
HYTREL: Hypergraph-enhanced
Tabular Data Representation Learning

Pei Chen1∗, Soumajyoti Sarkar2, Leonard Lausen2,
Balasubramaniam Srinivasan2, Sheng Zha2, Ruihong Huang1, George Karypis2

1Texas A&M University, 2Amazon Web Services
{chenpei,huangrh}@tamu.edu,

{soumajs,lausen,srbalasu,zhasheng,gkarypis}@amazon.com

Abstract

Language models pretrained on large collections of tabular data have demonstrated
their effectiveness in several downstream tasks. However, many of these models
do not take into account the row/column permutation invariances, hierarchical
structure, etc. that exist in tabular data. To alleviate these limitations, we propose
HYTREL, a tabular language model, that captures the permutation invariances and
three more structural properties of tabular data by using hypergraphs–where the
table cells make up the nodes and the cells occurring jointly together in each row,
column, and the entire table are used to form three different types of hyperedges.
We show that HYTREL is maximally invariant under certain conditions for tabular
data, i.e., two tables obtain the same representations via HYTREL iff the two tables
are identical up to permutations. Our empirical results demonstrate that HYTREL
consistently outperforms other competitive baselines on four downstream tasks
with minimal pretraining, illustrating the advantages of incorporating the inductive
biases associated with tabular data into the representations. Finally, our qualitative
analyses showcase that HYTREL can assimilate the table structures to generate
robust representations for the cells, rows, columns, and the entire table. 1

1 Introduction

Tabular data that is organized in bi-dimensional matrices are widespread in webpages, documents,
and databases. Understanding tables can benefit many tasks such as table type classification, table
similarity matching, and knowledge extraction from tables (e.g., column annotations) among others.
Inspired by the success of pretrained language models in natural language tasks, recent studies [Yin
et al., 2020, Yang et al., 2022] proposed Tabular Language Models (TaLMs) that perform pretraining
on tables via self-supervision to generate expressive representations of tables for downstream tasks.

Among the TaLMs, many works [Herzig et al., 2020, Yin et al., 2020, Deng et al., 2020, Iida
et al., 2021] serialize tables to a sequence of tokens for leveraging existing pretrained language
model checkpoints and textual self-supervised objectives like the Masked Language Modeling.
However, due to the linearization of tables to strings, these models do not explicitly incorporate the
structural properties of a table, e.g., the invariances to arbitrary permutations of rows and columns
(independently). Our work focuses on obtaining representations of tables that take table structures
into account. We hypothesize that incorporating such properties into the table representations will
benefit many downstream table understanding tasks.

*Work done as an intern at Amazon Web Services.
1Code is available at: https://github.com/awslabs/hypergraph-tabular-lm

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/awslabs/hypergraph-tabular-lm


Club Country Founded

Barcelona ESP 1899

Real Madrid ESP 1902

Bayern München GER 1900

Soccer Clubs

Real 
Madrid

Bayern 
München

1902

1900

1899 ESP

ESP

GER

Club

Founded

Soccer Clubs

Country

Barcelona

Column Permut.

R
ow

 P
er

m
ut

.

Figure 1: An example of modeling a table as a hypergraph. Cells make up the nodes and the cells in each row,
column, and the entire table form hyperedges. The table caption and the header names are used for the names
of the table and column hyperedges. The hypergraph keeps the four structural properties of tables, e.g., the
invariance property of the table as the row/column permutations result in the same hypergraph.

Motivation: Tabular data is structurally different in comparison to other data modalities such as
images, audio, and plain texts. We summarize four structural properties present in the tables below:

• Most tables are invariant to row/column permutations. This means, in general, if we arbitrarily
(and independently) permute the rows or columns of a table, it is still an equivalent table. For other
tables with an explicit ordering of rows or columns, we can make them permutation invariant by
appropriately adding a ranking index as a new column or row.

• Data from a single column are semantically similar – for example, they oftentimes have the same
semantic types. Similarly, the cells within a single row together describe the attributes of a sample
within the table and the cells cannot be treated in silos.

• The interactions within cells/rows/columns are not necessarily pairwise, i.e., the cells within
the same row/column, and rows/columns from the same table can have high-order multilateral
relations [?].

• Information in tables is generally organized in a hierarchical fashion where the information at the
table-level can be aggregated from the column/row-level, and further from the cell-level.

However, the linearization-based approaches are not designed to explicitly capture most of the above
properties. We aim to address the limitation by modeling all the aforementioned structural properties
as inductive biases while learning the table representations.

Our Approach: In line with recent studies [Deng et al., 2020, Yang et al., 2022, Wang et al., 2021a]
which have elucidated upon the importance of the structure of a table, we propose the HYTREL that
uses hypergraphs to model the tabular data. We propose a modeling paradigm that aims capture all
of the four properties directly. Figure 1 provides an example of how a hypergraph is constructed
from a table. As observed, converting a table into a hypergraph allows us to incorporate the first
two properties inherent to the nature of hypergraphs. Hypergraphs seamlessly allow the model to
incorporate row/column permutation invariances, as well as interactions among the cells within the
same column or row. Moreover, the proposed hypergraph structure can capture the high-order (not
just pairwise) interactions for the cells in a column or a row, as well as from the whole table, and an
aggregation of hyperedges can also help preserve the hierarchical structure of a table.

Contributions: Our theoretical analysis and empirical results demonstrate the advantages of model-
ing the four structural properties. We first show that HYTREL is maximally invariant when modeling
tabular data (under certain conditions), i.e. if two tables get the same representations via the hyper-
graph table learning function, then the tables differ only by row/column permutation (independently)
actions and vice versa. Empirically, we pretrain HYTREL on publicly available tables using two
self-supervised objectives: a table content based ELECTRA2 objective [Clark et al., 2020, Iida et al.,
2021] and a table structure dependent contrastive objective [Wei et al., 2022]. The evaluation of the
pretrained HYTREL model on four downstream tasks (two knowledge extraction tasks, a table type
detection task, and a table similarity prediction task) shows that HYTREL can achieve state-of-the-art
performance.

We also provide an extensive qualitative analysis of HYTREL–including visualizations that showcase
that (a) HYTREL representations are robust to arbitrary permutations of rows and columns (inde-
pendently), (b) HYTREL can incorporate the hierarchical table structure into the representations, (c)

2



HYTREL can achieve close to state-of-the-art performance even without pretraining, and the model is
extremely efficient with respect to the number epochs for pretraining in comparison to prior works,
further demonstrating the advantages of HYTREL in modeling the structural properties of tabular data.
In Appendix B, we provide additional analysis that demonstrates HYTREL’s ability to handle input
tables of arbitrary size and underscore the importance of the independent row/column permutations.

