
= | c i
(cay €.0) | " exp!l $f(c".d) #$,
expl $f(c,d)#l $f(c,d)

1
= I | i
(c.d)" (C.D) !" expl $fi(c".d) ¢ 1 #$
expft !, f.(c',d) "H I.f(c,d)

= H# #H ' - .
cdsc.o) o H eXp# I fi(c,d) !

= | P(c'|d,#) f.(c',d) = predicted count(+{%®)

(c,d)'(C,D) c



The Derivative Il
logP(C|D,") _

> actualcoun( f.,C) ! predictedcoun(f.,/)
[
¥ The optimum parameters are the ones for which each feature’s
predicted expectation equals its empirical expectation. The optimum

distribution is:
¥ Always unique (but parameters may not be unique)

¥ Always exists (if feature counts are from actual data).

¥ These models are also called maximum entropy models because we
find the model having maximum entropy and satisfying the

constraints: Ep(fj) = E]S(fj)’! J



Finding the optimal parameters

¥ We want to choose parameters A, A,, A, ... that maximize the
conditional log-likelihood of the training data

CLogLik(D) =1 logP(c |d.)

1=1

¥ To be able to do that, we’ve worked out how to calculate the
function value and its partial derivatives (its gradient)



A likelihood surface

‘\\\\ i \\ P

\ D N
\\\\ \_




Finding the optimal parameters

¥ Use your favorite numerical optimization package....
¥ Commonly, you minimize the negative of =?%1?&@
Gradient descent (GD); Stochastic gradient descent (SGD)

2. lterative proportional fitting methods: Generalized Iterative Scaling
(GIS) and Improved lterative Scaling (11S)

3. Conjugate gradient (CG), perhaps with preconditioning

Quasi-Newton methods — limited memory variable metric (LMVM)
methods, in particular, L-BFGS
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Gradient Descent (GD)

Gradient ascent algorithm: iterate until change < ¢

wd™ w40 Yl - PO =1, W]
J

Fori=1,...,d,

wgt-l_l) — wz-(t) + an‘Z[yg —P(Y) =1/,
J

repeat

(t
\"

)




Maxent Models and
Discriminative
Estimation

Maximizing the likelihood



Feature Sparsity
Regularization

Combating overfitting



Smoothing: Issues of Scale

¥ Lots of features:
¥ NLP maxent models can have well over a million features.
¥ Even storing a single array of parameter values can have a substantial memory cost.

¥ Lots of sparsity:
¥ Overfitting very easy — we need smoothing!
¥ Many features seen in training will never occur again at test time.

¥ Optimization problems:

¥ Feature weights can be infinite, and iterative solvers can take a long time to get to
those infinities.



Smoothing/Priors/ Regularization

e Combating over fitting

* |Intuition: don’t let the weights get very large

wMLE = argmax,, log P(y1,...,¥d|T1, ..., Tq;w)

v
argmax,, log P(y1,...,Yd|T1,...,%q;w) — 5210@2
i=1



Standard vs. Regularized Updates

wi w4 Sl — P(YT =1 | %, w))
J

wi(t_l_l) — w,L-(t)—I—n {)\wi(t) -+ Z:c;z [yj — P(Yj = 1| Xj,v%]}
J
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Feature Sparsity
Regularization

Combating overfitting



Batch vs. Online
Learning

GD vs. SGD



Stochastic Gradient Decent (SGD)

Batch vs. Online learning:

wi(t—l—l) - wi(t)_|_77 {)\wi(t) 4+ ng[yj — Py =1 Xj,VSB]}
J

7 1

WD o ® o n, {_)\wzgt) n 5’%@ [y(t) _P(Y = HX(t)’W(t))]}
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Batch vs. Online
Learning

GD vs. SGD



Perceptron

Another Online Learning
algorithem
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Perceptron Algorithm

e Algorithm is Very similar to logistic regression
* Not exactly computing gradients

Initalize weight vector w =0
Loop for K iterations
Loop For all training examples x_i
if sign(w * x_i) =y i
w +=(y_i - sign(w * x_i)) * x_i




MaxEnt v.s Perceptron

¥ Perceptron doesn’t always make updates
¥ Probabilities v.s scores
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Regularization in the Perceptron Algorithm

¥ No gradient computed, so can’t directly include a regularizer in
an object function.

¥ Instead run different numbers of iterations

¥ Use parameter averaging, for instance, average of all
parameters after seeing each data point
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