• Hidden Markov Models (HMM)

Many slides from Michael Collins
Overview and HMMs

- The Tagging Problem

- Generative models, and the noisy-channel model, for supervised learning

- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
Part-of-Speech Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:
Profits/N soared/V at/P Boeing/N Co./N ,/ easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/ as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./

N = Noun
V = Verb
P = Preposition
Adv = Adverb
Adj = Adjective
...
INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts on [Location Wall Street], as their CEO [Person Alan Mulally] announced first quarter results.
Named Entity Extraction as Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:
Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
...
Our Goal

Training set:

1. Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov.

2. Mr. Vinken is chairman of Elsevier, the Dutch publishing group.

3. Rudolph Agnew, 55 years old and chairman of Consolidated Gold Fields, was named a nonexecutive director of this British industrial conglomerate.

... 38,219 It is also pulling 20 people out of Puerto Rico, who were helping Hurricane victims, and sending them to San Francisco instead.

- From the training set, induce a function/algorithm that maps new sentences to their tag sequences.
Two Types of Constraints

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB capital/NN ./.

- “Local”: e.g., can is more likely to be a modal verb MD rather than a noun NN
- “Contextual”: e.g., a noun is much more likely than a verb to follow a determiner
- Sometimes these preferences are in conflict:

 The trash can is in the garage
Overview

- The Tagging Problem

- Generative models, and the noisy-channel model, for supervised learning

- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
Supervised Learning Problems

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \ldots m$. Each $x^{(i)}$ is an input, each $y^{(i)}$ is a label.

- Task is to learn a function f mapping inputs x to labels $f(x)$.
Supervised Learning Problems

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \ldots m$. Each $x^{(i)}$ is an input, each $y^{(i)}$ is a label.

- Task is to learn a function f mapping inputs x to labels $f(x)$

- Conditional models:
 - Learn a distribution $p(y|x)$ from training examples
 - For any test input x, define $f(x) = \arg \max_y p(y|x)$
Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.

Generative models:
- Learn a distribution $p(x, y)$ from training examples
- Often we have $p(x, y) = p(y) p(x|y)$
- Note: we then have $p(y|x) = p(y) p(x|y) p(x)$ where $p(x) = \sum_y p(y) p(x|y)$
Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.

- Generative models:
 - Learn a distribution $p(x, y)$ from training examples
 - Often we have $p(x, y) = p(y)p(x|y)$
Generative Models

- We have training examples \(x^{(i)}, y^{(i)}\) for \(i = 1 \ldots m\). Task is to learn a function \(f\) mapping inputs \(x\) to labels \(f(x)\).

- Generative models:
 - Learn a distribution \(p(x, y)\) from training examples
 - Often we have \(p(x, y) = p(y)p(x|y)\)

- Note: we then have

\[
p(y|x) = \frac{p(y)p(x|y)}{p(x)}
\]

where \(p(x) = \sum_y p(y)p(x|y)\)
Decoding with Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.

- Generative models:
 - Learn a distribution $p(x, y)$ from training examples
 - Often we have $p(x, y) = p(y)p(x|y)$

- Output from the model:

 $$f(x) = \arg\max_y p(y|x)$$
 $$= \arg\max_y \frac{p(y)p(x|y)}{p(x)}$$
 $$= \arg\max_y p(y)p(x|y)$$
Overview

- The Tagging Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
Hidden Markov Models

- We have an input sentence $x = x_1, x_2, \ldots, x_n$
 (x_i is the i'th word in the sentence)

- We have a tag sequence $y = y_1, y_2, \ldots, y_n$
 (y_i is the i'th tag in the sentence)

- We’ll use an HMM to define
 $$p(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n)$$
 for any sentence $x_1 \ldots x_n$ and tag sequence $y_1 \ldots y_n$ of the same length.

- Then the most likely tag sequence for x is
 $$\arg \max_{y_1 \ldots y_n} p(x_1 \ldots x_n, y_1, y_2, \ldots, y_n)$$
Trigram Hidden Markov Models (Trigram HMMs)

For any sentence \(x_1 \ldots x_n \) where \(x_i \in \mathcal{V} \) for \(i = 1 \ldots n \), and any tag sequence \(y_1 \ldots y_{n+1} \) where \(y_i \in \mathcal{S} \) for \(i = 1 \ldots n \), and \(y_{n+1} = \text{STOP} \), the joint probability of the sentence and tag sequence is

\[
p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i|y_{i-2}, y_{i-1}) \prod_{i=1}^{n} e(x_i|y_i)
\]

where we have assumed that \(y_0 = y_{-1} = * \).