2 HYTREL Model

Formally, a table in our work is represented as T = [M,H,R], where M is the caption, H =
[h1, h2, h3, ..., hm] are the m column headers, R represents the n rows [R1, R2, R3, ..., Rn]. Each
row Ri has m cells [ci1, ci2, ci3, ..., cim]. The caption, header, and cell values can be regarded as
sentences that contain several words. We note that each cell cij or header hj also belongs to the
corresponding column Cj . We use C = [C1, C2, C3, ..., Cm] to represent all the columns that include
the headers, so a table can also be defined as T = [M,C].

":Formatter
&

Embeddings

" Layers
Encoder

HyperAtt

Pretraining/Fine-tuning Heads

‘real’, ‘madrid’ #!, #"Real 
Madrid

%

#:

tokenize embed pooling

Multi-Head Set
Attention 

Add & Norm

Feed
Forward

Add & Norm

‘coun’, ‘##try’ #!# , #"# '

!ℰ→!

HyperTans

!!→ℰ

!!→ℰ

Hyperedge2Node HyperAtt

Node2Hyperedge HyperAtt

$:

ℰ:

!ℰ→!

Country

Hyperedge Fusion

Figure 2: The overall framework of HYTREL. We first turn a table T into a hypergraph G and then initialize the
embeddings of the nodes V and hyperedges E . After that, we encode the hypergraph using stacked multiple-layer
hypergraph-structure-aware transformers (HyperTrans). Each HyperTrans layer has two attention blocks that
work on hypergraph (HyperAtt) and one Hyperedge Fusion block. Lastly, we use the node and hyperedge
representations from the final layer for pretraining and fine-tuning.

2.1 Formatter & Embedding Layer

The formatter transforms a table into a hypergraph. As shown in Figure 1, given a table T , we
construct a corresponding hypergraph G = (V, E), where V , E denote the set of nodes and hyperedges
respectively. We treat each cell cij as a node vij ∈ V , and each row Ri, each column Cj , and the
entire table T as hyperedges eci , e

r
j , e

t ∈ E (1≤i≤n,1≤j≤m), respectively. As a part of our hypergraph
construction, each cell node vij is connected to 3 hyperedges: its column hyperedge eci , row hyperedge
erj , and the table hyperedge et. The hypergraph can be conveniently be represented as an incidence
matrix B ∈ {0, 1}mn×(m+n+1), where Bij = 1 when node i belong to hyperedge j and Bij = 0
otherwise.

An embedding layer is then employed over the nodes and hyperedges . Each node vij corresponds to
a cell cij that has several tokens, and we obtain the feature vector Xvij ,: ∈ RF for a given node by
feeding its constituent cell tokens into the embedding layer and then averaging the embeddings over
the tokens. After obtaining node embeddings X ∈ Rnm×F for all nodes, a similar transformation
is applied over hyperedges. For different hyperedge types, we use different table content for their
initialization : for a column hyperedge eci , we use all the tokens from the corresponding header hi. For
the table hyperedge et, we use the the entire caption associated with M . For the row hyperedge erj ,

2We use the name ELECTRA following Iida et al. [2021] but it is different from the ELECTRA objective
used in language modeling [Clark et al., 2020]. We do not utilize an auxiliary model to generate corruption.

3



when no semantic information is available, we randomly initialize them as Serj ,:
∈ RF . Performing

the above operations yields an initialization for all the hyperedge embeddings S ∈ R(m+n+1)×F .

2.2 Hypergraph Encoder

After embedding, we propose to use a structure-aware transformer module (HyperTrans) to encode
the hypergraphs. HyperTrans encoder can encode the table content, structure, and relations among
the table elements (including cells, headers, captions, etc.). As shown in Figure 2, one layer of the
HyperTrans module is composed of two hypergraph attention blocks (HyperAtt, f ) [Chien et al.,
2022] that interact with the node and hyperedge representations, and one Hyperedge Fusion block.
The first HyperAtt block is the Node2Hyperedge attention block as defined below:

S̃(t+1)
e,: = fV→E

(
Ke,X(t)

)
(1)

Where fV→E is a hypergraph attention function defined from nodes to hyperedges. Ke,X =
{Xv,: : v ∈ e} denotes the sets of hidden node representations included in the hyperedge e. The
Node2Hyperedge block will aggregate information to hyperedge e from its constituent nodes v ∈ e.

We then use a Hyperedge Fusion module (a Multilayer Perceptron Network, MLP) to propagate
the hyperedge information from the last step, as defined below:

S(t+1)
e,: = MLP

(
S(t)
e,: ; S̃

(t+1)
e,:

)
(2)

A second HyperAtt block Hyperedge2Node then aggregates information from a hyperedge to its
constituent nodes as follows:

X(t+1)
v,: = fE→V

(
Lv,S(t+1)

)
(3)

Where fE→V is another hypergraph attention function defined from hyperedges to nodes. Lv,S =
{Se,: : v ∈ e} is defined as the sets of hidden representations of hyperedges that contain the node v.

As for the HyperAtt block f , similar to transformer [Vaswani et al., 2017], it is composed of one
multi-head attention, one Position-wise Feed-Forward Network (FFN), two-layer normalization
(LN) [Ba et al., 2016] and two skip connections [He et al., 2016], as in Figure 2. However, we do
not use the self-attention [Vaswani et al., 2017] mechanism from the transformer model because it
is not designed to keep the invariance structure of tables or hypergraphs. Inspired by the deep set
models [Zaheer et al., 2017, Lee et al., 2019], we use a set attention mechanism that can keep the
permutation invariance of a table. We define HyperAtt f as follows:

fV→E or E→V(I) := LN(Y + FFN(Y)) (4)

Where I is the input node or hyperedge representations. The intermediate representations Y is
obtained by:

Y = LN(ω + SetMH(ω, I, I)) (5)

Where SetMH is the multi-head set attention mechanism defined as:
SetMH(ω, I, I) = ∥hi=1Oi (6)

and
Oi = Softmax

(
ωi

(
IWK

i

)T) (
IWV

i

)
(7)

Where ω is a learnable weight vector as the query and ω := ∥hi=1ωi, WK
i and WV

i are the weights
for the key and value projections, ∥ means concatenation.

So the HyperTrans module will update node and hyperedge representations alternatively. This
mechanism enforces the table cells to interact with the columns, rows, and the table itself. Similar
to BERTbase [Devlin et al., 2019] and TaBERTbase [Yin et al., 2020] , we stack 12 layers of
HyperTrans.

4



2.3 Invariances of the HYTREL Model

Let ϕ : T 7→ z ∈ Rd be our target function which captures the desired row/column permutation
invariances of tables (say for tables of size n×m). Rather than working on the table T directly, the
proposed HYTREL model works on a hypergraph (via Eqns (1-5)) that has an incidence matrix B of
size mn× (m+ n+ 1). Correspondingly, we shall refer to HYTREL as a function g : B 7→ y ∈ Rk.

