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Abstract

We introduce a novel iterative approach
for event coreference resolution that grad-
ually builds event clusters by exploiting
inter-dependencies among event mentions
within the same chain as well as across
event chains. Among event mentions in
the same chain, we distinguish within- and
cross-document event coreference links
by using two distinct pairwise classifiers,
trained separately to capture differences in
feature distributions of within- and cross-
document event clusters. Our event coref-
erence approach alternates between WD
and CD clustering and combines argu-
ments from both event clusters after ev-
ery merge, continuing till no more merge
can be made. And then it performs fur-
ther merging between event chains that
are both closely related to a set of other
chains of events. Experiments on the
ECB+ corpus show that our model outper-
forms state-of-the-art methods in joint task
of WD and CD event coreference resolu-
tion.

1 Introduction

Event coreference resolution is the task of iden-
tifying event mentions and clustering them such
that each cluster represents a unique real world
event. The capability of resolving links among co-
referring event identities is vital for information
aggregation and many NLP applications, includ-
ing topic detection and tracking, information ex-
traction, question answering and text summariza-
tion (Humphreys et al., 1997; Allan et al., 1998;
Daniel et al., 2003; Narayanan and Harabagiu,
2004; Mayfield et al., 2009; Zhang et al., 2015).
Yet, studies on event coreference are few com-

pared to the well-studied entity coreference reso-
lution.

Event mentions that refer to the same event can
occur both within a document (WD) and across
multiple documents (CD). One common practice
(Lee et al., 2012) to approach CD coreference
task is to resolve event coreference in a mega-
document created by concatenating topic-relevant
documents, which essentially does not distinguish
WD and CD event links.

However, intuitively, recognizing CD corefer-
ent event pairs requires stricter evidence com-
pared to WD event linking because it is riskier to
link two event mentions from two distinct docu-
ments rather than the same document. In a per-
fect scenario where all WD event mentions are
properly clustered and their participants and argu-
ments are combined within a cluster, CD cluster-
ing can be performed with ease as sufficient ev-
idences are collected through initial WD cluster-
ing. Therefore, another very common practice for
event coreference is to first group event mentions
within a document and then group WD clusters
across documents (Yang et al., 2015).

Nonetheless, WD coreference chains are
equally hard to resolve. Event mentions in the
same document can look very dissimilar (”killed/
VB” and ”murder/ NN”), have event arguments
(i.e., participants and spatio-temporal information
of an event (Bejan and Harabagiu, 2010)) partially
or entirely omitted, or appear in distinct contexts
compared to their antecedent event mentions, par-
tially to avoid repetitions. Under this irresolute
state, approaching WD and CD individually is in-
competent.

While CD coreference resolution is overall dif-
ficult, we observe that some CD coreferent event
mentions, especially the ones that appear at the
beginning of documents, share sufficient contexts
and are relatively easier to resolve. At the same



time, many of them bear sufficient differences that
can bring in new information and further lead
to more WD merges and consequently more CD
merges.

Guided by these observations, we present an
event coreference approach that exploits inter-
dependencies among event mentions within an
event chain both within a document and across
documents, by sequentially applying WD and CD
merges in an alternating manner until no more
merge can be made. We combine argument fea-
tures of event mentions after each CD (WD) merge
in order to resolve more difficult WD (CD) merges
in the following iterations. Furthermore, our
model uses two distinct pairwise classifiers that
are separately trained with features intrinsic to
each type. Specifically, the WD classifier uses fea-
tures based on event mentions and their arguments
while the CD classifier relies on features charac-
terizing surrounding contexts of event mentions as
well.

We further exploit second-order inter-
dependencies across event clusters in order
to resolve additional WD and CD coreferent event
pairs. Intuitively, if two event mentions are related
to the same set of events, it is likely that the two
event mentions refer to the same real world event,
even when their word forms and local contexts
are distinct. Specifically, we merge event clusters
if their event mentions are tightly associated
(i.e., having the same dependency relations) or
loosely associated (i.e., co-occurring in the same
sentential context) with enough (i.e., passing a
threshold) other events that are known coreferent.

