Basic Text Processing

Regular Expressions

Word Tokenization

Word Normalization

Sentence Segmentation

Many slides adapted from slides by Dan Jurafsky
Basic Text Processing

Regular Expressions
Regular expressions

- A formal language for specifying text strings
- How can we search for any of these?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks
Regular Expressions: Disjunctions

- **Letters inside square brackets []**

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>[wW]oodchuck</td>
<td>Woodchuck, woodchuck</td>
</tr>
<tr>
<td>[1234567890]</td>
<td>Any digit</td>
</tr>
</tbody>
</table>

- **Ranges [A–Z]**

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Matches</th>
<th>the First Match in an example</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A–Z]</td>
<td>An upper case letter</td>
<td>Drenched Blossoms</td>
</tr>
<tr>
<td>[a–z]</td>
<td>A lower case letter</td>
<td>my beans were impatient</td>
</tr>
<tr>
<td>[0–9]</td>
<td>A single digit</td>
<td>Chapter 1: Down the Rabbit Hole</td>
</tr>
</tbody>
</table>
Regular Expressions: Negation in Disjunction

- **Negations** \([^Ss]\)
 - Carat means negation only when first in []

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Matches</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>[^A−Z]</td>
<td>Not an upper case letter</td>
<td>Oyfn pripetchik</td>
</tr>
<tr>
<td>[^Ss]</td>
<td>Neither ‘S’ nor ‘s’</td>
<td>I have no exquisite reason”</td>
</tr>
<tr>
<td>[^e^]</td>
<td>Neither e nor ^</td>
<td>Look here</td>
</tr>
<tr>
<td>a^b</td>
<td>The pattern a carat b</td>
<td>Look up a^b now</td>
</tr>
</tbody>
</table>
Regular Expressions: More Disjunction

- Woodchucks is another name for groundhog!
- The pipe | for disjunction

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>groundhog</td>
<td>woodchuck</td>
</tr>
<tr>
<td>yours</td>
<td>mine</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>[gG]roundhog</td>
<td>[Ww]oodchuck</td>
</tr>
</tbody>
</table>

Photo: D. Fletcher

Thursday, January 19, 17

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>colou?r</td>
<td>0 or 1 of previous char</td>
</tr>
<tr>
<td></td>
<td>color</td>
</tr>
<tr>
<td></td>
<td>colour</td>
</tr>
<tr>
<td>oo*h!</td>
<td>0 or more of previous char</td>
</tr>
<tr>
<td></td>
<td>oh! ooh! oooh! ooooh!</td>
</tr>
<tr>
<td>o+h!</td>
<td>1 or more of previous char</td>
</tr>
<tr>
<td></td>
<td>oh! ooh! oooh! ooooh!</td>
</tr>
<tr>
<td>baa+</td>
<td>any char</td>
</tr>
<tr>
<td></td>
<td>baa baaa baaaaa baaaaaa</td>
</tr>
<tr>
<td>beg.n</td>
<td>any char</td>
</tr>
<tr>
<td></td>
<td>begin begun begun begun beg3n</td>
</tr>
</tbody>
</table>

Stephen C Kleene
Kleene *, Kleene +

Thursday, January 19, 17
Regular Expressions: Anchors ^ $

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>^[A–Z]</td>
<td>Palo Alto</td>
</tr>
<tr>
<td>^[^A–Za–z]</td>
<td>1 "Hello"</td>
</tr>
<tr>
<td>.$</td>
<td>The end.</td>
</tr>
<tr>
<td>.$</td>
<td>The end? The end!</td>
</tr>
</tbody>
</table>
Example

- Find me all instances of the word “the” in a text.

 the
 Misses capitalized examples

 [tT]he
 Incorrectly returns other or theology

 [^a-zA-Z][tT]he[^a-zA-Z]
Errors

- The process we just went through was based on fixing two kinds of errors
 - Matching strings that we should not have matched (there, then, other)
 - False positives (Type I)
 - Not matching things that we should have matched (The)
 - False negatives (Type II)
Errors cont.

• In NLP we are always dealing with these kinds of errors.
• Reducing the error rate for an application often involves two antagonistic efforts:
 • Increasing accuracy or precision (minimizing false positives)
 • Increasing coverage or recall (minimizing false negatives).
Summary

• Regular expressions play a surprisingly large role
 • Sophisticated sequences of regular expressions are often the first model for any text processing task

• For many hard tasks, we use machine learning classifiers
 • But regular expressions are used as features in the classifiers
 • Can be very useful in capturing generalizations
Basic Text Processing

Regular Expressions
Basic Text Processing

Word tokenization
Text Normalization

• Every NLP task needs to do text normalization:
 1. Segmenting/tokenizing words in running text
 2. Normalizing word formats
 3. Segmenting sentences in running text
How many words?