In this section we will make the connections between the properties of the two functions ϕ and g,
demonstrating a maximal invariance between the two–as a result of which we prove that our HYTREL
can also preserve the permutation invariances of the tables. First, we list our assumptions and resultant
properties of tabular data. Subsequently, we present the maximal invariance property of ϕ and our
hypergraph-based learning framework g. As a part of our notation, we use [n] to denote {1, 2, . . . , n}.
Preliminaries and all detailed proofs are presented in the Appendix A.1 and A.2 respectively.
Assumption 2.1. For any table (Tij)i∈[n],j∈[m] (where i, j are indexes of the rows, columns), an
arbitrary group action a ∈ Sn × Sm acting appropriately on the rows and columns leaves the target
random variables associated with tasks on the entire table unchanged.

This assumption is valid in most real-world tables – as reordering the columns and the rows in the
table oftentimes doesn’t alter the properties associated with the entire table (e.g. name of the table,
etc). As noted earlier, for tables with an explicit ordering of rows or columns, we can make them
permutation invariant by adding a ranking index as a new column or row appropriately. To model this
assumption, we state a property required for functions acting on tables next.
Property 1. A function ϕ : T 7→ z ∈ Rd which satisfies Assumption 2.1 and defined over tabular
data must be invariant to actions from the (direct) product group Sn × Sm acting appropriately on the
table i.e. ϕ(a · T ) = ϕ(T ) ∀a ∈ Sn × Sm.

However, HYTREL (or the function g via hypergraph modeling) through Eqns (1-5)) models invari-
ances of the associated incidence matrix to the product group Smn × Sm+n+1 (proof presented in the
appendix). To make the connection between the two, we present the maximal invariance property of
our proposed HYTREL model.
Theorem 2.2. A continuous function ϕ : T 7→ z ∈ Rd over tables is maximally invariant when
modeled as a function g : B 7→ y ∈ Rk over the incidence matrix of a hypergraph G constructed per
Section 2.1 (Where g is defined via Eqns (1-5)) if ∃ a bijective map between the space of tables and
incidence matrices (defined over appropriate sizes of tables, incidence matrices). That is, ϕ(T1) =
ϕ(T2) iff T2 is some combination of row and/or column permutation of T1 and g(B1) = g(B2) where
B1,B2 are the corresponding (hypergraph) incidence matrices of tables T1, T2.

Proof Sketch: Detailed proof is provided in Appendix A.2. The above theorem uses Lemma 1 from
[Tyshkevich and Zverovich, 1996] and applies the Weisfeiler-Lehman test of isomorphism over the
star expansion graphs of the hypergraphs toward proving the same.

As a consequence of Theorem 2.2, two tables identical to permutations will obtain the same represen-
tation, which has been shown to improve generalization performance [Lyle et al., 2020].

2.4 Pretraining Heads

ELECTRA Head: In the ELECTRA pretraining setting, we first corrupt a part of the cells and the
headers from a table and then predict whether a given cell or header has been corrupted or not Iida
et al. [2021]. Cross-entropy loss is used together with the binary classification head.

Contrastive Head: In the contrastive pretraining setting, we randomly corrupt a table-transformed
hypergraph by masking a portion of the connections between nodes and hyperedges, as inspired
by the hypergraph contrastive learning [Wei et al., 2022]. For each hypergraph, we corrupt two
augmented views and use them as the positive pair, and use the remaining in-batch pairs as negative
pairs. Following this, we contrast the table and column representations from the corresponding
hyperedges. The InfoNCE [van den Oord et al., 2018] objective is used for optimization as in 8.

loss = − log
exp (q · k+/τ)∑K
i=0 exp (q · ki/τ)

(8)

where (q,k+) is the positive pair, and τ is a temperature hyperparameter.

5



3 Experiments

3.1 Pre-training

Data In line with previous TaLMs [Yin et al., 2020, Iida et al., 2021], we use tables from Wikipedia
and Common Crawl for pretraining. We utilize preprocessing tools provided by Yin et al. [2020] and
collect a total of 27 million tables (1% are sampled and used for validation).3 During pretraining,
we truncate large tables and retain a maximum of 30 rows and 20 columns for each table, with a
maximum of 64 tokens for captions, column names, and cell values. It is important to note that the
truncation is solely for efficiency purposes and it does not affect HYTREL’s ability to deal with large
tables, as elaborated in appendix B.1.

Settings With the ELECTRA pretraining objective, we randomly replace 15% of the cells or headers
of an input table with values that are sampled from all the pretraining tables based on their frequency,
as recommended by Iida et al. [2021]. With the contrastive pretraining objective, we corrupted 30%
of the connections between nodes and hyperedges for each table to create one augmented view. The
temperature τ is set as 0.007. For both objectives, we pretrain the HYTREL models for 5 epochs.
More details can be found the Appendix C.1.

3.2 Fine-tuning4

After pretraining, we use the HYTREL model as a table encoder to fine-tune downstream table-
related tasks. In order to demonstrate that our model does not heavily rely on pretraining or on
previous pretrained language models, we also fine-tune the randomly initialized HYTREL model
for comparison. In this section, we introduce the evaluation tasks and the datasets. We choose the
following four tasks that rely solely on the table representations since we want to test the task-agnostic
representation power of our model and avoid training separate encoders for texts (e.g., questions in
table QA tasks) or decoders for generations. As mentioned, our encoder can be used in all these
scenarios and we leave its evaluation in other table-related tasks as future work.

Column Type Annotation (CTA) task aims to annotate the semantic types of a column and is an
important task in table understanding which can help many knowledge discovery tasks such as entity
recognition and entity linking. We use the column representations from the final layer of HYTREL
with their corresponding hyperedge representations for making predictions. We evaluate HYTREL on
the TURL-CTA dataset constructed by Deng et al. [2020].

Column Property Annotation (CPA) task aims to map column pairs from a table to relations in
knowledge graphs. It is an important task aimed at extracting structured knowledge from tables. We
use the dataset TURL-CPA constructed by Deng et al. [2020] for evaluation.

Table Type Detection (TTD) task aims to annotate the semantic type of a table based on its content.
We construct a dataset using a subset from the public WDC Schema.org Table Corpus.

Table Similarity Prediction (TSP) task aims at predicting the semantic similarity between tables
and then classifying a table pair as similar or dissimilar. We use the PMC dataset proposed by Habibi
et al. [2020] for evaluation.

3.3 Baselines

TaBERT [Yin et al., 2020] is a representative TaLM that flattens the tables into sequences and jointly
learns representations for sentences and tables by pretraining the model from the BERT checkpoints.
K=1 and K=3 are the two variants based on the number of rows used.

