Discourse, Pragmatics, Coreference Resolution

Many slides are adapted from Roger Levy, Chris Manning, Vincent Ng, Heeyoung Lee, Altaf Rahman
A pragmatic issue

• Just how are pronouns interpreted (resolved) in a discourse?

(1) Jane likes Mary.
(2) She often brings her flowers.
(3) She chats with the young woman for ages.
Centering theory

Grosz et al. 86

• Centering a key element of local discourse coherence

• A system of rules and constraints that govern:
 – the relationship between what the discourse is about and some of the linguistic choices made by discourse participants
 • choice of syntactic structure
 • type of referring expression (proper noun, definite or indefinite description, reflexive or personal pronoun, etc)

(Brennan, Friedman & Pollard 1987)
Centering theory

- Attempts to characterise the texts that can be considered coherent on the basis of the way discourse entities are introduced and discussed

- Attempts to predict which entities will be most salient at any given time

(Poesio et al 2000)
Main themes (1)

- Discourse is viewed dynamically
 - A sentence/utterance is a transition from an input state to an output state

- The *state*
 - determines which entities are under discussion: the *centers* of attention
 - represents the utterance’s anaphoric potential
 - captures the relative salience of various discourse entities
Main themes (2)

• The **transitions** (between states) are classified according to amount of change involved
 – Transitions involving only little change: **coherent discourse**
 – Transitions involving much change: **incoherent discourse**
Table 1. *Organization of the relation definitions*

<table>
<thead>
<tr>
<th>Circumstance</th>
<th>Antithesis and Concession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solutionhood</td>
<td>Antithesis</td>
</tr>
<tr>
<td>Elaboration</td>
<td>Concession</td>
</tr>
<tr>
<td>Background</td>
<td>Condition and Otherwise</td>
</tr>
<tr>
<td>Enablement and Motivation</td>
<td>Condition</td>
</tr>
<tr>
<td></td>
<td>Otherwise</td>
</tr>
<tr>
<td>Evidence and Justify</td>
<td>Interpretation and Evaluation</td>
</tr>
<tr>
<td></td>
<td>Interpretation</td>
</tr>
<tr>
<td></td>
<td>Evaluation</td>
</tr>
<tr>
<td>Relations of Cause</td>
<td>Restatement and Summary</td>
</tr>
<tr>
<td>Volitional Cause</td>
<td>Restatement</td>
</tr>
<tr>
<td>Non-Volitional Cause</td>
<td>Summary</td>
</tr>
<tr>
<td>Volitional Result</td>
<td>Other Relations</td>
</tr>
<tr>
<td>Non-Volitional Result</td>
<td>Sequence</td>
</tr>
<tr>
<td>Purpose</td>
<td>Contrast</td>
</tr>
</tbody>
</table>
1. Farmington police had to help control traffic recently when hundreds of people lined up to be among the first applying for jobs at the yet-to-open Marriott Hotel.

2. The hotel’s help-wanted announcement — for 300 openings — was a rare opportunity for many unemployed.

3. The people waiting in line carried a message, a refutation, of claims that the jobless could be employed if only they showed enough moxie.

4. Every rule has exceptions,

5. but the tragic and too-common tableaux of hundreds or even thousands of people snake-lining up for any task with a paycheck illustrates a lack of jobs,

6. not laziness.
Rhetorical Structure Theory
Mann and Thompson, 1988
Language as action: Speech Acts
Searle, 1975

- Assertives: committing the speaker to something’s being the case (swearing, concluding)
- Directives: attempt by the speaker to get the addressee to do something (asking, requesting)
- Commissives: committing the speaker to some future course of action (promising, planning)
- Expressives: expressing the psychological state of the speaker about a state of affairs (thanking, welcoming)
- Declarations: bring about a different state of the world due to the utterance, You’re fired.
What is Coreference Resolution?

– Identify all noun phrases (mentions) that refer to the same real world entity

Barack Obama nominated Hillary Rodham Clinton as his secretary of state on Monday. He chose her because she had foreign affairs experience as a former First Lady.
What is Coreference Resolution?

– Identify all noun phrases (mentions) that refer to the same real world entity

Barack Obama nominated Hillary Rodham Clinton as his secretary of state on Monday. He chose her because she had foreign affairs experience as a former First Lady.
What is Coreference Resolution?

– Identify all noun phrases (mentions) that refer to the same real world entity

Barack Obama nominated Hillary Rodham Clinton as his secretary of state on Monday. He chose her because she had foreign affairs experience.
What is Coreference Resolution?