Experimental results on the benchmark event
coreference dataset, ECB+ (Cybulska and Vossen,
2014b,a), show that our model extensively ex-
ploits inter-dependencies between events and out-
performs the state-of-the-art methods for both WD
and CD event coreference resolution.

2 Related Work

Different approaches, focusing on either of WD
or CD coreference chains, have been proposed for
event coreference resolution. Works specific to
WD event coreference includes pairwise classi-
fiers (Ahn, 2006; Chen et al., 2009) graph based
clustering method (Chen and Ji, 2009), informa-
tion propagation (Liu et al., 2014), and markov
logic networks Lu et al. (2016). As to only CD
event coreference, Cybulska and Vossen (2015a)

created pairwise classifiers using features indicat-
ing granularities of event slots and in another work
(2015b), grouped events based on compatibilities
of event contexts.

Like this work, several studies have consid-
ered both WD and CD event coreference resolu-
tion task together. However to simplify the prob-
lem, they (Lee et al., 2012; Bejan and Harabagiu,
2010, 2014) created a meta-document by concate-
nating topic-relevant documents and treated both
as an identical task. Most recently, Yang et al.
(2015) applied a two-level clustering model that
first groups event mentions within a document and
then groups WD clusters across documents in a
joint inference process. Our approach advances
these works and emphasizes on different natures
of WD and CD clusters along with the benefits of
distinguishing WD merges from CD merges and
exploiting their mutual dependencies.

Iterative models, in general, have been applied
to both entity coreference resolution (Singh et al.,
2009; Clark and Manning, 2015, 2016; Wiseman
et al., 2016) and prior event coreference resolution
(Lee et al., 2012) works, which gradually build
clusters and enable later merges to benefit from
earlier ones. Especially, Lee et al. (2012) used
an iterative model to jointly build entity and event
clusters and showed the advantages of information
flow between entity and event clusters through se-
mantic role features. Our model, by alternating be-
tween WD and CD merges, allows the multi-level
flow of first order interdependencies. Moreover,
additional cross cluster merges based on 2nd order
interdependencies effectively exploits the seman-
tic relations among events, in contrast to only se-
mantic roles (between events and arguments) used
in previous work.

3 System Overview and A Worked
Example

Inter-dependencies among event mentions can
be effectively exploited by conducting sequential
WD and CD merges in an iterative manner. In ad-
dition, recognizing second order relations between
event chains relies on adequate number of event
mentions that are already linked. Therefore, our
model conducts event coreference in two stages.
In the first stage, it iteratively conducts WD and
CD merges as suggested by pairwise WD and CD
merging classifiers respectively. Argument fea-
tures of individual event mentions are propagated



Figure 1: An example of Event Coreference using the iterative two stage model. All event mentions are
boldfaced; solid arrow line between event mentions show second order relations between them; dashed
lines link coreferent event mentions and are tagged with the type of merge.

within a cluster after each merge operation. In
the second stage, it explores second order relations
across event clusters w.r.t context event mentions
in order to carefully generate candidate event clus-
ters and perform further merging.

The example in Figure 1 illustrates the two
stages of our proposed approach. It shows two
iterations of WD and CD merges. In iteration
1, relatively easy coreferent event mentions were
linked, including the two shooting and two trial
event mentions in doc1 and doc2 as well as the
event mentions presented, trial and murder across
the two documents. Argument propagation was
conducted after each merge and murder’s argu-
ment ”mother of 12” in doc1 is combined with
the murder event in doc2 after iteration 1. Then
in iteration 2, more merges were made by rec-
ognizing additional coreferent event mentions in-
cluding event mentions in one document (e.g.,
murdering and killed in doc2) and event men-
tions across the two documents (e.g., shooting in
doc1 and �shootout in doc2). Next, two additional
merges were made by leveraging second-order
inter-dependencies. Specifically, both the event
mentions released in doc1 and presented in doc2
are in the same dependency relation (“nmod”)

with a mention of the trial event cluster, therefore,
a new merge was made between clusters contain-
ing the two mentions. Following this, the event
mentions court hearing in doc1 and trial in doc2
were identified to have multiple coreferent events
in their sentential contexts, therefore, the clusters
containing these two event mentions were merged
as well.