TURL [Deng et al., 2020] is another representative TaLM that also flattens the tables into sequences
and pretrains from TinyBERT [Jiao et al., 2020] checkpoints. It introduces a vision matrix to
incorporate table structure into the representations.

Doduo [Suhara et al., 2022] is a state-of-the-art column annotation system that fine-tunes the BERT
and uses table serialization to incorporate table content.

3As the version of Wikipedia used by [Yin et al., 2020] is not available now, we use an updated version so
we collect slightly more tables than previous TaLMs.

4More details about experimental settings, the datasets, and the baselines can be found the Appendix C.2

6

http:\webdatacommons.org/structureddata/schemaorgtables/


Systems Column Type Annotation Column Property Annotation

Sherlock 88.40 / 70.55 / 78.47 -
BERTbase - 91.18 / 90.69 / 90.94
TURL + metadata 92.75 / 92.63 / 92.69 92.90 / 93.80 / 93.35
Doduo + metadata 93.25 / 92.34 / 92.79 91.20 / 94.50 / 92.82

TaBERTbase(K=1) 91.40±0.06 / 89.49±0.21 / 90.43±0.11 92.31±0.24 / 90.42±0.53 / 91.36±0.30
w/o Pretrain 90.00±0.14 / 85.50±0.09 / 87.70±0.10 89.74±0.40 / 68.74±0.93 / 77.84±0.64

TaBERTbase(K=3) 91.63±0.21 / 91.12±0.25 / 91.37±0.08 92.49±0.18 / 92.49±0.22 / 92.49±0.10
w/o Pretrain 90.77±0.11 / 87.23±0.22 / 88.97±0.12 90.10±0.17 / 84.83±0.89 / 87.38±0.48

HYTREL w/o Pretrain 92.92±0.11 / 92.50±0.10 / 92.71±0.08 92.85±0.35 / 91.50±0.54 / 92.17±0.38
HYTREL w/ ELECTRA 92.85±0.21 / 94.21±0.09 / 93.53±0.10 92.88±0.24 / 94.07±0.27 / 93.48±0.12
HYTREL w/ Contrastive 92.71±0.20 / 93.24±0.08 / 92.97±0.13 93.01±0.40 / 93.16±0.40 / 93.09±0.17

Table 1: Test results on the CTA and CPA tasks (Precision/Recall/F1 Scores,%). The results of TaBERT and
HYTREL are from the average of 5 system runs with different random seeds. For fair comparisons, we use the
results of TURL and Doduo with metadata, i.e., captions and headers.

Systems Table Type Detection Table Similarity Prediction

Accuracy Precision/Recall/F1 Accuracy

TFIDF+Glove+MLP - 87.36 / 83.81 / 84.47 85.06
TabSim - 88.65 / 85.45 / 86.13 87.05

TaBERTbase(K=1) 93.11±0.31 87.04±0.64 / 85.34±0.93 / 86.18±1.13 87.35±1.42
w/o Pretrain 85.04±0.41 33.61±12.70 / 50.31±12.75 / 40.30±12.03 63.45±10.11

TaBERTbase(K=3) 95.15±0.14 87.76±0.64 / 86.97±0.59 / 87.36±0.95 88.29±0.98
w/o Pretrain 89.88±0.26 82.96±1.84 / 81.16±1.45 / 82.05±1.02 82.57±1.20

HYTREL w/o Pretrain 93.84±0.17 88.94±1.83 / 85.72±1.52 / 87.30±1.02 88.38±1.43
HYTREL w/ ELECTRA 95.81±0.19 87.35±0.42 / 87.29±0.84 / 87.32±0.50 88.29±0.49
HYTREL w/ Contrastive 94.52±0.30 89.41±0.58 / 89.10±0.90 / 89.26±0.53 90.12±0.49

Table 2: Test results on the TTD (Accuracy Score,%) and TSP (Precision/Recall/F1 Scores,%) tasks. The
results of TaBERT and HYTREL are from the average of 5 system runs with different random seeds.

3.4 Main Results

The results are presented in Tables 1 and 2. Overall, HYTREL consistently outperforms the baselines
and achieve superior performance. A salient observation is that our model (even without pretraining)
can achieve close to state-of-the-art performance. In comparison, we notice that the performance
slumps significantly for TaBERT without pretraining. This phenomenon empirically demonstrates the
advantages of modeling the table structures as hypergraphs over the other methods that we compare.

Additionally, we observe that the two pretraining objectives help different tasks in different ways. For
the CTA, CPA, and TTD tasks, the two objectives can help HYTREL further improve its performance.
In general, the ELECTRA objective performs better than the contrastive objective. These results are
also in line with the representation analysis in Section 4.2 where we observe that the ELECTRA
objective tends to learn table structure better than the contrastive objective. However, for the TSP task,
we observe that the contrastive objective can help the HYTREL model while the ELECTRA objective
fails to bring any improvement. One possible reason for the ineffectiveness of the ELECTRA
objective could be its inability to transfer well across domains. HYTREL pretrained with tables from
Wikipedia and Common Crawl could not transfer well to the medical domain PMC dataset. As for the
improvement observed from the contrastive objective, the reason could be that contrastive learning
that uses similarity metrics in the objective function can naturally help the similarity prediction task.

Scalability: As stated in Section 3, we have truncated large tables during pretraining. However, this
truncation does not hinder the ability of HYTREL to handle large table inputs in downstream tasks.
In Appendix B.1, we present additional experiments demonstrating that: (a) HYTREL can effectively
process tables of any size as inputs, and (b) down-sampling can be a favorable strategy when working
with large input tables, significantly improving efficiency without compromising performance.

7



4 Qualitative Analysis

4.1 HYTREL Learns Permutation Robust Representations

Row Permu. Column Permu. Both Permu.
0

2

4

6

8

10

Di
st

an
ce

 (L
2-

no
rm

)

TaBERT (K=1)
TaBERT (K=3)
HyTrel

Figure 3: Average distance between table element
representations before and after permutations. The
HYTREL is immune to the permutations while the
TaBERT is sensitive to them.

We sample 5,000 tables from the validation data for
analysis. We analyze the impact of applying different
permutations to a table, including permuting rows,
columns, and both rows/columns independently.

Toward our analysis, we measure the Euclidean dis-
tance (L2 Norm) of the representations (cells, rows,
columns and tables). As shown in Figure 3, the dis-
tance is almost always 0 for the HYTREL model be-
cause of its explicit invariance-preserving property.
On the other hand, for the TaBERT model, the dis-
tance is not trivial. We observe that when more rows
(K=3) are enabled, the value of the L2 norm increases
as we introduce different permutations. Moreover, we
also observe that permuting the columns has a greater
impact on the L2 norm than the row permutations.
A combination of rows and columns permutations
has the largest impact among all three actions. Note
that when K=1 with just one row, the effect of row
permutation is disabled for TaBERT.