– Identify all noun phrases (mentions) that refer to the same real world entity

Barack Obama nominated Hillary Rodham Clinton as his secretary of state on Monday. He chose her because she had foreign affairs experience as a former First Lady.
What is Coreference Resolution?

- Identify all noun phrases (mentions) that refer to the same real world entity

Barack Obama nominated Hillary Rodham Clinton as his secretary of state on Monday. He chose her because she had foreign affairs experience as a former First Lady.
A couple of years later, Vanaja met Akhila at the local park. Akhila’s son Prajwal was just two months younger than her son Akash, and they went to the same school. For the preschool play, Prajwal was chosen for the lead role of the naughty child Lord Krishna. Akash was to be a tree. She resigned herself to make Akash the best tree that anybody had ever seen. She bought him a brown T-shirt and brown trousers to represent the tree trunk. Then she made a large cardboard cutout of a tree’s foliage, with a circular opening in the middle for Akash’s face. She attached red balls to it to represent fruits. It truly was the nicest tree.

From The Star by Shruthi Rao, with some shortening.
Reference Resolution

- Noun phrases refer to entities in the world, many pairs of noun phrases co-refer, some nested inside others

 John Smith, CFO of Prime Corp. since 1986, saw his pay jump 20% to $1.3 million as the 57-year-old also became the financial services co.’s president.
Kinds of Reference

- Referring expressions
 - John Smith
 - President Smith
 - the president
 - the company’s new executive

- Free variables
 - Smith saw his pay increase

- Bound variables
 - The dancer hurt herself.

More common in newswire, generally harder in practice

More interesting grammatical constraints, more linguistic theory, easier in practice

“anaphora resolution”
Not all NPs are referring!

- *Every dancer* twisted *her knee.*
- *(No dancer* twisted *her knee.)*

- There are three NPs in each of these sentences; because the first one is non-referential, the other two aren’t either.
Two different things...

• Anaphora
 – Text
 – World

• (Co)Reference
 – Text
 – World
Supervised Machine Learning
Pronominal Anaphora Resolution

• Given a pronoun and an entity mentioned earlier, classify whether the pronoun refers to that entity or not given the surrounding context (yes/no)

Mr. Obama visited the city. The president talked about Milwaukee’s economy. He mentioned new jobs.

• Usually first filter out pleonastic pronouns like “It is raining.” (perhaps using hand-written rules)

• Use any classifier, obtain positive examples from training data, generate negative examples by pairing each pronoun with other (incorrect) entities

• This is naturally thought of as a binary classification (or ranking) task
Features for Pronominal Anaphora Resolution

• Constraints:
 – Number agreement
 • Singular pronouns (it/he/she/his/her/him) refer to singular entities and plural pronouns (we/they/us/them) refer to plural entities
 – Person agreement
 • He/she/they etc. must refer to a third person entity
 – Gender agreement
 • He → John; she → Mary; it → car
 • Jack gave Mary a gift. She was excited.
 – Certain syntactic constraints
 • John bought himself a new car. [himself → John]
 • John bought him a new car. [him can not be John]
Features for Pronominal Anaphora Resolution

• Preferences:
 – Recency: More recently mentioned entities are more likely to be referred to
 • John went to a movie. Jack went as well. He was not busy.
 – Grammatical Role: Entities in the subject position is more likely to be referred to than entities in the object position
 • John went to a movie with Jack. He was not busy.
 – Parallelism:
 • John went with Jack to a movie. Joe went with him to a bar.
Features for Pronominal Anaphora Resolution

• Preferences:
 – Verb Semantics: Certain verbs seem to bias whether the subsequent pronouns should be referring to their subjects or objects
 • John telephoned Bill. He lost the laptop.
 • John criticized Bill. He lost the laptop.
 – Selectional Restrictions: Restrictions because of semantics
 • John parked his car in the garage after driving it around for hours.

• Encode all these and maybe more as features
Machine learning models of coref

• Start with supervised data
 • positive examples that corefer
 • negative examples that don’t corefer
 – Note that it’s very skewed
 • The vast majority of mention pairs don’t corefer

• Usually learn some sort of discriminative model of phrases/clusters coreferring
 – Predict 1 for coreference, 0 for not coreferent
• But there is also work that builds clusters of coreferring expressions
 – E.g., generative models of clusters in (Haghighi & Klein 2007)
Kinds of Models

• Mention Pair models
 – Treat coreference chains as a collection of pairwise links
 – Make independent pairwise decisions and reconcile them in some way (e.g. clustering or greedy partitioning)
• Mention ranking models
 – Explicitly rank all candidate antecedents for a mention
• Entity-Mention models
 – A cleaner, but less studied, approach
 – Posit single underlying entities
 – Each mention links to a discourse entity [Pasula et al. 03], [Luo et al. 04]
Pairwise Features

