Discriminative Estimation (Maxent models and perceptron)

Generative vs. Discriminative models

Many slides are adapted from slides by Christopher Manning and perceptron slides by Alan Ritter

Introduction

- So far we've looked at "generative models"
 - Naive Bayes
- But there is now much use of conditional or discriminative probabilistic models in NLP, Speech, IR (and ML generally)
- Because:
 - They give high accuracy performance
 - They make it easy to incorporate lots of linguistically important features
 - They allow automatic building of language independent, retargetable NLP modules

Joint vs. Conditional Models

- We have some data {(*d*, *c*)} of paired observations
 d and hidden classes *c*.
- Joint (generative) models place probabilities over both observed data and the hidden stuff (generate the observed data from hidden stuff):
 - All the classic StatNLP models:
 - *n*-gram models, Naive Bayes classifiers, hidden Markov models, probabilistic context-free grammars, IBM machine translation alignment models

P(c.d)

Joint vs. Conditional Models

- Discriminative (conditional) models take the data as given, and put a probability over hidden structure given the data:
- P(c|d)

- Logistic regression, conditional loglinear or maximum entropy models, conditional random fields
- Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly probabilistic)

Bayes Net/Graphical Models

- Bayes net diagrams draw circles for random variables, and lines for direct dependencies
- Some variables are observed; some are hidden
- Each node is a little classifier (conditional probability table) based on incoming arcs

Naive Bayes

 d_1

Generative

Discriminative

Logistic Regression

Conditional vs. Joint Likelihood

- A *joint* model gives probabilities P(*d*,*c*) and tries to maximize this joint likelihood.
 - It turns out to be trivial to choose weights: just relative frequencies.
- A *conditional* model gives probabilities P(*c* | *d*). It takes the data as given and models only the conditional probability of the class.
 - We seek to maximize conditional likelihood.
 - Harder to do (as we'll see...)
 - More closely related to classification error.

Maxent Models and Discriminative Estimation

Generative vs. Discriminative models

Discriminative Model Features

Making features from text for discriminative NLP models

Features

- In these slides and most maxent work: *features f* are elementary pieces of evidence that link aspects of what we observe *d* with a category *c* that we want to predict
- A feature is a function with a bounded real value: $f: C \times D \rightarrow \mathbb{R}$

A Belief: to create a data partition

Features

- In NLP uses, usually a feature specifies
 - an indicator function a yes/no boolean matching function of properties of the input and
 - 2. a particular class

$$f_i(c, d) \equiv [\Phi(d) \land c = c_j] \qquad \text{[Value is 0 or 1]}$$

• Each feature picks out a data subset and suggests a label for it

Example features

- $f_1(c, d) \equiv [c = \text{LOCATION} \land w_{-1} = \text{``in''} \land \text{isCapitalized}(w)]$
- $f_2(c, d) \equiv [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)]$
- $f_3(c, d) \equiv [c = \text{DRUG} \land \text{ends}(w, \text{``c''})]$

- Models will assign to each feature a *weight:*
 - A positive weight votes that this configuration is likely correct
 - A negative weight votes that this configuration is likely incorrect

Feature-Based Models

• The decision about a data point is based only on the features active at that point.

Data Data Data **BUSINESS:** Stocks ... to restructure NN ... DT hit a yearly low ... bank:MONEY debt. The previous fall ... Label: BUSINESS Label: MONEY Label: NN Features Features Features {..., w_{-1} =restructure, {..., stocks, hit, a, { $w=fall, t_1=JJ w_1$ $w_{+1} = \text{debt}, ...\}$ yearly, low, ...} ₁=previous} Word-Sense Text POS Tagging Disambiguation Categorization

Example: Text Categorization

(Zhang and Oles 2001)

- Features are presence of each word in a document and the document class (they do feature selection to use reliable indicator words)
- Tests on classic Reuters data set (and others)
 - Naïve Bayes: 77.0% F₁
 - Linear regression: 86.0%
 - Logistic regression: 86.4%
 - Support vector machine: 86.5%
- Paper emphasizes the importance of *regularization* (smoothing) for successful use of discriminative methods (not used in much early NLP/IR work)

Other Maxent Classifier Examples

- You can use a maxent classifier whenever you want to assign data points to one of a number of classes:
 - Sentence boundary detection (Mikheev 2000)
 - Is a period end of sentence or abbreviation?
 - Sentiment analysis (Pang and Lee 2002)
 - Word unigrams, bigrams, POS counts, ...
 - PP attachment (Ratnaparkhi 1998)
 - Attach to verb or noun? Features of head noun, preposition, etc.
 - Parsing decisions in general (Ratnaparkhi 1997; Johnson et al. 1999, etc.)