4.2 HYTREL Learns the Underlying Hierarchical Table Structure

Next, we demonstrate that the HYTREL model has learned the hierarchical table structure into its
representations, as we target at. We use t-SNE [Van der Maaten and Hinton, 2008] for the visualization
of different table elements from the same 5,000 validation tables, as shown in Figure 4.

Figure 4: t-SNE visualization of the representations learned by HYTREL. ‘tab’, ‘col’, ‘row’, and
‘cell’ are the representations for different table elements: tables, columns, rows, and cells.

We observe that with random initializations, different table elements cannot be distinguished properly.
After the encoding of the randomly initialized HYTREL model, we start to observe noticeable
differences for different table elements in the visualization space. Notably, the individual cell
representations start to concentrate together and can be distinguished from high-level table elements
(tables, columns, and rows) which occupy their separate places in the space of representations.
We also notice that, by pretraining the HYTREL with the ELECTRA objective, all table elements
can be well separated, showing that it incorporates the hierarchical table structure into its latent
representations. As for the contrastive pretraining, we see that it can distinguish columns from rows as
compared with randomly initialized HYTREL, but could not to well separate the table representations
in comparison with the ELECTRA pretraining. This also partially explains the better performance of
the ELECTRA pretraining in the CTA, CPA and TTD tasks in contrast to the contrastive pretraining.

8



4.3 HYTREL Demonstrates Effective Pretraining by Capturing the Table Structures

0 1 3 5 7 9 10
88

89

90

91

92

93
F1

 S
co

re
/ A

cc
ur

ac
y 

(%
)

CTA

0 1 3 5 7 9 10
75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

CPA

0 1 3 5 7 9 10
86

88

90

92

94

96

TTD

0 1 3 5 7 9 10

40

50

60

70

80

90
TSP

HyTrel (ELECTRA)
HyTrel (Contrastive)
TaBERT (K=3)
TaBERT (K=1)

Pretraining Epochs

Figure 5: Performance with different pretraining checkpoints on the validation set of the four tasks. For the
TaBERT models, we can only access the randomly initialized and fully pretrained (10 epochs) checkpoints. All
results are from 5 system runs with different random seeds.

Our evaluation shows that the HYTREL model can perform well without pretraining, which demon-
strates its training efficiency by modeling table structures. Here we further analyze how much
pretraining is required for HYTREL to further enhance its performance, as compared with the baseline
model. We plot the validation performance of the tasks evaluated at different pretraining checkpoints
in Figure 5.

Overall, we can observe that the performance of HYTREL improves drastically during the first several
pretraining epochs, and then saturates at about 5 epochs. With the minimal pretraining, HYTREL
can outperform the fully pretrained TaBERT models. This demonstrates that our model does not
require extensive pretraining to further improve its performance in contrast with previous TaLMs
(e.g., TURL for 100 epochs, TaBERT for 10 epochs). Besides, we also observe from the curves that
the ELECTRA objective consistently outperforms the contrastive objective for the CTA, CPA, and
TTD tasks, but under-performs on the TSP task. Also, the ELECTRA objective has a negative impact
on the TSP task when pretrained for longer duration, which is in line with our previous findings.

5 Related Work

There are two avenues of research that have studied in tabular data representation learning. The first
group of studies focus on predicting labels (essentially one row) for classification and regression
problems, using row information and column schema as input[Huang et al., 2020, Arik and Pfister,
2021, Somepalli et al., 2021, Gorishniy et al., 2021, Grinsztajn et al., 2022, Wang and Sun, 2022,
Du et al., 2022, Wydmański et al., 2023, Liu et al., 2023]. These studies use gradient descent-based
end-to-end learning and aim to outperform tree-based models through task-specific model pretraining
and fine-tuning.

The second group of studies proposes TaLMs to retrieve task-agnostic tabular data representations
for different downstream table understanding tasks. Drawing inspiration from textual Language
Models like BERT [Devlin et al., 2019], many works [Herzig et al., 2020, Yin et al., 2020, Deng
et al., 2020, Iida et al., 2021, Eisenschlos et al., 2021] serialize tables to a sequence of tokens,
leveraging existing checkpoints and textual self-supervised objectives. However, the representations
of the tables can not only be learned from table content and by utilizing table structures, similar to
other forms of semi-structured data like code and HTML. Some contemporary works have noticed
the importance of the table structures and introduce many techniques to learn a certain aspect of
them, such as masking [Deng et al., 2020], coordinates [Wang et al., 2021a, Dash et al., 2022], and
attention bias [Yang et al., 2022]. Our work belongs to this second group of studies and we propose
to use hypergraphs to comprehensively model the rich table structures, and this is close to previous
graph-based neural networks [Mueller et al., 2019, Wang et al., 2021b,c] where tables have been
structured as graphs to incorporate row and column order information.

Table representation learning that focuses on joint text and table understanding is a separate field of
research that partially overlaps with our work. Among them, some work [Herzig et al., 2020, Shi
et al., 2022, Herzig et al., 2021, Glass et al., 2021, Yang et al., 2022] specialize in question-answering
(QA) on tables and they jointly train a model that takes the question and the table structure as input
together, allowing the pretraining to attend to the interactions of both texts and tables and boosting

9



the table-based QA tasks. Another branch of joint text and table understanding work focuses on text
generation from tables[Parikh et al., 2020, Yoran et al., 2021, Wang et al., 2022, Andrejczuk et al.,
2022], relying on an encoder-decoder model like T5 [Raffel et al., 2020] that can encode tables and
decode free-form texts. In contrast to these studies, our work centers on the importance of structures
in tables for table representation only, without extra text encoding or decoding.

Learning on hypergraphs has gone through a series of evolution [Agarwal et al., 2006, Yadati et al.,
2019, Arya et al., 2020] in the way the hypergraph structure is modeled using neural networks layers.
However, many of them collapse the hypergraph into a fully connected graph by clique expansion and
cannot preserve the high-order interaction among the nodes. The recent development of permutation
invariant networks [Zaheer et al., 2017, Lee et al., 2019] has enabled high-order interactions on the
hypergraphs [Chien et al., 2022] that uses parameterized multi-set functions to model dual relations
from node to hyperedges and vice versa. Closely related to the latest advancement, our HYTREL
model adopts a similar neural message passing on hypergraphs to preserve the invariance property
and high-order interactions of tables.