4 Detailed System Description:
Exploiting Interdependencies between
Events

4.1 Document Clustering

Our approach starts with a pre-processing step that
clusters input documents (D) into a set of docu-
ment clusters (C). This is meant to reduce search
space and mitigate errors (Lee et al., 2012). In
our experiments, we used the Affinity Propaga-
tion algorithm (Buitinck et al., 2013) on tf − idf
vectors, where terms are only proper nouns and
verbs (excludes reporting and auxiliary verbs) in
the document. While it is interesting to under-
stand the influences of wrong document clusters
to event coreference, this algorithm yielded per-
fect document clusters on the benchmark ECB+



dataset (Cybulska and Vossen, 2014b,a). This is
consistent with the prior study (Lee et al., 2012)
on the related ECB dataset (Bejan and Harabagiu,
2010) 1, which shows that document clustering in
the ECB dataset is trivial.

Algorithm 1:
input: set of Documents D

Within-Document Classifier: ΘWD
Cross-Document Classifier: ΘCD

// clusters of event mentions

1 EM = {}
// clusters of Documents

2 C = ClusterDocument(D)
3 for each document cluster c in C do
4 EM′ = {Singleton Clusters}

// Iterative WD and CD Merging

6 while iterate do
7 iterate = False
8 for each two clusters E1, E2 ∈ EM′

s.t. ∃e1 ∈ E1, e2 ∈ E2, (e1, e2) ∈ a Doc, and
score(ΘWD, e1, e2) > 0.60 do
9 Merge(E1, E2, EM′)
10 iterate = True
11 if not iterate break
12 iterate = False
13 for each two clusters E1, E2 ∈ EM′

s.t. ∃e1 ∈ E1, e2 ∈ E2, (e1, e2) /∈ a Doc, and
score(ΘCD, e1, e2) > 0.90 do
14 Merge(E1, E2, EM′)
15 iterate = True

// Exploiting Second-Order Inter-

dependencies Across Event Chains

16 while ∃ two clusters E1, E2 ∈ EM′ s.t.
GovernorModifierRelated(E1, E2,ΘCD) do
17 EM′ = Merge(E1, E2, EM′)
18 while ∃ two clusters E1, E2 ∈ EM′ s.t.
ContextSimilarity(E1, E2,ΘCD) do
19 EM′ = Merge(E1, E2, EM′)
20 EM = EM + EM′

21 output: EM

4.2 Iterative WD and CD Merging

We iteratively conduct WD merges and CD
merges until no more merge can be done. We train
pairwise classifiers for identifying event clusters
to merge. Specifically for WD merges as indi-
cated in lines 8-10 in Algorithm 1, we iteratively
go through pairs of clusters that contain a pair

1The ECB+ dataset is an extended version of the ECB
dataset. Both datasets have documents for the same 43 topics.

of within-document event mentions, one mention
from each cluster. If the similarity score between
the two event mentions is above a tuned threshold
of 0.6 2, we merge the two clusters. Similarly, for
CD merges described in lines 13-15 of Algorithm
1, we iteratively go through pairs of clusters that
contain a pair of cross-document event mentions
and merge the two clusters if the similarity score
between the two event mentions is above another
tuned threshold of 0.9 3. Following each cluster
pair merge, arguments are combined for the two
merged clusters.

4.3 Merging by Exploiting Second-Order
Inter-dependencies Across Event Chains

Intuitively, two event mentions that share events
in their contexts are likely to be coreferent. Simi-
larly, if their context events are coreferent, the two
events are likely to be coreferent as well.

