Discriminative Estimation
(Maxent models and perceptron)

Generative vs. Discriminative models

Many slides are adapted from slides by Christopher Manning and perceptron slides by Alan Ritter.
Introduction

• So far we’ve looked at “generative models”
 • Naive Bayes

• But there is now much use of conditional or discriminative probabilistic models in NLP, Speech, IR (and ML generally)

• Because:
 • They give high accuracy performance
 • They make it easy to incorporate lots of linguistically important features
 • They allow automatic building of language independent, retargetable NLP modules
Joint vs. Conditional Models

- We have some data \{d, c\} of paired observations \(d\) and hidden classes \(c\).
- **Joint (generative) models** place probabilities over both observed data and the hidden stuff (generate the observed data from hidden stuff):
 - All the classic StatNLP models:
 - \(n\)-gram models, Naive Bayes classifiers, hidden Markov models, probabilistic context-free grammars, IBM machine translation alignment models

\[P(c, d)\]
Joint vs. Conditional Models

- **Discriminative (conditional) models** take the data as given, and put a probability over hidden structure given the data:
 - Logistic regression, conditional loglinear or maximum entropy models, conditional random fields
 - Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly probabilistic)
Bayes Net/Graphical Models

- Bayes net diagrams draw circles for random variables, and lines for direct dependencies
- Some variables are observed; some are hidden
- Each node is a little classifier (conditional probability table) based on incoming arcs

Naive Bayes

Generative

Logistic Regression

Discriminative
Conditional vs. Joint Likelihood

- A *joint* model gives probabilities $P(d,c)$ and tries to maximize this joint likelihood.
 - It turns out to be trivial to choose weights: just relative frequencies.
- A *conditional* model gives probabilities $P(c|d)$. It takes the data as given and models only the conditional probability of the class.
 - We seek to maximize conditional likelihood.
 - Harder to do (as we’ll see...)
 - More closely related to classification error.
Conditional models work well: Word Sense Disambiguation

<table>
<thead>
<tr>
<th>Training Set</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>Joint Like.</td>
<td>86.8</td>
<td></td>
</tr>
<tr>
<td>Cond. Like.</td>
<td>98.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Set</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>Joint Like.</td>
<td>73.6</td>
<td></td>
</tr>
<tr>
<td>Cond. Like.</td>
<td>76.1</td>
<td></td>
</tr>
</tbody>
</table>

- Even with exactly the same features, changing from joint to conditional estimation increases performance
- That is, we use the same smoothing, and the same word-class features, we just change the numbers (parameters)

(Klein and Manning 2002, using Senseval-1 Data)
Maxent Models and Discriminative Estimation

Generative vs. Discriminative models
Discriminative Model Features

Making features from text for discriminative NLP models
Features

• In these slides and most maxent work: features f are elementary pieces of evidence that link aspects of what we observe d with a category c that we want to predict.

• A feature is a function with a bounded real value: $f: C \times D \rightarrow \mathbb{R}$

A Belief: to create a data partition
Features

• In NLP uses, usually a feature specifies

 1. an indicator function – a yes/no boolean matching function – of properties of the input and
 2. a particular class

\[f_i(c, d) \equiv [\Phi(d) \land c = c_j] \]

• Each feature picks out a data subset and suggests a label for it
Example features

- \(f_1(c, d) \equiv [c = \text{LOCATION} \land w_{-1} = \text{“in”} \land \text{isCapitalized}(w)] \)
- \(f_2(c, d) \equiv [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)] \)
- \(f_3(c, d) \equiv [c = \text{DRUG} \land \text{ends}(w, \text{“c”})] \)

Models will assign to each feature a **weight**:
- A positive weight votes that this configuration is likely correct
- A negative weight votes that this configuration is likely incorrect
Feature-Based Models

- The decision about a data point is based only on the features active at that point.
Example: Text Categorization

(Zhang and Oles 2001)