Discriminative Model Features

Making features from text for discriminative NLP models

How to put features into a classifier

- Linear classifiers at classification time:
 - Linear function from feature sets $\{f_i\}$ to classes $\{c\}$.
 - Assign a weight λ_i to each feature f_i .
 - We consider each class for an observed datum *d*
 - For a pair (*c*,*d*), features vote with their weights:
 - vote(c) = $\Sigma \lambda_i f_i(c,d)$

PERSON	LOCATION
in Québec	in Québec

DRUG in Québec

• Choose the class *c* which maximizes $\sum \lambda_i f_i(c,d)$

- Linear classifiers at classification time:
 - Linear function from feature sets $\{f_i\}$ to classes $\{c\}$.
 - Assign a weight λ_i to each feature f_i .
 - We consider each class for an observed datum *d*
 - For a pair (*c*,*d*), features vote with their weights:
 - vote(c) = $\Sigma \lambda_i f_i(c,d)$

• Choose the class c which maximizes $\sum \lambda_i f_i(c,d) = \text{LOCATION}$

There are many ways to chose weights for features With different loss functions as the optimization goal

- Perceptron: find a currently misclassified example, and nudge weights in the direction of its correct classification
- Margin-based methods (Support Vector Machines)

- Exponential (log-linear, maxent, logistic, Gibbs) models:
 - Make a probabilistic model from the linear combination $\Sigma \lambda_i f_i(c,d)$

$$P(c \mid d, \lambda) = \frac{\exp \sum_{i} \lambda_{i} f_{i}(c, d)}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c', d)} \leftarrow \frac{\text{Makes votes positive}}{\text{Normalizes votes}}$$

- $P(\text{LOCATION}|in Québec) = e^{1.8}e^{-0.6}/(e^{1.8}e^{-0.6} + e^{0.3} + e^{0}) = 0.586$
- $P(DRUG|in Québec) = e^{0.3} / (e^{1.8}e^{-0.6} + e^{0.3} + e^{0}) = 0.238$
- $P(PERSON|in Québec) = e^0 / (e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.176$
- The weights are the parameters of the probability model, combined via a "soft max" function

Aside: logistic regression

- Maxent models in NLP are essentially the same as multiclass logistic regression models in statistics (or machine learning)
 - The key role of feature functions in NLP and in this presentation
 - The features are more general, with *f* also being a function of the class

Quiz Question

 Assuming exactly the same set up (3 class decision: LOCATION, PERSON, or DRUG; 3 features as before, maxent), what are:

 $P(c \mid d, \lambda) = \frac{\exp \sum \lambda_i f_i(c, d)}{\sum \exp^i \sum \lambda_i f_i(c', d)}$

- P(PERSON | by Goéric) =
- P(LOCATION | by Goéric) =
- P(DRUG | by Goéric) =
- 1.8 $f_1(c, d) \equiv [c = \text{LOCATION} \land w_{-1} = \text{``in''} \land \text{isCapitalized}(w)]$
- -0.6 $f_2(c, d) = [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)]$
- 0.3 $f_3(c, d) = [c = \text{DRUG} \land \text{ends}(w, \text{``c''})]$

bv Goéric

How to put features into a classifier

Building a Maxent Model

The nuts and bolts

Building a Maxent Model

- We define features (indicator functions) over data points
 - Features represent sets of data points which are distinctive enough to deserve model parameters.
 - Words, but also "word contains number", "word ends with ing", etc.
- We will simply encode each Φ feature as a unique String (index)
 - A datum will give rise to a set of Strings: the active Φ features
 - Each feature $f_i(c, d) \equiv [\Phi(d) \land c = c_j]$ gets a real number weight
- We concentrate on Φ features but the math uses *i* indices of f_i

Building a Maxent Model

- Features are often added during model development to target errors
 - Often, the easiest thing to think of are features that mark bad combinations
- Then, for any given feature weights, we want to be able to calculate:
 - Data conditional likelihood
 - Derivative of the likelihood wrt each feature weight
 - Uses expectations of each feature according to the model
- We can then find the optimum feature weights (discussed later).

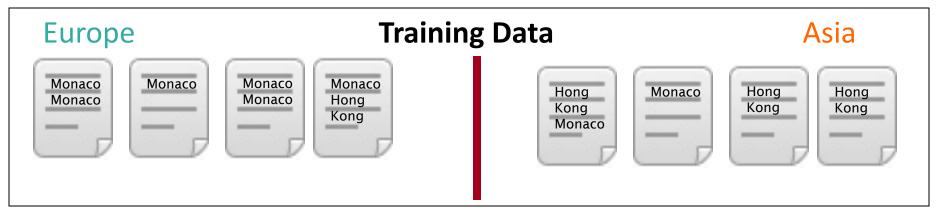
Building a Maxent Model

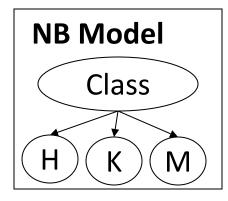
The nuts and bolts

Naive Bayes vs. Maxent models

Generative vs. Discriminative models: The problem of overcounting evidence

Text classification: Asia or Europe





NB FACTORS:

- P(A) = P(E) =
- P(M|A) =
- P(M|E) =
- P(H|A) = P(K|A) =
- P(H|E) = PK|E) =

PREDICTIONS:

- P(A,H,K,M) =
- P(E,H,K,M) =
- P(A|H,K,M) =
- P(E|H,K,M) =

Naive Bayes vs. Maxent Models

- Naive Bayes models multi-count correlated evidence
 - Each feature is multiplied in, even when you have multiple features telling you the same thing
- Maximum Entropy models (pretty much) solve this problem
 - As we will see, this is done by weighting features so that model expectations match the observed (empirical) expectations

Naive Bayes vs. Maxent models

Generative vs. Discriminative models: The problem of overcounting evidence

Maxent Models and Discriminative Estimation

Maximizing the likelihood

Feature Expectations

- We will crucially make use of two *expectations*
 - actual or predicted counts of a feature firing:
 - Empirical count (expectation) of a feature: Goal: well fit the data empirical $E(f_i) = \sum_{(c,d) \in \text{observed}(C,D)} f_i(c,d)$
 - Model expectation of a feature:

$$E(f_i) = \sum_{(c,d) \in (C,D)} P(c,d) f_i(c,d)$$

Exponential Model Likelihood

- Maximum (Conditional) Likelihood Models :
 - Given a model form, choose values of parameters to maximize the (conditional) likelihood of the data.

$$\log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} P(c \mid d, \lambda) = \sum_{(c,d) \in (C,D)} \log \frac{\exp \sum_{i} \lambda_{i} f_{i}(c,d)}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c',d)}$$

The Likelihood Value

The (log) conditional likelihood of iid data (C,D) according to maxent model is a function of the data and the parameters λ:

$$\log P(C \mid D, \lambda) = \log \prod_{(c,d) \in (C,D)} P(c \mid d, \lambda) = \sum_{(c,d) \in (C,D)} \log P(c \mid d, \lambda)$$

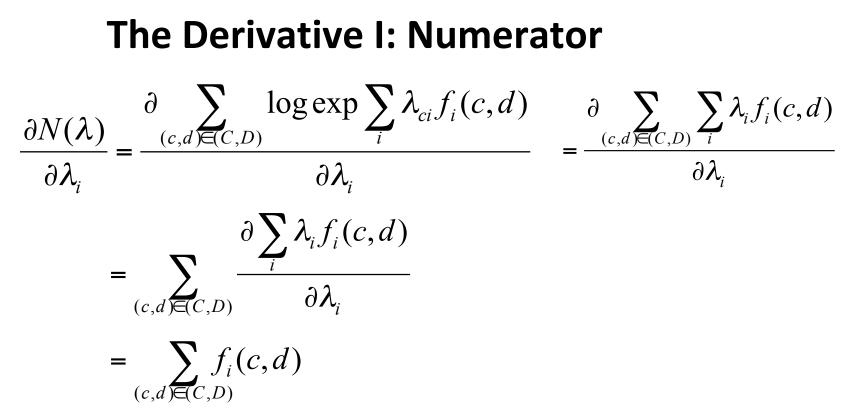
• If there aren't many values of *c*, it's easy to calculate: $\log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} \log \frac{\exp \sum_{i} \lambda_{i} f_{i}(c,d)}{\sum_{i} \exp \sum_{i} \lambda_{i} f_{i}(c',d)}$

The Likelihood Value

• We can separate this into two components:

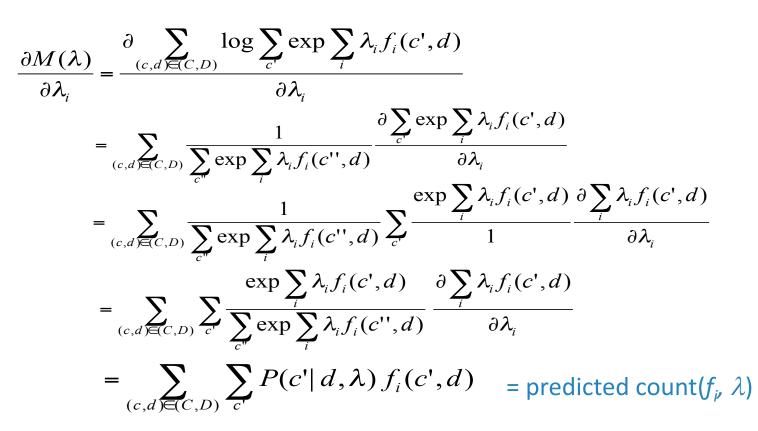
$$\log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} \log \exp \sum_{i} \lambda_{i} f_{i}(c,d) - \sum_{(c,d) \in (C,D)} \log \sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c',d)$$
$$\log P(C \mid D, \lambda) = N(\lambda) - M(\lambda)$$