Parameters of the model:

- \(q(s|u, v) \) for any \(s \in \mathcal{S} \cup \{\text{STOP}\} \), \(u, v \in \mathcal{S} \cup \{*\} \)
- \(e(x|s) \) for any \(s \in \mathcal{S} \), \(x \in \mathcal{V} \)
An Example

If we have $n = 3$, $x_1 \ldots x_3$ equal to the sentence *the dog laughs*, and $y_1 \ldots y_4$ equal to the tag sequence $D \ N \ V \ \text{STOP}$, then

$$p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$

$$= q(D|*, *) \times q(N|*, D) \times q(V|D, N) \times q(\text{STOP}|N, V)$$

$$\times e(\text{the}|D) \times e(\text{dog}|N) \times e(\text{laughs}|V)$$

- STOP is a special tag that terminates the sequence
- We take $y_0 = y_{-1} = *$, where * is a special “padding” symbol
Why the Name?

\[
p(x_1 \ldots x_n, y_1 \ldots y_n) = q(\text{STOP}\mid y_{n-1}, y_n) \prod_{j=1}^{n} q(y_j \mid y_{j-2}, y_{j-1})
\]

\[
\times \prod_{j=1}^{n} e(x_j \mid y_j)
\]

Markov Chain

\[
x_j\text{'s are observed}
\]
Overview

- The Tagging Problem

- Generative models, and the noisy-channel model, for supervised learning

- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
Smoothed Estimation

\[q(V_t \mid D_T, J_J) = \lambda_1 \times \frac{\text{Count}(D_t, J_J, V_t)}{\text{Count}(D_t, J_J)} + \lambda_2 \times \frac{\text{Count}(J_J, V_t)}{\text{Count}(J_J)} + \lambda_3 \times \frac{\text{Count}(V_t)}{\text{Count}()} \]

\[\lambda_1 + \lambda_2 + \lambda_3 = 1, \quad \text{and for all } i, \lambda_i \geq 0 \]

\[e(\text{base} \mid V_t) = \frac{\text{Count}(V_t, \text{base})}{\text{Count}(V_t)} \]
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.
Dealing with Low-Frequency Words

A common method is as follows:

- **Step 1**: Split vocabulary into two sets
 - Frequent words = words occurring ≥ 5 times in training
 - Low frequency words = all other words

- **Step 2**: Map low frequency words into a small, finite set, depending on prefixes, suffixes etc.
Dealing with Low-Frequency Words: An Example

[Bikel et. al 1999] *(named-entity recognition)*

<table>
<thead>
<tr>
<th>Word class</th>
<th>Example</th>
<th>Intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>twoDigitNum</td>
<td>90</td>
<td>Two digit year</td>
</tr>
<tr>
<td>fourDigitNum</td>
<td>1990</td>
<td>Four digit year</td>
</tr>
<tr>
<td>containsDigitAndAlpha</td>
<td>A8956-67</td>
<td>Product code</td>
</tr>
<tr>
<td>containsDigitAndDash</td>
<td>09-96</td>
<td>Date</td>
</tr>
<tr>
<td>containsDigitAndSlash</td>
<td>11/9/89</td>
<td>Date</td>
</tr>
<tr>
<td>containsDigitAndComma</td>
<td>23,000.00</td>
<td>Monetary amount</td>
</tr>
<tr>
<td>containsDigitAndPeriod</td>
<td>1.00</td>
<td>Monetary amount, percentage</td>
</tr>
<tr>
<td>othernum</td>
<td>456789</td>
<td>Other number</td>
</tr>
<tr>
<td>allCaps</td>
<td>BBN</td>
<td>Organization</td>
</tr>
<tr>
<td>capPeriod</td>
<td>M.</td>
<td>Person name initial</td>
</tr>
<tr>
<td>firstWord</td>
<td>first word of sentence</td>
<td>no useful capitalization information</td>
</tr>
<tr>
<td>initCap</td>
<td>Sally</td>
<td>Capitalized word</td>
</tr>
<tr>
<td>lowercase</td>
<td>can</td>
<td>Uncapitalized word</td>
</tr>
<tr>
<td>other</td>
<td>,</td>
<td>Punctuation marks, all other words</td>
</tr>
</tbody>
</table>
Dealing with Low-Frequency Words: An Example

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily,/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their,/NA
CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA
results/NA ./NA

↓

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily,/NA
lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA
quarter/NA results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
...
• Inference and the Viterbi Algorithm
The Viterbi Algorithm

Problem: for an input $x_1 \ldots x_n$, find

$$\arg \max_{y_1 \ldots y_{n+1}} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$

where the $\arg \max$ is taken over all sequences $y_1 \ldots y_{n+1}$ such that $y_i \in S$ for $i = 1 \ldots n$, and $y_{n+1} = \text{STOP}$.