- I do uh mainly business data processing
 - Fragments, filled pauses
- Seuss’s cat in the hat is different from other cats!
 - **Lemma**: same stem, part of speech, rough word sense
 - *cat* and *cats* = same lemma
 - **Wordform**: the full inflected surface form
 - *cat* and *cats* = different wordforms
How many words?

they lay back on the San Francisco grass and looked at the stars and their

- **Type**: an element of the vocabulary.
- **Token**: an instance of that type in running text.
- How many?
 - 15 tokens (or 14)
 - 13 types (or 12) (or 11?)
How many words?

\[N = \text{number of tokens} \]

\[V = \text{vocabulary} = \text{set of types} \]

\(|V| \) is the size of the vocabulary

| | Tokens = N | Types = |V| |
|------------------|------------------|---------|
| Switchboard phone conversations | 2.4 million | 20 thousand |
| Shakespeare | 884,000 | 31 thousand |
| Google N-grams | 1 trillion | 13 million |

Church and Gale (1990): \(|V| > O(N^{\frac{1}{2}}) \)
Assignment for you

Simple Tokenization in UNIX

- (Inspired by Ken Church’s UNIX for Poets.)
- Given a text file, output the word tokens and their frequencies

```
tr -sc 'A-Za-z' '
' < shakes.txt
| sort
| uniq -c
```

<table>
<thead>
<tr>
<th>1945</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>AARON</td>
</tr>
<tr>
<td>19</td>
<td>ABBESS</td>
</tr>
<tr>
<td>5</td>
<td>ABBOT</td>
</tr>
<tr>
<td></td>
<td>....</td>
</tr>
</tbody>
</table>

25	Aaron
6	Abate
1	Abates
5	Abbess
6	Abbey
3	Abbot

1945 A
72 AARON
19 ABBESS
5 ABBOT
... ...

Will likes to eat.
Will likes to babble.

1 babble
1 eat
2 likes
2 to
2 Will
Assignment for you

The first step: tokenizing

```
tr -sc 'A-Za-z' '
' < shakes.txt | head
```

(head: will print the first lines (10 by default) of its input. head -n NUM input)

THE
SONNETS
by
William
Shakespeare
From
fairest
creatures
Assignment for you

The second step: sorting

```
tr -sc 'A-Za-z' '\n' < shakes.txt | sort | head
```

A
A
A
A
A
A
A
A
A
A
...

Thursday, January 19, 17
Assignment for you

More counting

- Merging upper and lower case

  ```bash
  tr 'A-Z' 'a-z' < shakes.txt | tr –sc 'A-Za-z' '
' | sort | uniq –c
  ```

- Sorting the counts (-n: numerical value, -k: column, -r: reverse)

  ```bash
  tr 'A-Z' 'a-z' < shakes.txt | tr –sc 'A-Za-z' '
' | sort | uniq –c | sort –n –r
  ```

What happened here?

```
the
i
and
to
of
a
you
my
in
d
```
Issues in Tokenization

- Finland’s capital → Finland Finlands Finland’s?
- what’re, I’m, isn’t → What are, I am, is not
- Hewlett-Packard → Hewlett Packard?
- state-of-the-art → state of the art?
- Lowercase → lower-case lowercase lower case?
- San Francisco → one token or two?
- m.p.h., PhD. → ??
Tokenization: language issues

- French
 - *L'ensemble* → one token or two?
 - *L? L’? Le?*
 - Want *l’ensemble* to match with *un ensemble*

- German noun compounds are not segmented
 - *Lebensversicherungsgesellschaftsangestellter*
 - ‘life insurance company employee’
 - German information retrieval needs **compound splitter**
Tokenization: language issues

• Chinese and Japanese no spaces between words:
 • 莎拉波娃现在居住在美国东南部的佛罗里达。
 • 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
 • Sharapova now lives in US southeastern Florida
Word Tokenization in Chinese

• Also called **Word Segmentation**
• Chinese words are composed of characters
 • Characters are generally 1 syllable and 1 morpheme.
 • Average word is 2.4 characters long.
• Standard baseline segmentation algorithm:
 • Maximum Matching (also called Greedy)
Maximum Matching
Word Segmentation Algorithm

- Given a wordlist of Chinese, and a string.
 1) Start a pointer at the beginning of the string
 2) Find the longest word in dictionary that matches the string starting at pointer
 3) Move the pointer over the word in string
 4) Go to 2
Max-match segmentation illustration

- Thecatinthehat the cat in the hat
- Thetabledownthere the table down there
- Doesn’t generally work in English!