• Features are presence of each word in a document and the document class (they do feature selection to use reliable indicator words)
• Tests on classic Reuters data set (and others)
 • Naïve Bayes: 77.0% F_1
 • Linear regression: 86.0%
 • Logistic regression: 86.4%
 • Support vector machine: 86.5%
• Paper emphasizes the importance of regularization (smoothing) for successful use of discriminative methods (not used in much early NLP/IR work)
Other Maxent Classifier Examples

• You can use a maxent classifier whenever you want to assign data points to one of a number of classes:
 • Sentence boundary detection (Mikheev 2000)
 • Is a period end of sentence or abbreviation?
 • Sentiment analysis (Pang and Lee 2002)
 • Word unigrams, bigrams, POS counts, ...
 • PP attachment (Ratnaparkhi 1998)
 • Attach to verb or noun? Features of head noun, preposition, etc.
 • Parsing decisions in general (Ratnaparkhi 1997; Johnson et al. 1999, etc.)
Discriminative Model Features

Making features from text for discriminative NLP models
Feature-based Linear Classifiers

How to put features into a classifier
Feature-Based Linear Classifiers

- Linear classifiers at classification time:
 - Linear function from feature sets \(\{f_i\} \) to classes \(\{c\} \).
 - Assign a weight \(\lambda_i \) to each feature \(f_i \).
 - We consider each class for an observed datum \(d \).
 - For a pair \((c,d)\), features vote with their weights:
 - \(\text{vote}(c) = \sum \lambda_i f_i(c,d) \)
 - Choose the class \(c \) which maximizes \(\sum \lambda_i f_i(c,d) \)
Example features

• \(f_1(c, d) \equiv [c = \text{LOCATION} \land w_1 = \text{“in”} \land \text{isCapitalized}(w)] \)
• \(f_2(c, d) \equiv [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)] \)
• \(f_3(c, d) \equiv [c = \text{DRUG} \land \text{ends}(w, \text{“c”})] \)

• Models will assign to each feature a **weight**:
 • A positive weight votes that this configuration is likely correct
 • A negative weight votes that this configuration is likely incorrect
Feature-Based Linear Classifiers

- Linear classifiers at classification time:
 - Linear function from feature sets \(\{f_i\} \) to classes \(\{c\} \).
 - Assign a weight \(\lambda_i \) to each feature \(f_i \).
 - We consider each class for an observed datum \(d \).
 - For a pair \((c, d)\), features vote with their weights:
 - \(\text{vote}(c) = \sum \lambda_i f_i(c, d) \)
 - Choose the class \(c \) which maximizes \(\sum \lambda_i f_i(c, d) = \text{LOCATION} \)
Feature-Based Linear Classifiers

There are many ways to chose weights for features

With different loss functions as the optimization goal

• Perceptron: find a currently misclassified example, and nudge weights in the direction of its correct classification

• Margin-based methods (Support Vector Machines)
Feature-Based Linear Classifiers

- Exponential (log-linear, maxent, logistic, Gibbs) models:
 - Make a probabilistic model from the linear combination $\sum \lambda_i f_i(c,d)$
 - $P(c \mid d, \lambda) = \frac{\exp \sum \lambda_i f_i(c,d)}{\sum_{c'} \exp \sum \lambda_i f_i(c',d)}$
 - Makes votes positive
 - Normalizes votes

- $P(\text{LOCATION} \mid \text{in Québec}) = e^{1.8}e^{-0.6} / (e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.586$
- $P(\text{DRUG} \mid \text{in Québec}) = e^{0.3} / (e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.238$
- $P(\text{PERSON} \mid \text{in Québec}) = e^0 / (e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.176$

- The weights are the parameters of the probability model, combined via a “soft max” function
Feature-Based Linear Classifiers

• Exponential (log-linear, maxent, logistic, Gibbs) models:
 • Given this model form, we will choose parameters \(\{\lambda_i\} \)
 that *maximize the conditional likelihood* of the data according to this model.
 • We construct not only classifications, but probability distributions over classifications.
 • There are other (good!) ways of discriminating classes – SVMs, boosting, even perceptrons – but these methods are not as trivial to interpret as distributions over classes.
Aside: logistic regression