<table>
<thead>
<tr>
<th>Category</th>
<th>Features</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td>exact_strm</td>
<td>1 if two mentions have the same spelling; 0 otherwise</td>
</tr>
<tr>
<td></td>
<td>left_subsm</td>
<td>1 if one mention is a left substring of the other; 0 otherwise</td>
</tr>
<tr>
<td></td>
<td>right_subsm</td>
<td>1 if one mention is a right substring of the other; 0 otherwise</td>
</tr>
<tr>
<td></td>
<td>acronym</td>
<td>1 if one mention is an acronym of the other; 0 otherwise</td>
</tr>
<tr>
<td></td>
<td>edit_dist</td>
<td>quantized editing distance between two mention strings</td>
</tr>
<tr>
<td></td>
<td>spell</td>
<td>pair of actual mention strings</td>
</tr>
<tr>
<td></td>
<td>ncd</td>
<td>number of different capitalized words in two mentions</td>
</tr>
<tr>
<td>Distance</td>
<td>token_dist</td>
<td>how many tokens two mentions are apart (quantized)</td>
</tr>
<tr>
<td></td>
<td>sent_dist</td>
<td>how many sentences two mentions are apart (quantized)</td>
</tr>
<tr>
<td></td>
<td>gap_dist</td>
<td>how many mentions in between the two mentions in question (quantized)</td>
</tr>
<tr>
<td>Syntax</td>
<td>POS_pair</td>
<td>POS-pair of two mention heads</td>
</tr>
<tr>
<td></td>
<td>apposition</td>
<td>1 if two mentions are appositive; 0 otherwise</td>
</tr>
<tr>
<td>Count</td>
<td>count</td>
<td>pair of (quantized) numbers, each counting how many times a mention</td>
</tr>
<tr>
<td></td>
<td></td>
<td>string is seen</td>
</tr>
<tr>
<td>Pronoun</td>
<td>gender</td>
<td>pair of attributes of {female, male, neutral, unknown}</td>
</tr>
<tr>
<td></td>
<td>number</td>
<td>pair of attributes of {singular, plural, unknown}</td>
</tr>
<tr>
<td></td>
<td>possessive</td>
<td>1 if a pronoun is possessive; 0 otherwise</td>
</tr>
<tr>
<td></td>
<td>reflexive</td>
<td>1 if a pronoun is reflexive; 0 otherwise</td>
</tr>
</tbody>
</table>

[Luo et al. 04]
Lee et al. (2010): Stanford deterministic coreference

- Cautious and incremental approach
- Multiple passes over text
- Precision of each pass is lesser than preceding ones
- Recall keeps increasing with each pass
- Decisions once made cannot be modified by later passes
- Rule-based ("unsupervised")
Approach: start with high precision clumpings

E.g.

Pepsi hopes to take Quaker oats to a whole new level. ... Pepsi says it expects to double Quaker's snack food growth rate. ... the deal gives Pepsi access to Quaker oats' Gatorade sport drink as well as

Exact String Match: A high precision feature
Entity-mention model: Clusters instead of mentions
Detailed Architecture

The system consists of seven passes (or sieves):
- Exact Match
- Precise Constructs (appositives, predicate nominatives, ...)
- Strict Head Matching
- Strict Head Matching – Variant 1
- Strict Head Matching – Variant 2
- Relaxed Head Matching
- Pronouns
Cumulative performance of passes

Graph showing the system's B3 Precision, Recall and F1 on ACE2004-DEV after each additional pass.
• B³ (B-CUBED) algorithm for evaluation
 – Precision & recall for entities in a reference chain
 – Precision: % of elements in a hypothesized reference chain that are in the true reference chain
 – Recall: % of elements in a true reference chain that are in the hypothesized reference chain
 – Overall precision & recall are the (weighted) average of per-chain precision & recall
 – Optimizing chain-chain pairings is a hard problem
 • In the computational NP-hard sense
 – Greedy matching is done in practice for evaluation
Evaluation

• B-CUBED algorithm for evaluation

Figure from Amigo et al 2009
Evaluation metrics

- MUC Score (Vilain et al., 1995)
 - Link based: Counts the number of common links and computes f-measure
- CEAF (Luo 2005); entity based
- BLANC (Recasens and Hovy 2011) Cluster RAND-index
- ...