First, if two event mentions are in the
same dependency relation with two other event
mentions that are known coreferent, then the
first two event mentions are likely to de-
scribe the same real world event as well. In
steps 16-17 of Algorithm 1, we perform event
cluster merges by collecting evidence pertain-
ing to dependency relations. The subrou-
tine GovernorModifierRelated (E1, E2,ΘCD)
checks whether two event mentions e1 and e2,
from clusters E1 and E2 respectively, have a re-
lated event e3 from another cluster E3, such that
E3 /∈ {E1, E2} and pairs (e1, e3), (e2, e3) are
linked with the same dependency relation. Note
that observing shared event mentions in the con-
texts will increase the likelihood that the two event
mentions are coreferent, but we can not suffi-
ciently infer the coreference relation yet, we still
need to look at features describing the event men-
tions. Therefore, if the condition was satisfied,
the subroutine eventually makes merges based on
the CD confidence score assigned to the event pair
(e1, e2) but using a lower threshold of 0.8.

In addition, seeing coreferent event mentions in
the sentential contexts of two events will increase
the likelihood that the two events are coreferent
as well. Then as shown in steps 18-19, we fur-

2all tunings are performed on Validation dataset (topics
23-25)

3Note that these high threshold for WD- and CD- classi-
fiers are meant to retain high precision and avoid error prop-
agation in subsequent stages. Output from each classifier is a
number bounded in [0,1].



Figure 2: Pairwise Classifiers for resolving (a) Within-Document Coreference Links (b) Cross-Document
Coreference Links. EM: event mentions; Arg0, Arg1, ArgM:LOC, ArgM:TMP: semantic roles.

ther use context events co-occurring in the same
sentence as another parameter to perform addi-
tional clustering. Subroutine ContextSimilarity
(E1, E2,ΘCD) generates a context vector (CV) for
each event cluster and check whether cosine sim-
ilarity between context vectors of two clusters E1

and E2 (cos( ~CV1, ~CV2)) is above 0.7. Specifically,
we define context clusters for an event mention as
the different event clusters that have event men-
tions co-occurring in the same sentence. Then the
context vector of an event cluster has an entry for
each of its context clusters, with the value to be the
number of sentences where event mentions from
the two clusters co-occur. This subroutine also
makes merges based on the CD confidence score
using the same lower threshold of 0.8.

5 Distinguishing WD and CD Merging

We implement two distinct pairwise classifiers to
effectively utilize the distributional variations in
WD and CD clusters. The first classifier (WD)
is used for calculating a similarity between two
event mentions within a document and recogniz-
ing coreferent event mention pairs. The second
classifier (CD) is used for calculating a similar-
ity between two event mentions across two doc-
uments and then identifying coreferent event men-
tion pairs across documents. Both classifiers were
implemented as neural nets (Chollet, 2015). The
architectures of the two classifiers are shown in
Figure 2.

WD Classifier: the neural network based WD
classifier essentially inherits the features that have

been shown effective in previous event corefer-
ence studies (Ahn, 2006; Chen et al., 2009), in-
cluding both features for event words and fea-
tures for their arguments. Specifically, the classi-
fier includes a common neural layer shared by two
event mentions to embed event lemma and parts-
of-speech features. Then the classifier calculates
cosine similarity and euclidean distance between
two event embeddings, one per event mention. In
addition, the classifier includes a neural layer com-
ponent to embed event arguments that are over-
lapped between the two event mentions. Its out-
put layer takes the calculated cosine similarity and
euclidean distance between event mention embed-
dings as well as the embedding of the overlapped
event arguments as input, and output a confidence
score to indicate the similarity of the two event
mentions.