6 Limitations

The proposed HYTREL is a table encoder, and by itself cannot handle joint text and table under-
standing tasks like table QA and table-to-text generation. While it’s possible to add text encoders or
decoders for these tasks, it can potentially introduce additional factors that may complicate evaluating
our hypothesis about the usefulness of modeling structural table properties. Moreover, the current
model structure is designed for tables with simple column structures, like prior TaLMs, and cannot
handle tables with complex hierarchical column structures. Additionally, HYTREL does not consider
cross-table relations. Although we believe the hypergraph can generalize to model complicated
column structures and cross-table interactions, we leave these aspects for future research.

7 Conclusion

In this work, we propose a tabular language model HYTREL that models tables as hypergraphs. It
can incorporate the permutation invariances and table structures into the table representations. The
evaluation on four table-related tasks demonstrates the advantages of learning these table properties
and show that it can consistently achieve superior performance over the competing baselines. Our
theoretical and qualitative analyses also support the effectiveness of learning the structural properties.

References
Pengcheng Yin, Graham Neubig, Wen tau Yih, and Sebastian Riedel. TaBERT: Pretraining for

joint understanding of textual and tabular data. In Annual Conference of the Association for
Computational Linguistics (ACL), July 2020.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay, Luheng He, Rahul Goel, and Shachi Paul. Table-
Former: Robust transformer modeling for table-text encoding. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 528–537, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.40. URL https://aclanthology.org/2022.acl-long.40.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno, and Julian Eisen-
schlos. TaPas: Weakly supervised table parsing via pre-training. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 4320–4333, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.398. URL
https://aclanthology.org/2020.acl-main.398.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. Turl: table understanding through
representation learning. Proceedings of the VLDB Endowment, 14(3):307–319, 2020.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. TABBIE: Pretrained representations
of tabular data. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 3446–3456,

10

https://aclanthology.org/2022.acl-long.40
https://aclanthology.org/2020.acl-main.398


Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.
270. URL https://aclanthology.org/2021.naacl-main.270.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei Zhang. Tuta: Tree-based
transformers for generally structured table pre-training. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery &amp; Data Mining, KDD ’21, page 1780–1790, New
York, NY, USA, 2021a. Association for Computing Machinery. ISBN 9781450383325. doi:
10.1145/3447548.3467434. URL https://doi.org/10.1145/3447548.3467434.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: Pre-
training text encoders as discriminators rather than generators. In ICLR, 2020. URL https:
//openreview.net/pdf?id=r1xMH1BtvB.

Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, and Zhangyang Wang. Aug-
mentations in hypergraph contrastive learning: Fabricated and generative. arXiv preprint
arXiv:2210.03801, 2022.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function frame-
work for hypergraph neural networks. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=hpBTIv2uy_E.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv, abs/1607.06450,
2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/
2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In Proceedings
of the 36th International Conference on Machine Learning, pages 3744–3753, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

RI Tyshkevich and Vadim E Zverovich. Line hypergraphs. Discrete Mathematics, 161(1-3):265–283,
1996.

Clare Lyle, Mark van der Wilk, Marta Kwiatkowska, Yarin Gal, and Benjamin Bloem-Reddy. On the
benefits of invariance in neural networks. arXiv preprint arXiv:2005.00178, 2020.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018. URL http://arxiv.org/abs/1807.03748.

Maryam Habibi, Johannes Starlinger, and Ulf Leser. Tabsim: A siamese neural network for accurate
estimation of table similarity. pages 930–937, 12 2020. doi: 10.1109/BigData50022.2020.9378077.

11

https://aclanthology.org/2021.naacl-main.270
https://doi.org/10.1145/3447548.3467434
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/forum?id=hpBTIv2uy_E
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
http://arxiv.org/abs/1807.03748


Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
TinyBERT: Distilling BERT for natural language understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 4163–4174, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.372. URL https://
aclanthology.org/2020.findings-emnlp.372.

Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demiralp, Chen Chen, and Wang-
Chiew Tan. Annotating Columns with Pre-trained Language Models. Association for Com-
puting Machinery, 2022. ISBN 9781450392495. URL https://doi.org/10.1145/3514221.
3517906.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pages 6679–6687, 2021.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. In NeurIPS, 2021.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022. URL https://openreview.net/forum?id=
Fp7__phQszn.

Zifeng Wang and Jimeng Sun. Transtab: Learning transferable tabular transformers across tables. In
Advances in Neural Information Processing Systems, 2022.

Kounianhua Du, Weinan Zhang, Ruiwen Zhou, Yangkun Wang, Xilong Zhao,
Jiarui Jin, Quan Gan, Zheng Zhang, and David Paul Wipf. Learning en-
hanced representations for tabular data via neighborhood propagation. In
NeurIPS 2022, 2022. URL https://www.amazon.science/publications/
learning-enhanced-representations-for-tabular-data-via-neighborhood-propagation.

Witold Wydmański, Oleksii Bulenok, and Marek Śmieja. Hypertab: Hypernetwork approach for
deep learning on small tabular datasets. arXiv preprint arXiv:2304.03543, 2023.

Tennison Liu, Jeroen Berrevoets, Zhaozhi Qian, and Mihaela Van Der Schaar. Learning representa-
tions without compositional assumptions. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

Julian Eisenschlos, Maharshi Gor, Thomas Müller, and William Cohen. MATE: Multi-view attention
for table transformer efficiency. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 7606–7619, Online and Punta Cana, Dominican Republic,
November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.
600. URL https://aclanthology.org/2021.emnlp-main.600.

Sarthak Dash, Sugato Bagchi, Nandana Mihindukulasooriya, and Alfio Gliozzo. Permutation invariant
strategy using transformer encoders for table understanding. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 788–800, 2022.

Thomas Mueller, Francesco Piccinno, Peter Shaw, Massimo Nicosia, and Yasemin Altun. Answering
conversational questions on structured data without logical forms. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5902–5910, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1603.
URL https://aclanthology.org/D19-1603.

12

https://aclanthology.org/2020.findings-emnlp.372
https://aclanthology.org/2020.findings-emnlp.372
https://doi.org/10.1145/3514221.3517906
https://doi.org/10.1145/3514221.3517906
https://openreview.net/forum?id=Fp7__phQszn
https://openreview.net/forum?id=Fp7__phQszn
https://www.amazon.science/publications/learning-enhanced-representations-for-tabular-data-via-neighborhood-propagation
https://www.amazon.science/publications/learning-enhanced-representations-for-tabular-data-via-neighborhood-propagation
https://aclanthology.org/2021.emnlp-main.600
https://aclanthology.org/D19-1603


Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, and Pedro Szekely. Retrieving complex tables with
multi-granular graph representation learning. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’21, page 1472–1482,
New York, NY, USA, 2021b. Association for Computing Machinery. ISBN 9781450380379. doi:
10.1145/3404835.3462909. URL https://doi.org/10.1145/3404835.3462909.