We assume that p again takes the form

$$p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i | y_{i-2}, y_{i-1}) \prod_{i=1}^{n} e(x_i | y_i)$$

Recall that we have assumed in this definition that $y_0 = y_{-1} = \ast$, and $y_{n+1} = \text{STOP}$.
Brute Force Search is Hopelessly Inefficient

Problem: for an input $x_1 \ldots x_n$, find

$$\arg \max_{y_1 \ldots y_{n+1}} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$

where the $\arg \max$ is taken over all sequences $y_1 \ldots y_{n+1}$ such that $y_i \in S$ for $i = 1 \ldots n$, and $y_{n+1} = \text{STOP}$.
The Viterbi Algorithm

- Define n to be the length of the sentence.
- Define S_k for $k = -1 \ldots n$ to be the set of possible tags at position k:
 \[
 S_{-1} = S_0 = \{ \ast \}

 S_k = S \text{ for } k \in \{1 \ldots n\}
 \]
- Define
 \[
 r(y_{-1}, y_0, y_1, \ldots, y_k) = \prod_{i=1}^{k} q(y_i | y_{i-2}, y_{i-1}) \prod_{i=1}^{k} e(x_i | y_i)
 \]
- Define a dynamic programming table
 \[
 \pi(k, u, v) = \text{ maximum probability of a tag sequence ending in tags } u, v \text{ at position } k
 \]
 that is,
 \[
 \pi(k, u, v) = \max_{(y_{-1}, y_0, y_1, \ldots, y_k) : y_{k-1} = u, y_k = v} r(y_{-1}, y_0, y_1 \ldots y_k)
 \]
A Recursive Definition

Base case:
\[\pi(0, *, *) = 1 \]

Recursive definition:
For any \(k \in \{1 \ldots n\} \), for any \(u \in S_{k-1} \) and \(v \in S_k \):
\[
\pi(k, u, v) = \max_{w \in S_{k-2}} \left(\pi(k - 1, w, u) \times q(v|w, u) \times e(x_k|v) \right)
\]
The Viterbi Algorithm

Input: a sentence $x_1 \ldots x_n$, parameters $q(s|u,v)$ and $e(x|s)$.

Initialization: Set $\pi(0,*,*) = 1$

Definition: $S_{-1} = S_0 = \{*\}$, $S_k = S$ for $k \in \{1 \ldots n\}$

Algorithm:

- For $k = 1 \ldots n,$
 - For $u \in S_{k-1}$, $v \in S_k$,
 $$\pi(k,u,v) = \max_{w \in S_{k-2}} \left(\pi(k-1,w,u) \times q(v|w,u) \times e(x_k|v) \right)$$
 - **Return** $\max_{u \in S_{n-1}, v \in S_n} \left(\pi(n,u,v) \times q(\text{STOP}|u,v) \right)$
The Viterbi Algorithm with Backpointers

Input: a sentence $x_1 \ldots x_n$, parameters $q(s|u,v)$ and $e(x|s)$.

Initialization: Set $\pi(0,*,*) = 1$

Definition: $S_{-1} = S_0 = \{\ast\}, S_k = S$ for $k \in \{1 \ldots n\}$

Algorithm:

- For $k = 1 \ldots n,$
 - For $u \in S_{k-1}, v \in S_k$,
 $$\pi(k,u,v) = \max_{w \in S_{k-2}} (\pi(k-1,w,u) \times q(v|w,u) \times e(x_k|v))$$
 $$bp(k,u,v) = \arg \max_{w \in S_{k-2}} (\pi(k-1,w,u) \times q(v|w,u) \times e(x_k|v))$$
 - Set $(y_{n-1},y_n) = \arg \max_{(u,v)} (\pi(n,u,v) \times q(\text{STOP}|u,v))$
 - For $k = (n-2) \ldots 1$, $y_k = bp(k+2,y_{k+1},y_{k+2})$
 - **Return** the tag sequence $y_1 \ldots y_n$
The Viterbi Algorithm: Running Time

- $O(n|S|^3)$ time to calculate $q(s|u,v) \times e(x_k|s)$ for all k, s, u, v.
- $n|S|^2$ entries in π to be filled in.
- $O(|S|)$ time to fill in one entry
- $\Rightarrow O(n|S|^3)$ time in total
A Simple Bi-gram Example:
(X, Y): P(X/Y),
POS tags for “bears fish” ?

• noun * .80 bears noun .02
• Verb * .10 bears verb .02
• STOP noun .50 fish verb .07
• STOP verb .50 fish noun .08
• noun verb .77
• verb noun .65
• noun noun .0001
• verb verb .0001
Answer

• bears: noun
• fish: verb
The **Forward Algorithm**

Input: a sentence $x_1 \ldots x_n$, parameters $q(s|u, v)$ and $e(x|s)$.

Initialization: Set $\pi(0, *, *) = 1$

Definition: $S_{-1} = S_0 = \{\ast\}$, $S_k = S$ for $k \in \{1 \ldots n\}$

Algorithm:

- For $k = 1 \ldots n$,
 - For $u \in S_{k-1}$, $v \in S_k$,
 - $\pi(k, u, v) = \text{Sum}_{w \in S_{k-2}} (\pi(k - 1, w, u) \times q(v|w, u) \times e(x_k|v))$

- Return $\text{Sum}_{u \in S_{n-1}, v \in S_n} (\pi(n, u, v) \times q(\text{STOP}|u, v))$
Pros and Cons

- Hidden Markov model taggers are very simple to train (just need to compile counts from the training corpus). If you already have a labeled training set, use forward-backward algorithms in the unsupervised setting.
- Perform relatively well (over 90% performance on named entity recognition).
- Main difficulty is modeling $e(word \mid tag)$

 can be very difficult if “words” are complex