CD Classifier: the CD classifier mimics the
WD classifier except that the CD classifier con-
tains an additional LSTM layer (Hochreiter and
Schmidhuber, 1997) to embed context words. The
LSTM layer is shared by both event mentions in
order to calculate context word embeddings for
both event mentions. Specifically, three words to
each side of an event word together with the event
word itself are used to calculate the context em-
bedding for each event mention. The classifier
then calculates cosine similarity and euclidean dis-
tance between two context embeddings as well.
The output neural net layer will take two sets
of cosine similarity and euclidean distance scores
that have been calculated w.r.t. context embed-



dings and event word embeddings, as well as the
embedding of the overlapped event arguments as
input, and further calculate a confidence score
indicating the similarity of two event mentions
across documents.

5.1 Characteristics of WD and CD Event
Linking

In order to further understand characteristics of
within- and cross-document event linking, we
trained two classifiers having the same CD clas-
sifier architecture (Figure 2(b)) but with differ-
ent sets of event pairs, within-document or cross-
document event pairs, then analyzed the impacts
of features on each type of event linking by com-
paring the neural net learned weights for each fea-
ture. Table 1 shows the comparisons of feature
weights.

Features WD CD
Event Word Embedding: Euc 1.017 0.207
Event Word Embedding: Cos 1.086 1.142
Context Embedding: Euc 0.038 0.422
Context Embedding: Cos 0.004 3.910
Argument Embedding 0.349 3.270

Table 1: Comparisons of Feature Weights
Learned Using In-doc or Cross-doc Coreferent
Event Pairs, Euc: Euclidean Distance, Cos: Co-
sine Similarity

We can see that within-document event linking
mainly relies on the euclidean distance and co-
sine similarity scores calculated using event word
features, with a reasonable amount of weight as-
signed to overlapped arguments’ embedding as
well. However, only very small weights were as-
signed to the similarity and distance scores calcu-
lated using context embeddings. In contrast, in the
classifier trained with cross-doc coreferent event
mention pairs, the highest weight was assigned to
the cosine similarity score calculated using con-
text embeddings of two event mentions. Addi-
tionally, both the cosine similarity score calculated
using event word embeddings and the overlapped
argument features were assigned high weights as
well. The comparisons clearly demonstrate the
significantly different nature of WD and CD event
coreference.

5.2 Neural Net Classifiers and Training
In both WD and CD classifiers, we use neural net-
work layer with 60 neurons for embedding event
word features and another layer with 1 neuron

for embedding argument features. Additionally,
in CD classifier, we use an LSTM layer with 30
neurons to embed context features. Dropout of
0.25 was applied to both the event word neural
net layer and the context layer. We used sig-
moid activation function for the dense layers and
tanh activation for the LSTM layer. We used 300-
dimensional word embeddings and one hot 374 di-
mensional pos tag embeddings in all our experi-
ments. Therefore, input to word embedding layer
is a 337-dimensional vector and to LSTM layer is
300*7 dimensional vectors.

We train both classifiers using the ECB+ cor-
pus (Cybulska and Vossen, 2014b,a). We train the
WD classifier using all pairs of WD event men-
tions that are in an annotated event chain as pos-
itive instances and using all pairs of WD event
mentions that are not in an annotated event chain
as negative instances. However, there are signif-
icantly more CD coreferent event mention pairs
annotated in the ECB+ corpus, therefore, we ran-
domly sampled 70% of all the CD coreferent event
mention pairs as positive instances and randomly
sampled from non-coreferent CD event mention
pairs as negative instances. Specifically, number
of negative instances are kept 5 times of positive
instances.

Note that the pairwise classifiers will be used
throughout the iterative merging stage. However,
after each merge, argument propagation is con-
ducted to enrich features for each event mention in
the merged cluster and the number of arguments of
an event mention will grow after several merges.
In order to account for the growing number of ar-
guments in iterative merging, we augment argu-
ments for each event mention in training instances
with arguments derived from other event mentions
in the same pair. The augmenting was performed
randomly for only 50% of event mentions.