- Maxent models in NLP are essentially the same as multiclass logistic regression models in statistics (or machine learning)
 - The key role of feature functions in NLP and in this presentation
 - The features are more general, with f also being a function of the class
Quiz Question

- Assuming exactly the same set up (3 class decision: LOCATION, PERSON, or DRUG; 3 features as before, maxent), what are:
 - \(P(\text{PERSON} \mid \text{by Goéric}) = \)
 - \(P(\text{LOCATION} \mid \text{by Goéric}) = \)
 - \(P(\text{DRUG} \mid \text{by Goéric}) = \)

- \(1.8 \ f_1(c, d) \equiv [c = \text{LOCATION} \land w_{-1} = "in" \land \text{isCapitalized}(w)] \)
- \(-0.6 \ f_2(c, d) \equiv [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)] \)
- \(0.3 \ f_3(c, d) \equiv [c = \text{DRUG} \land \text{ends}(w, "c")] \)

\[
P(c \mid d, \lambda) = \frac{\exp \sum_i \lambda_i f_i(c, d)}{\sum_c \exp \sum_i \lambda_i f_i(c', d)}
\]
Feature-based Linear Classifiers

How to put features into a classifier
Building a Maxent Model

The nuts and bolts
Building a Maxent Model

• We define features (indicator functions) over data points
 • Features represent sets of data points which are distinctive enough to
deserve model parameters.
 • Words, but also “word contains number”, “word ends with ing”, etc.

• We will simply encode each Φ feature as a unique String (index)
 • A datum will give rise to a set of Strings: the active Φ features
 • Each feature $f_i(c, d) \equiv [\Phi(d) \land c = c_j]$ gets a real number weight

• We concentrate on Φ features but the math uses i indices of f_i
Building a Maxent Model

- Features are often added during model development to target errors
 - Often, the easiest thing to think of are features that mark bad combinations

- Then, for any given feature weights, we want to be able to calculate:
 - Data conditional likelihood
 - Derivative of the likelihood wrt each feature weight
 - Uses expectations of each feature according to the model

- We can then find the optimum feature weights (discussed later).
Building a Maxent Model

The nuts and bolts
Naive Bayes vs. Maxent models

Generative vs. Discriminative models: The problem of overcounting evidence
Text classification: Asia or Europe

NB FACTORS:
- \(P(A) = P(E) = \)
- \(P(M|A) = \)
- \(P(H|A) = P(K|A) = \)
- \(P(H|E) = P(K|E) = \)

PREDICTIONS:
- \(P(A,H,K,M) = \)
- \(P(E,H,K,M) = \)
- \(P(A|H,K,M) = \)
- \(P(E|H,K,M) = \)
Naive Bayes vs. Maxent Models

• Naive Bayes models multi-count correlated evidence
 • Each feature is multiplied in, even when you have multiple features telling you the same thing

• Maximum Entropy models (pretty much) solve this problem
 • As we will see, this is done by weighting features so that model expectations match the observed (empirical) expectations
Naive Bayes vs. Maxent models

Generative vs. Discriminative models: The problem of overcounting evidence
Maxent Models and Discriminative Estimation

Maximizing the likelihood
Feature Expectations

• We will crucially make use of two expectations
 • actual or predicted counts of a feature firing:

 • Empirical count (expectation) of a feature:
 \[
 \text{empirical } E(f_i) = \sum_{(c,d) \in \text{observed}(C,D)} f_i(c,d)
 \]

 • Model expectation of a feature:
 \[
 E(f_i) = \sum_{(c,d) \in (C,D)} P(c,d) f_i(c,d)
 \]

Goal: well fit the data
Exponential Model Likelihood

- Maximum (Conditional) Likelihood Models:
 - Given a model form, choose values of parameters to maximize the (conditional) likelihood of the data.

\[
\log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} \log P(c \mid d, \lambda) = \sum_{(c,d) \in (C,D)} \log \frac{\exp \sum_i \lambda_i f_i(c,d)}{\sum_{c'} \exp \sum_i \lambda_i f_i(c',d)}
\]
The Likelihood Value