All of them are sort of evaluating getting coreference links/clusters right and wrong, but the differences can be important.
CoNLL 2011 Shared task on coref

Official; Closed track; Predicted mentions

<table>
<thead>
<tr>
<th>System</th>
<th>MD</th>
<th>MUC</th>
<th>B-CUBED</th>
<th>CEAF$_m$</th>
<th>CEAF$_e$</th>
<th>BLANC</th>
<th>Official $\frac{F + F^2 + F^3}{3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>lee</td>
<td>70.70</td>
<td>59.57</td>
<td>68.31</td>
<td>56.37</td>
<td>45.48</td>
<td>73.02</td>
<td>57.79</td>
</tr>
<tr>
<td>sapena</td>
<td>43.20</td>
<td>59.55</td>
<td>67.09</td>
<td>53.51</td>
<td>41.32</td>
<td>71.10</td>
<td>55.99</td>
</tr>
<tr>
<td>chang</td>
<td>64.28</td>
<td>57.15</td>
<td>68.79</td>
<td>54.40</td>
<td>41.94</td>
<td>73.71</td>
<td>55.96</td>
</tr>
<tr>
<td>nugues</td>
<td>68.96</td>
<td>58.61</td>
<td>65.46</td>
<td>51.45</td>
<td>39.52</td>
<td>71.11</td>
<td>54.53</td>
</tr>
<tr>
<td>santos</td>
<td>65.45</td>
<td>56.65</td>
<td>65.66</td>
<td>49.51</td>
<td>37.91</td>
<td>69.46</td>
<td>53.41</td>
</tr>
<tr>
<td>song</td>
<td>67.26</td>
<td>59.95</td>
<td>63.23</td>
<td>46.29</td>
<td>35.96</td>
<td>61.47</td>
<td>53.05</td>
</tr>
<tr>
<td>stoyanov</td>
<td>67.78</td>
<td>58.43</td>
<td>61.44</td>
<td>46.08</td>
<td>35.28</td>
<td>60.28</td>
<td>51.92</td>
</tr>
<tr>
<td>sobha</td>
<td>64.23</td>
<td>50.48</td>
<td>64.00</td>
<td>49.48</td>
<td>41.23</td>
<td>63.28</td>
<td>51.90</td>
</tr>
<tr>
<td>kobdani</td>
<td>61.03</td>
<td>53.49</td>
<td>65.25</td>
<td>42.70</td>
<td>33.79</td>
<td>62.61</td>
<td>51.04</td>
</tr>
<tr>
<td>zhou</td>
<td>62.31</td>
<td>48.96</td>
<td>64.07</td>
<td>47.53</td>
<td>39.74</td>
<td>64.72</td>
<td>50.92</td>
</tr>
<tr>
<td>charton</td>
<td>64.30</td>
<td>52.45</td>
<td>62.10</td>
<td>46.22</td>
<td>36.54</td>
<td>64.20</td>
<td>50.36</td>
</tr>
<tr>
<td>yang</td>
<td>63.93</td>
<td>52.31</td>
<td>62.32</td>
<td>46.55</td>
<td>35.33</td>
<td>64.63</td>
<td>49.99</td>
</tr>
<tr>
<td>hao</td>
<td>64.30</td>
<td>54.47</td>
<td>61.01</td>
<td>45.07</td>
<td>32.67</td>
<td>65.35</td>
<td>49.38</td>
</tr>
<tr>
<td>xinxin</td>
<td>61.92</td>
<td>46.62</td>
<td>61.93</td>
<td>44.75</td>
<td>36.23</td>
<td>64.27</td>
<td>48.46</td>
</tr>
<tr>
<td>zhang</td>
<td>61.13</td>
<td>47.28</td>
<td>61.14</td>
<td>44.46</td>
<td>35.19</td>
<td>65.21</td>
<td>48.07</td>
</tr>
<tr>
<td>kummerfeld</td>
<td>62.72</td>
<td>42.70</td>
<td>60.29</td>
<td>45.35</td>
<td>38.32</td>
<td>59.91</td>
<td>47.10</td>
</tr>
<tr>
<td>zhekova</td>
<td>48.29</td>
<td>24.08</td>
<td>61.46</td>
<td>40.43</td>
<td>35.75</td>
<td>53.77</td>
<td>40.43</td>
</tr>
<tr>
<td>irwin</td>
<td>26.67</td>
<td>19.98</td>
<td>50.46</td>
<td>31.68</td>
<td>25.21</td>
<td>51.12</td>
<td>31.28</td>
</tr>
</tbody>
</table>
Remarks

• This simple deterministic approach gives state of the art performance!
• Easy insertion of new features or models
• The idea of “easy first” model has also had some popularity in other (ML-based) NLP systems
 — Easy first POS tagging and parsing

• It’s a flexible architecture, not an argument that ML is wrong
 • Pronoun resolution pass would be easiest place to reinsert an ML model??

Thursday, October 27, 16