6 Evaluation

We perform all the experiments on the ECB+
corpus (Cybulska and Vossen, 2014b,a), which
is an extension to the earlier EventCorefBank
(ECB) (Bejan and Harabagiu, 2010) dataset. We
have adopted the settings used in Yang et al.
(2015). We divide the dataset into training set
(topics 1-20), validation set (topics 21-23) and test

4Corresponding to the unique 36 POS tags based on the
Stanford POS tagger (Toutanova et al., 2003) and an addi-
tional ’padding’.



set (topics 24-43). Table 2 shows the distribution
of the corpus.

Train Dev Test Total
#Documents 462 73 447 982
#Sentences 7,294 649 7,867 15,810
#Event Mentions 3,555 441 3,290 7,286
#CD Chains 687 47 486 1,220
#WD Chains 2,499 316 2,137 4,952
Avg. WD chain length 2.835 2.589 2.553 2.686
Avg. CD chain length 5.17 9.39 6.77 5.98

Table 2: ECB+ Corpus Statistics.

We used event mentions identified by CRF
based event extractor used in Yang et al.
(2015) and extracted event arguments by apply-
ing state-of-the-art semantic role labeling system
(SwiRL (Surdeanu et al., 2007)). In addition,
we used the Stanford parser (Chen and Manning,
2014) for generating dependency relations, parts-
of-speech tags and lemmas. We use pre-trained
Glove vectors (Pennington et al., 2014)5 for word
representation and one-hot vectors for parts-of-
speech tags.

We evaluate our model using four commonly
adopted event coreference evaluation metrics,
namely, MUC (Vilain et al., 1995), B3 (Bagga
and Baldwin, 1998), CEAFe (Luo, 2005) and
CoNLL F1 (Pradhan et al., 2014). We used the
publicly available official implementation of re-
vised coreference scorer (v8.01).6

6.1 Baseline Systems

We compare our iterative event coreference reso-
lution model with five baseline systems.

LEMMA: The Lemma match baseline links
event mentions within- or cross- documents which
have the same lemmatized head word. It is often
considered a strong baseline for this task.

HDDCRP (Yang et al., 2015): The second base-
line is the supervised Hierarchical Distance De-
pendent Bayesian Model, the most recent event
coreference system evaluated on the same ECB+
dataset. This model uses distances between event
mentions, generated using a feature-rich learnable
distance function, as Bayesian priors for single
pass non-parametric clustering.

HDP-LEX7: A reimplementation of the unsu-
pervised hierarchical bayesian model by Bejan

5 Trained on 840 billion tokens of Common Crawl data,
http://nlp.stanford.edu/projects/glove/

6 https://github.com/conll/reference-coreference-scorers
7 The results were taken from the paper Yang et al. (2015).

and Harabagiu (2010, 2014).
Agglomerative 7: A Reimplementation of two-

step agglomerative clustering model, WD cluster-
ing followed by CD clustering (Chen et al., 2009).

We have trained our systems using the same
ECB+ dataset and the same set of event mentions
as these prior systems.

6.2 Our Systems
We evaluate several variation systems of our pro-
posed model.

Common Classifier (WD or CD): the system
implementing only the first stage of iterative WD
& CD merging. In addition, the same neural net
classifier with the architecture as shown in Figure
2(a) (the WD classifier) or in Figure 2(b) (the CD
classifier) was applied for both WD and CD merg-
ing. The neural net classifiers were trained using
all coreferent event mention pairs including both
within-document and cross-document ones.

WD and CD Classifiers: distinguishes WD from
CD merges by using two distinct classifiers (Fig-
ure 2(a), 2(b)) in the first stage of the algorithm.

+ 2nd Order Relations: after iterative WD and
CD merges within each individual chain as sug-
gested by pairwise classifiers (the first stage), fur-
ther merges (the second stage) were conducted
leveraging second order event inter-dependencies
across event chains.