- The (log) conditional likelihood of iid data \((C,D)\) according to maxent model is a function of the data and the parameters \(\lambda\):
 \[
 \log P(C \mid D, \lambda) = \log \prod_{(c,d) \in (C,D)} P(c \mid d, \lambda) = \sum_{(c,d) \in (C,D)} \log P(c \mid d, \lambda)
 \]

- If there aren’t many values of \(c\), it’s easy to calculate:
 \[
 \log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} \log \frac{\exp \sum_{i} \lambda_i f_i(c, d)}{\sum_{c'} \exp \sum_{i} \lambda_i f_i(c', d)}
 \]
The Likelihood Value

• We can separate this into two components:

\[
\log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} \log \exp \sum_i \lambda_i f_i(c,d) - \sum_{(c,d) \in (C,D)} \log \exp \sum_i \lambda_i f_i(c',d)
\]

\[
\log P(C \mid D, \lambda) = N(\lambda) - M(\lambda)
\]

• The derivative is the difference between the derivatives of each component
The Derivative I: Numerator

\[
\frac{\partial N(\lambda)}{\partial \lambda_i} = \frac{\partial}{\partial \lambda_i} \sum_{(c,d) \in (C,D)} \log \exp \sum_i \lambda_{ci} f_i(c, d) = \frac{\partial}{\partial \lambda_i} \sum_{(c,d) \in (C,D)} \sum_i \lambda_i f_i(c, d) = \frac{\partial}{\partial \lambda_i} \sum_{(c,d) \in (C,D)} \sum_i \lambda_i f_i(c, d)
\]

= \sum_{(c,d) \in (C,D)} \frac{\partial}{\partial \lambda_i} \sum_i \lambda_i f_i(c, d)

= \sum_{(c,d) \in (C,D)} \frac{\partial}{\partial \lambda_i} \sum_i \lambda_i f_i(c, d)

= \sum_{(c,d) \in (C,D)} f_i(c, d)

Derivative of the numerator is: the empirical count \((f_i, c)\)
The Derivative II: Denominator

\[
\frac{\partial M(\lambda)}{\partial \lambda_i} = \frac{\partial}{\partial \lambda_i} \sum_{(c,d) \in (C,D)} \log \sum_{c'} \exp \sum_i \lambda_i f_i(c', d) \\
= \sum_{(c,d) \in (C,D)} \frac{1}{\sum_{c'} \exp \sum_i \lambda_i f_i(c'', d)} \frac{\partial}{\partial \lambda_i} \sum_{c'} \exp \sum_i \lambda_i f_i(c', d) \sum_c 1 \frac{\partial}{\partial \lambda_i} \sum_i \lambda_i f_i(c', d) \\
= \sum_{(c,d) \in (C,D)} \sum_{c'} \frac{\exp \sum_i \lambda_i f_i(c', d)}{\sum_{c''} \exp \sum_i \lambda_i f_i(c'', d)} \frac{\partial}{\partial \lambda_i} \sum_i \lambda_i f_i(c', d) \\
= \sum_{(c,d) \in (C,D)} \sum_{c'} P(c' \mid d, \lambda) f_i(c', d) = \text{predicted count}(f_i, \lambda)
\]
The Derivative III

\[\frac{\partial \log P(C \mid D, \lambda)}{\partial \lambda_i} = \text{actual count}(f_i, C) - \text{predicted count}(f_i, \lambda) \]

- The optimum parameters are the ones for which each feature’s predicted expectation equals its empirical expectation. The optimum distribution is:
 - Always unique (but parameters may not be unique)
 - Always exists (if feature counts are from actual data).
- These models are also called maximum entropy models because we find the model having maximum entropy and satisfying the constraints:
 \[E_p(f_j) = E_{\tilde{p}}(f_j), \forall j \]
Finding the optimal parameters

• We want to choose parameters $\lambda_1, \lambda_2, \lambda_3, \ldots$ that maximize the conditional log-likelihood of the training data

$$CLogLik(D) = \sum_{i=1}^{n} \log P(c_i \mid d_i)$$

• To be able to do that, we’ve worked out how to calculate the function value and its partial derivatives (its gradient)
A likelihood surface
Finding the optimal parameters