Daheng Wang, Prashant Shiralkar, Colin Lockard, Binxuan Huang, Xin Luna Dong, and Meng
Jiang. Tcn: Table convolutional network for web table interpretation. In Proceedings of the Web
Conference 2021, pages 4020–4032, 2021c.

Peng Shi, Patrick Ng, Feng Nan, Henghui Zhu, Jun Wang, Jiarong Jiang, Alexander Hanbo Li, Rishav
Chakravarti, Donald Weidner, Bing Xiang, et al. Generation-focused table-based intermediate
pre-training for free-form question answering. 2022.

Jonathan Herzig, Thomas Müller, Syrine Krichene, and Julian Martin Eisenschlos. Open domain
question answering over tables via dense retrieval. arXiv preprint arXiv:2103.12011, 2021.

Michael Glass, Mustafa Canim, Alfio Gliozzo, Saneem Chemmengath, Vishwajeet Kumar, Rishav
Chakravarti, Avi Sil, Feifei Pan, Samarth Bharadwaj, and Nicolas Rodolfo Fauceglia. Capturing
row and column semantics in transformer based question answering over tables. arXiv preprint
arXiv:2104.08303, 2021.

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi
Yang, and Dipanjan Das. Totto: A controlled table-to-text generation dataset. arXiv preprint
arXiv:2004.14373, 2020.

Ori Yoran, Alon Talmor, and Jonathan Berant. Turning tables: Generating examples from
semi-structured tables for endowing language models with reasoning skills. arXiv preprint
arXiv:2107.07261, 2021.

Fei Wang, Zhewei Xu, Pedro Szekely, and Muhao Chen. Robust (controlled) table-to-text genera-
tion with structure-aware equivariance learning. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 5037–5048, Seattle, United States, July 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.naacl-main.371. URL https://aclanthology.org/2022.
naacl-main.371.

Ewa Andrejczuk, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, and Yasemin
Altun. Table-to-text generation and pre-training with tabt5. arXiv preprint arXiv:2210.09162,
2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs. In
Proceedings of the 23rd international conference on Machine learning, pages 17–24, 2006.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method for training graph convolutional networks on hypergraphs.
Advances in neural information processing systems, 32, 2019.

Devanshu Arya, Deepak K Gupta, Stevan Rudinac, and Marcel Worring. Hypersage: Generalizing
inductive representation learning on hypergraphs. arXiv preprint arXiv:2010.04558, 2020.

László Babai, Paul Erdo˝s, and Stanley M. Selkow. Random graph isomorphism. SIAM Journal
on Computing, 9(3):628–635, 1980. doi: 10.1137/0209047. URL https://doi.org/10.1137/
0209047.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

13

https://doi.org/10.1145/3404835.3462909
https://aclanthology.org/2022.naacl-main.371
https://aclanthology.org/2022.naacl-main.371
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1137/0209047
https://doi.org/10.1137/0209047


Balasubramaniam Srinivasan, Da Zheng, and George Karypis. Learning over families of sets-
hypergraph representation learning for higher order tasks. In Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM), pages 756–764. SIAM, 2021.

Mohamed Trabelsi, Zhiyu Chen, Shuo Zhang, Brian D Davison, and Jeff Heflin. StruBERT: Structure-
aware bert for table search and matching. In Proceedings of the ACM Web Conference, WWW ’22,
2022.

Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satyanarayan, Tim
Kraska, Çağatay Demiralp, and César Hidalgo. Sherlock: A deep learning approach to semantic
data type detection. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery &#38; Data Mining. ACM, 2019.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha, Qatar, October 2014. Association for Computa-
tional Linguistics. doi: 10.3115/v1/D14-1162. URL https://aclanthology.org/D14-1162.

14

https://aclanthology.org/D14-1162


A Details of the Proofs

A.1 Preliminaries

Definition A.1 (Hypergraph). Let H = (V,E,X,E) denote a hypergraph H with a finite vertex
set V = {v1, . . . , vn}, corresponding vertex features with X ∈ Rn×d; d > 0, a finite hyperedge set

E = {e1, . . . , em}, where E ⊆ P ∗(V ) \ {∅} and
m⋃
i=1

ei = V , and P ∗(V ) denotes the power set on

the vertices, the corresponding hyperedge features E ∈ Rm×d; d > 0. The hypergraph connections
can be conveniently represented as an incidence matrix B ∈ {0, 1}n×m, where Bij = 1 when node i
belong to hyperedge j and Bij = 0 otherwise.

Definition A.2 (1-Wesifeiler Lehman Test). Let G = (V,E) be a graph, with a finite vertex set V and
let s : V → ∆ be a node coloring function with an arbitrary co-domain ∆ and s(v), v ∈ V denotes
the color of a node in the graph. Correspondingly, we say a labeled graph (G, s) is a graph G with a
complete node coloring s : V → ∆. The 1-WL Algorithm [Babai et al., 1980] can then be described
as follows: let (G, s) be a labeled graph and in each iteration, t ≥ 0, the 1-WL computes a node color-
ing c

(t)
s : V → ∆, which depends on the coloring from the previous iteration. The coloring of a node

in iteration t > 0 is then computed as c
(t)
s (v) = HASH

((
c
(t−1)
s (v),

{
c
(t−1)
s (u) | u ∈ N(v)

}))
where HASH is bijective map between the vertex set and ∆, and N(v) denotes the 1-hop neighbor-
hood of node v in the graph. The 1-WL algorithm terminates if the number of colors across two
iterations does not change, i.e., the cardinalities of the images of c(t−1)

s and c
(t)
s are equal. The 1-WL

isomorphism test, is an isomorphism test, where the 1-WL algorithm is run in parallel on two graphs
G1, G2 and the two graphs are deemed non-isomorphic if a different number of nodes are colored as
κ in ∆.

Definition A.3 (Group). A group is a set G equipped with a binary operation · : G×G → G obeying
the following axioms:

• for all g1, g2 ∈ G, g1 · g2 ∈ G (closure).
• for all g1, g2, g3 ∈ G, g1 · (g2 · g3) = (g1 · g2) · g3 (associativity).
• there is a unique e ∈ G such that e · g = g · e = g for all g ∈ G (identity).
• for all g ∈ G there exists g−1 ∈ G such that g · g−1 = g−1 · g = e (inverse).

Definition A.4 (Permutation Group). A permutation group (a.k.a. finite symmetric group) Sm is
a discrete group G defined over a finite set of size m symbols (w.l.o.g. we shall consider the set
{1, 2, . . . ,m}) and consists of all the permutation operations that can be performed on the m symbols.
Since the total number of such permutation operations is m! the order of Sm is m!.