6.3 Results
Table 3 shows the comparison results for both
within-document and cross-document event coref-
erence resolution. In the first stage of iterative
merging, using two distinct WD and CD classifiers
for corresponding WD and CD merges yields clear
improvements for both WD and CD event coref-
erence resolution tasks, compared with using one
common classifier for both types of merges. In
addition, the second stage of iterative merging fur-
ther improves both WD and CD event coreference
resolution performance stably by leveraging sec-
ond order event inter-dependencies. The improve-
ments are consistent when measured using various
coreference resolution evaluation metrics.

Our full model achieved more than 8% of
improvements when compared with the lemma
matching baseline, using the CoNLL F1-score for
both WD and CD coreference resolution tasks.
Furthermore, it outperforms state-of-the-art HD-
DCRP model for both WD and CD event corefer-
ence resolution by 2.1% and 4.9% respectively.



Cross-Document Coreference Results
B3 MUC CEAFEe CoNLL
R P F1 R P F1 R P F1 F1

LEMMA 39.5 73.9 51.4 58.1 78.2 66.7 58.9 37.5 46.2 54.8
Common Classifier (WD) 46 72.8 56.4 60.4 76.8 68.4 59.5 42.1 49.3 58
+ 2nd Order Relations 48.8 72.1 58.2 61.8 78.9 69.3 59.3 44.1 50.6 59.4
Common Classifier (CD) 44.9 64.7 53 66.1 66.4 66.2 51.9 46.4 49 56.1
+ 2nd Order Relations 52.2 58.4 55.1 70.4 66.2 68.3 54.1 45.2 49.2 57.5
WD & CD Classifiers 49 71.9 58.3 63.8 78.9 70.6 59.3 48.1 53.1 60.7
+ 2nd Order Relations (Full Model) 56.2 66.6 61 67.5 80.4 73.4 59 54.2 56.5 63.6
HDDCRP Yang et al. (2015) 40.6 78.5 53.5 67.1 80.3 73.1 68.9 38.6 49.5 58.7
HDP-LEX Bejan and Harabagiu (2010) 43.7 65.6 52.5 63.5 75.5 69.0 60.2 34.8 44.1 55.2
Agglomerative Chen et al. (2009) 40.2 73.2 51.9 59.2 78.3 67.4 65.6 30.2 41.1 53.6

Within-Document Coreference Results
LEMMA 56.8 80.9 66.7 35.9 76.2 48.8 67.4 62.9 65.1 60.2
Common Classifier (WD) 59.7 80.5 68.6 44.6 75 55.9 68.2 67.7 67.9 64.2
+ 2nd Order Relations 62.7 79.4 70 50.3 75.2 60.3 68.6 70.5 69.5 66.6
Common Classifier (CD) 65.2 67.1 66.1 47.6 53.9 50.5 69.2 62.1 65.5 60.7
+ 2nd Order Relations 66.9 69.1 68 56.7 55.1 55.9 70.4 63.6 66.8 62.8
WD & CD classifiers 63.8 79.9 70.9 51.6 75.3 61.2 68.6 70.5 69.5 67.2
+ 2nd Order Relations (Full Model) 69.2 76 72.4 58.5 67.3 62.6 67.9 76.1 71.8 68.9
HDDCRP Yang et al. (2015) 67.3 85.6 75.4 41.7 74.3 53.4 79.8 65.1 71.7 66.8
HDP-LEX Bejan and Harabagiu (2010) 67.6 74.7 71.0 39.1 50.0 43.9 71.4 66.2 68.7 61.2
Agglomerative Chen et al. (2009) 67.6 80.7 73.5 39.2 61.9 48.0 76.0 65.6 70.4 63.9

Table 3: Within- and cross-document event coreference result on ECB+ Corpus.