• Use your favorite numerical optimization package....
 • Commonly, you **minimize** the negative of $CLogLik$

1. Gradient descent (GD); Stochastic gradient descent (SGD)
2. Iterative proportional fitting methods: Generalized Iterative Scaling (GIS) and Improved Iterative Scaling (IIS)
3. Conjugate gradient (CG), perhaps with preconditioning
4. Quasi-Newton methods – limited memory variable metric (LMVM) methods, in particular, L-BFGS
Maxent Models and Discriminative Estimation

Maximizing the likelihood
Maximum Entropy Models

• An equivalent approach:
 • Lots of distributions out there, most of them very spiked, specific, overfit.
 • We want a distribution which is uniform except in specific ways we require.
 • Uniformity means high entropy – we can search for distributions which have properties we desire, but also have high entropy.

Ignorance is preferable to error and he is less remote from the truth who believes nothing than he who believes what is wrong – Thomas Jefferson (1781)
Maxent Examples I

- What do we want from a distribution?
 - Minimize commitment = maximize entropy.
 - Resemble some reference distribution (data).
- Solution: maximize entropy H, subject to feature-based constraints:
 \[E_p[f_i] = E_{\hat{p}}[f_i] \iff \sum_{x \in f_i} p_x = C_i \]
- Adding constraints (features):
 - Lowers maximum entropy
 - Raises maximum likelihood of data
 - Brings the distribution further from uniform
 - Brings the distribution closer to data

Unconstrained, max at 0.5

Constraint that $p_{\text{HEADS}} = 0.3$
Maxent Examples II

\[H(p_H, p_T) \]

\[p_H + p_T = 1 \]

\[p_H = 0.3 \]
Maxent Examples III

• Let’s say we have the following event space:

<table>
<thead>
<tr>
<th>NN</th>
<th>NNS</th>
<th>NNP</th>
<th>NNPS</th>
<th>VBZ</th>
<th>VBD</th>
</tr>
</thead>
</table>

• ... and the following empirical data:

| 3 | 5 | 11 | 13 | 3 | 1 |

• Maximize H:

| $1/e$ | $1/e$ | $1/e$ | $1/e$ | $1/e$ | $1/e$ |

• ... want probabilities: $E[\text{NN, NNS, NNP, NNPS, VBZ, VBD}] = 1$

| $1/6$ | $1/6$ | $1/6$ | $1/6$ | $1/6$ | $1/6$ |
Maxent Examples IV

• Too uniform!

• N* are more common than V*, so we add the feature $f_N = \{NN, NNS, NNP, NNPS\}$, with $E[f_N] = 32/36$

<table>
<thead>
<tr>
<th></th>
<th>NN</th>
<th>NNS</th>
<th>NNP</th>
<th>NNPS</th>
<th>VBZ</th>
<th>VBD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8/36</td>
<td>8/36</td>
<td>8/36</td>
<td>8/36</td>
<td>2/36</td>
<td>2/36</td>
</tr>
</tbody>
</table>

• ... and proper nouns are more frequent than common nouns, so we add $f_P = \{NNP, NNPS\}$, with $E[f_P] = 24/36$

<table>
<thead>
<tr>
<th></th>
<th>NN</th>
<th>NNS</th>
<th>NNP</th>
<th>NNPS</th>
<th>VBZ</th>
<th>VBD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4/36</td>
<td>4/36</td>
<td>12/36</td>
<td>12/36</td>
<td>2/36</td>
<td>2/36</td>
</tr>
</tbody>
</table>

• ... we could keep refining the models, e.g., by adding a feature to distinguish singular vs. plural nouns, or verb types.
Feature Overlap/
Feature Interaction

How overlapping features work in maxent models
Feature Overlap

- Maxent models handle overlapping features well.
- Unlike a NB model, there is no double counting!

\[
\begin{array}{c|c|c|c|c}
&A&a&B&b\\
\hline
A&2&1&2&1\\
B&1/4&1/4&1/3&1/6\\
\end{array}
\]
Grace is correlated with PERSON, but does not add much evidence on top of already knowing prefix features.