• The derivative is the difference between the derivatives of each component



Derivative of the numerator is: the empirical count(f_{ν} c)

The Derivative II: Denominator



The Derivative III

$\frac{\partial \log P(C \mid D, \lambda)}{\partial \lambda_i} = \operatorname{actual count}(f_i, C) - \operatorname{predicted count}(f_i, \lambda)$

- The optimum parameters are the ones for which each feature's predicted expectation equals its empirical expectation. The optimum distribution is:
 - Always unique (but parameters may not be unique)
 - Always exists (if feature counts are from actual data).
- These models are also called maximum entropy models because we find the model having maximum entropy and satisfying the constraints: $E_p(f_i) = E_{\widetilde{p}}(f_i), \forall j$

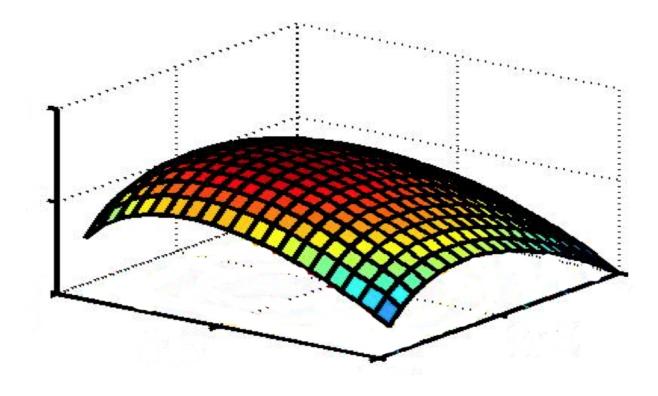
Finding the optimal parameters

• We want to choose parameters λ_1 , λ_2 , λ_3 , ... that maximize the conditional log-likelihood of the training data

$$CLogLik(D) = \sum_{i=1}^{n} \log P(c_i \mid d_i)$$

• To be able to do that, we've worked out how to calculate the function value and its partial derivatives (its gradient)

A likelihood surface



Finding the optimal parameters

- Use your favorite numerical optimization package....
 - Commonly, you **minimize** the negative of *CLogLik*
 - 1. Gradient descent (GD); Stochastic gradient descent (SGD)
 - Iterative proportional fitting methods: Generalized Iterative Scaling (GIS) and Improved Iterative Scaling (IIS)
 - 3. Conjugate gradient (CG), perhaps with preconditioning
 - 4. Quasi-Newton methods limited memory variable metric (LMVM) methods, in particular, L-BFGS

Gradient Descent (GD)

Gradient ascent algorithm: iterate until change < ε

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

For
$$i = 1,...,d$$
,
 $w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$

repeat

Maxent Models and Discriminative Estimation

Maximizing the likelihood

Feature Sparsity Regularization

Combating overfitting

Smoothing: Issues of Scale

- Lots of features:
 - NLP maxent models can have well over a million features.
 - Even storing a single array of parameter values can have a substantial memory cost.
- Lots of sparsity:
 - Overfitting very easy we need smoothing!
 - Many features seen in training will never occur again at test time.
- Optimization problems:
 - Feature weights can be infinite, and iterative solvers can take a long time to get to those infinities.

Smoothing/Priors/ Regularization

Combating over fitting

• Intuition: don't let the weights get very large

 $w_{\text{MLE}} = \operatorname{argmax}_{w} \log P(y_1, \dots, y_d | x_1, \dots, x_d; w)$

$$\operatorname{argmax}_{w} \log P(y_1, \dots, y_d | x_1, \dots, x_d; w) - \delta \sum_{i=1}^{V} w_i^2$$

Standard vs. Regularized Updates

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

Feature Sparsity Regularization

Combating overfitting

Batch vs. Online Learning

GD vs. SGD

Stochastic Gradient Decent (SGD)

Batch vs. Online learning:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1 | \mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\}$$

Batch vs. Online Learning

GD vs. SGD

Perceptron

Another Online Learning algorithem

Perceptron Algorithm

- Algorithm is Very similar to logistic regression
- Not exactly computing gradients

```
Initalize weight vector w = 0
Loop for K iterations
Loop For all training examples x_i
if sign(w * x_i) != y_i
w += (y_i - sign(w * x_i)) * x_i
```

MaxEnt v.s Perceptron

- Perceptron doesn't always make updates
- Probabilities v.s scores

Regularization in the Perceptron Algorithm

- No gradient computed, so can't directly include a regularizer in an object function.
- Instead run different numbers of iterations
- Use parameter averaging, for instance, average of all parameters after seeing each data point