- But works astonishingly well in Chinese
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达

- Modern probabilistic segmentation algorithms even better

Thursday, January 19, 17
Basic Text Processing

Word tokenization
Basic Text Processing

Word Normalization and Stemming
Normalization

• Need to “normalize” terms
 • Information Retrieval: indexed text & query terms must have same form.
 • We want to match *U.S.A.* and *USA*

• We implicitly define equivalence classes of terms
 • e.g., deleting periods in a term

• Alternative: asymmetric expansion:
 • Enter: *window* Search: *window, windows*
 • Enter: *windows* Search: *Windows, windows, window*
 • Enter: *Windows* Search: *Windows*

• Potentially more powerful, but less efficient
Case folding

- Applications like IR: reduce all letters to lower case
 - Since users tend to use lower case
 - Possible exception: upper case in mid-sentence?
 - e.g., *General Motors*
 - *Fed* vs. *fed*
 - *SAIL* vs. *sail*
- For sentiment analysis, MT, Information extraction
 - Case is helpful (*US* versus *us* is important)
Lemmatization

- Reduce inflections or variant forms to base form
 - *am, are, is* → *be*
 - *car, cars, car's, cars'* → *car*

 Context dependent. For instance:
 - *in our last meeting (noun, meeting)*.
 - *We’re meeting (verb, meet) tomorrow.*

- *the boy's cars are different colors* → *the boy car be different color*

- Lemmatization: have to find correct dictionary headword form

- Machine translation
 - Spanish *quiero* (‘I want’), *quieres* (‘you want’) same lemma as *querer* ‘want’
Morphology

• **Morphemes:**
 - The small meaningful units that make up words
 - **Stems:** The core meaning-bearing units
 - **Affixes:** Bits and pieces that adhere to stems
 - Often with grammatical functions
Stemming

context independent

- Reduce terms to their stems in information retrieval
- *Stemming* is crude chopping of affixes
 - language dependent
 - e.g., *automate(s), automatic, automation* all reduced to *automat*.

for example compressed and compression are both accepted as equivalent to compress.

for example compress and compress ar both accept as equival to compress
Porter’s algorithm

The most common English stemmer

fixed rules put in groups, applied in order. [https://tartarus.org/mar5n/PorterStemmer/]

Step 1a

sses → ss caresses → caress
ies → i ponies → poni
ss → ss caress → caress
s → ø cats → cat

Step 1b

(*v*)ing → ø walking → walk
 sing → sing

(*v*)ed → ø plastered → plaster

Step 2 (for long stems)

ational → ate relational → relate
izer → ize digitizer → digitize
ator → ate operator → operate

Step 3 (for longer stems)

al → ø revival → reviv
able → ø adjustable → adjust
ate → ø activate → activ
Viewing morphology in a corpus

Why only strip –ing if there is a vowel?

(*v*)ing → ø walking → walk

sing → sing
Viewing morphology in a corpus
Why only strip –ing if there is a vowel?

(*v*)ing → Ø walking → walk
 sing → sing

```
tr -sc 'A-Za-z' '\n' < shakes.txt | grep 'ing$' | sort | uniq -c | sort –nr

  1312 King
  548 being
  541 nothing
  388 king
  375 bring
  358 thing
  307 ring
  152 something
  145 coming
  130 morning
  122 having
  120 living
  117 loving
  116 Being
  102 going

tr -sc 'A-Za-z' '\n' < shakes.txt | grep '[aeiou].*ing$' | sort | uniq -c | sort –nr

  38
```

Thursday, January 19, 17
Basic Text Processing

Word Normalization and Stemming
Basic Text Processing

Sentence Segmentation and Decision Trees
Sentence Segmentation

- !, ? are relatively unambiguous
- Period “.” is quite ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Build a binary classifier
 - Looks at a “.”
 - Decides EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machine-learning
Determining if a word is end-of-sentence: a Decision Tree

Lots of blank lines after me?

- **YES**
 - E-O-S

 - **Final punctuation is ?, !, or :?**

 - **YES**
 - E-O-S

 - **NO**

 - **Final punctuation is period**

 - **YES**
 - E-O-S

 - **NO**

 - **I am “etc” or other abbreviation**

 - **YES**

 - Not E-O-S

 - **NO**

 - Not E-O-S
More sophisticated decision tree features

- Case of word with “.”: Upper, Lower, Cap, Number
- Case of word after “.”: Upper, Lower, Cap, Number

- Numeric features
 - Length of word with “.”
 - Probability(word with “.” occurs at end-of-s)
 - Probability(word after “.” occurs at beginning-of-s)
Implementing Decision Trees

- A decision tree is just an if-then-else statement
- The interesting research is choosing the features
- Setting up the structure is often too hard to do by hand
 - Hand-building only possible for very simple features, domains
 - For numeric features, it’s too hard to pick each threshold
 - Instead, structure usually learned by machine learning from a training corpus
Decision Trees and other classifiers

• We can think of the questions in a decision tree
• As features that could be exploited by any kind of classifier
 • Logistic regression
 • SVM
 • Neural Nets
 • etc.
Sentence Splitters

- Stanford coreNLP: (deterministic)
 - http://stanfordnlp.github.io/CoreNLP/

- UIUC sentence splitter: (deterministic)
 - https://cogcomp.cs.illinois.edu/page/tools_view/2
Basic Text Processing

Sentence Segmentation and Decision Trees