<table>
<thead>
<tr>
<th>Feature Type</th>
<th>Feature</th>
<th>PERS</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous word</td>
<td>at</td>
<td>-0.73</td>
<td>0.94</td>
</tr>
<tr>
<td>Current word</td>
<td>Grace</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Beginning bigram</td>
<td><G</td>
<td>0.45</td>
<td>-0.04</td>
</tr>
<tr>
<td>Current POS tag</td>
<td>NNP</td>
<td>0.47</td>
<td>0.45</td>
</tr>
<tr>
<td>Prev and cur tags</td>
<td>IN NNP</td>
<td>-0.10</td>
<td>0.14</td>
</tr>
<tr>
<td>Previous state</td>
<td>Other</td>
<td>-0.70</td>
<td>-0.92</td>
</tr>
<tr>
<td>Current signature</td>
<td>Xx</td>
<td>0.80</td>
<td>0.46</td>
</tr>
<tr>
<td>Prev state, cur sig</td>
<td>O-Xx</td>
<td>0.68</td>
<td>0.37</td>
</tr>
<tr>
<td>Prev-cur-next sig</td>
<td>x-Xx-Xx</td>
<td>-0.69</td>
<td>0.37</td>
</tr>
<tr>
<td>P. state - p-cur sig</td>
<td>O-x-Xx</td>
<td>-0.20</td>
<td>0.82</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>-0.58</td>
<td>2.68</td>
</tr>
</tbody>
</table>
Maxent models handle overlapping features well, but do not automatically model feature interactions.

Feature Interaction

- Maxent models handle overlapping features well, but do not automatically model feature interactions.
Feature Interaction

- If you want interaction terms, you have to add them:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Empirical

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1/3</td>
<td>1/6</td>
</tr>
<tr>
<td>b</td>
<td>1/3</td>
<td>1/6</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
A &= 2/3 \\
B &= 2/3 \\
AB &= 1/3
\end{align*}
\]

- A disjunctive feature would also have done it (alone):

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>b</td>
<td>1/3</td>
<td>0</td>
</tr>
</tbody>
</table>
Smoothing: Issues of Scale

• Lots of features:
 • NLP maxent models can have well over a million features.
 • Even storing a single array of parameter values can have a substantial memory cost.

• Lots of sparsity:
 • Overfitting very easy – we need smoothing!
 • Many features seen in training will never occur again at test time.

• Optimization problems:
 • Feature weights can be infinite, and iterative solvers can take a long time to get to those infinities.
Smoothing/Priors/ Regularization

• Combating over fitting

• Intuition: don’t let the weights get very large

\[w_{\text{MLE}} = \arg\max_w \log P(y_1, \ldots, y_d \mid x_1, \ldots, x_d; w) \]

\[
\arg\max_w \log P(y_1, \ldots, y_d \mid x_1, \ldots, x_d; w) - \delta \sum_{i=1}^{V} w_i^2
\]
Perceptron Algorithm

- Algorithm is very similar to logistic regression
- Not exactly computing gradients

Initialize weight vector $w = 0$
Loop for K iterations
 - Loop for all training examples x_i
 - if $\text{sign}(w \cdot x_i) \neq y_i$
 - $w += (y_i - \text{sign}(w \cdot x_i)) \cdot x_i$
MaxEnt v.s Perceptron

• Batch v.s Online learning
• Perceptron doesn’t always make updates
• Probabilities v.s scores
Multi-class Perceptron Algorithm

Initialize weight vector \(w = 0 \)
Loop for \(K \) iterations
 Loop For all training examples \(x_i \)
 \[y_{\text{pred}} = \text{argmax}_y w_y \times x_i \]
 if \(y_{\text{pred}} \neq y_i \)
 \[w_{y_{\text{gold}}} += x_i \]
 \[w_{y_{\text{pred}}} -= x_i \]
Regularization in the Perceptron Algorithm

• No gradient computed, so can’t directly include a regularizer in an object function.
• Instead run different numbers of iterations
• Use parameter averaging, for instance, average of all parameters after seeing each data point