7 Discussion and Analysis

Cross-Document Coreference Results
Fmeasure B3 MUC CEAFEe CoNLL
1 Iteration 56 69.3 50.3 58.5
2 Iterations 57.9 69.9 52.4 60.1
3 Iterations 58.3 70.6 53.1 60.7

Within-Document Coreference Results
1 Iteration 69.7 55.8 68.8 64.8
2 Iterations 70.2 60.3 69.4 66.6
3 Iterations 70.9 61.2 69.5 67.2

Table 4: Per-iteration Performance Analysis for
the First Stage of Iterative WD & CD Merging.

Stage I: The first stage of our algorithm, itera-
tive WD and CD merging, went for three iterations
(See Table 4). Our analysis of merges in each iter-
ation shows that most of the merges in the initial it-
eration are between event mentions with the same
lemma or shared arguments. In the second and
third iterations, more merges were between event
mentions with synonymous lemmas or shared ar-
guments that have been accumulated in previous
iterations. Example merges between synonymous
event mentions include (nominate, nominations),
(die, death), (murder, killing), (hit, strike), (attack,
bomb) etc.

Stage II: It is even more intriguing to discuss
the clusters that were merged in stage 2 of merg-
ing, that leverages second order event interdepen-
dencies across event chains. We found that al-

most all of the 81 merges happening in the second
stage are between event mentions that are quite
dissimilar including (take over, replace), (unveil,
announce), (win, victory, comeback), (downtime,
problem, outage), (cut, damage), (spark, trigger)
etc. Most interestingly, two event pairs which are
antonymous to each other, (win, beat) and (defeat,
victory), were also correctly merged.

Errors: while our iterative algorithm has gradu-
ally resolved coreference relations between event
mentions that are synonyms or distant by sur-
face forms, many coreference links were over-
looked and many unrelated events were wrongly
predicted as coreferential. We analyzed our sys-
tem’s final predictions in order to identify the most
common sources of errors.

Missed Coreference Links: We found that
many event mentions have few or no argument
in their local context, and our event coreference
resolution system often failed to link these event
mentions with their coreferential mentions. For
instance, in the following event mention pairs
that were overlooked by the system, (operations,
raids), (operations, sweep), (suicide, hang), (pros-
ecution, jail), and (participating, role), one or both
event mentions do not have an argument in their
local context. This is mainly because the base
WD and CD classifiers heavily rely on features
extracted from the local context of two event men-



tions, including event words and event arguments,
in resolving the coreference relation. For these
event mentions having few arguments identified,
the iterative algorithm may get stuck from the be-
ginning.

While it is a grand challenge to further re-
solve coreferential relations between event men-
tions that do not have sufficient local features,
these missed coreference links easily break a long
and influential event chain into several sub-chains,
which makes event coreference resolution results
less useful for many potential applications, such as
text summarization.

Wrongly Predicted Coreference Links: The
majority of this type of errors are between non-
coreferent event mentions that have the same
lemma. This is especially common among report-
ing event mentions and light verb mentions. For
instance, we found that 24 non-coreferent event
clusters corresponding to reporting events, e.g.,
said, told and reported, and 13 non-coreferent
clusters corresponding to light verbs, e.g., take,
give and get, were incorrectly merged by the sys-
tem.

8 Conclusions and Future Work

We presented a novel approach for event coref-
erence resolution that extensively exploits event
inter-dependencies between event mentions in the
same chain and event mentions across chains.
The approach iteratively conducts WD and CD
merges followed by further merges leveraging sec-
ond order event inter-dependencies across chains.
We further distinguish WD and CD merges using
two distinct classifiers that capture differences of
within- and cross-document event clusters in fea-
ture distributions. Our system was shown effec-
tive in both WD and CD event coreference and has
outperformed the previous best event coreference
system in both tasks.

Note that our approach is flexible to incorpo-
rate different strategies for conducting WD and
CD merges. In the future, we plan to continue
to investigate the distinct characteristics of WD
and CD coreferent event mentions in order to fur-
ther improve event coreference performance. Es-
pecially, we are interested in including additional
discourse-level features for improving WD coref-
erence merge performance, such as, features indi-
cating the distance between two event mentions in
a document.
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