Definition A.5 (Product Group). Given two groups G (with operation +) and H (with operation ∗),
the direct product group of G×H is defined as follows:

• The underlying set is the Cartesian product, G × H . That is, the ordered pairs (g, h), where
g ∈ G and h ∈ H

• The binary operation on G×H is defined component-wise: (g1, h1)·(g2, h2) = (g1+g2, h1∗h2)
Definition A.6 (Group invariant functions). Let G be a group acting on vector space V . We say that
a function f : V → R is G-invariant if f(g · x) = f(x) ∀x ∈ V, g ∈ G.

Definition A.7 (Orbit of an element). For an element x ∈ X and given a group G, the orbit of the
element x is given by Orb(x) = {g · x | ∀g ∈ G}.

A.2 Proofs

In the section, we restate (for the sake of convenience) and prove the statements in the paper.

First, we restate the assumption and the corresponding property and then provide the proof.

Assumption A.8. For any table (Tij)i∈[n],j∈[m] (where i, j are indexes of the rows, and columns
appropriately), an arbitrary group action g ∈ Sn × Sm acting appropriately on the rows and columns
leaves the target random variables associated with tasks on the entire table unchanged.

15



Property 2. A function ϕ : T 7→ z ∈ Rd which satisfies Assumption A.8 and defined over tabular
data must be invariant to actions from the (direct) product group Sn × Sm acting appropriately on the
table i.e. ϕ(g · T ) = ϕ(T ) ∀g ∈ Sn × Sm.

Proof. Proof by contradiction. Let y ∈ R be some target value associated with the entire table –
which is invariant up to permutations of the table given by Assumption A.8. Assume the case where
ϕ is not an invariant function acting over tables i.e. ϕ(g · T ) ̸= ϕ(T ) ∀g ∈ Sm × Sn. This means
different group actions will result in different output representations-and hence the representation is
dependent on the action itself. When d = 1 and the value associated with y is given by ϕ acting over
the table, equality between the two (for all permutation actions of a given) is only possible if we can
unlearn the group action (or learn the same representation for the entire orbit) which would make it
invariant–and hence a contradiction.

Next, we look at the function g defined via Eqns (1-5) to see that the representation obtained by a
table via message passing is invariant to row/column permutations of the incidence matrix B. Eqn 1,
which is the Node2hyperedge block, is a permutation invariant set aggregator which aggregates
information from cells in the table to get the vectorial representation of a row/column/table hyperedge.
That is, any permutation action drawn from the Smn group doesn’t impact the representation of a
given hyperedge as long as the membership is consistent.

Similarly, the Hyperedge2Node block (Eqn 2) is an aggregation function that aggregates information
from the hyperedges to the nodes. This ensures that a given node’s (in the hypergraph) representation
is invariant to permutation actions from the Sm+n+1 group as long as the membership is consistent.

Now, since the Node2Hyperedge and Hyperedge2Node blocks act sequentially, its easy to see that
(1-5) jointly encode invariance to the product group Smn × Sm+n+1 when we obtain representations
of an incidence matrix as a set (permutation invariant) aggregation of representations of all the mn
nodes and the m+ n+ 1 hyperedges.

Next, we restate and prove the theorem about the maximal invariance property.
Theorem A.9. A continuous function ϕ : T 7→ z ∈ Rd over tables is maximally invariant if it is
modeled as a function g : B 7→ y ∈ Rk over the incidence matrix of a hypergraph G constructed
per Section 2.1 (Where g is defined via Eqns (1-5)) if ∃ a bijective map between the space of
tables and incidence matrices (defined over appropriate sizes of tables and incidence matrices).
That is, ϕ(T1) = ϕ(T2) iff T2 is some combination of row and/or column permutation of T1 and
g(B1) = g(B2) where B1,B2 are the corresponding (hypergraph) incidence matrices of tables
T1, T2.

Proof. Proof by construction. We will assume the existence of a bijective map between the space
of tables and incidence matrices (with appropriate indexing by column names and some canonical
row ordering). Without loss of generality, we assume the number of rows and columns in the table
to be n and m respectively, and some canonical ordering of the rows and columns in the table for
the sake of convenience. Hence the number of nodes, and hyperedges in the hypergraph based
on the formulation in Section 2.1 is mn and m + n + 1 respectively. An invariant function over
the incidence matrices means that function is invariant to any consistent relabelling of nodes and
hyperedges in the hypergraph–hypergraph incidence matrix of size mn× (m+ n+ 1) and hence
(upon node/hyperedge relabeling) invariant to the Smn × Sm+n+1 group. It is important to note that
any row/column permutation of the table affects the ordering of both the rows and columns of the
incidence matrix.

The existence of a bijective map between ϕ and g guarantees that we know exactly which elements
(cells, rows, columns, table) participate in which nodes/hyperedges and which don’t. This is evident
as a different permutation of the rows/columns would result in different incidence matrices and hence
the above information can be deconstructed by obtaining the mappings between all permutations
of a table and corresponding incidence matrices. Now, as this is proof of maximal invariance we
have to prove both directions i.e. when the function ϕ maps two tables to the same representation-the
tables are just row/column permutations of each other, and the g over their corresponding incidence
matrices yield identical representations and vice versa.

Direction 1: Assume a continuous function ϕ over two tables T1, T2 yields the same representation
ϕ(T1) = ϕ(T2). Now, we need to show that the function g over the corresponding incidence matrices

16



B1,B2 yield the same representation. Let ρ be the bijective map between the space of tables and
incidence matrices. The guarantee of a bijective map between tables and incidence matrices and the
injective (one-to-one) nature of AllSet [Chien et al., 2022] which is a multiset function that ensures
that the hyperedges with the same elements get the same representation and non-identical hyperedges
obtain different representations (via Eqns(1-5). Hence, when the outputs of ϕ match, the outputs
of g also do - and this is possible when the tables are identical up to permutations of each other.
The universality property of AllSet, combined with the existence of the bijective map ensures the
existence of a neural network g for a given continuous function ϕ.

Direction 2: Assume a function g which maps incidence matrices B1,B2 of two hypergraphs to the
same representation. Now again, since the bijective map exists, it ensures that we can check if the
same nodes and hyperedges map across the two incidence matrices. This confirms the existence of a
bijective map between the family of stars [Tyshkevich and Zverovich, 1996] of the two hypergraphs
(i). The 1-Weisfeiler Lehman message passing equations of the HyperTrans (Along with the
inherited injectivity property of AllSet) module along the star expansion of the hypergraph ensures
that the star expansions of the hypergraphs are 1-WL isomorphic [Xu et al., 2018] (ii). Combining
(i) and (ii) together via Theorem 2 from [Srinivasan et al., 2021], we get that the hypergraphs are
isomorphic - and therefore yielding the tables to be identical and ϕ getting the same representation
due to Property 1. It is easy to see that when the g yields different representations, the tables are not
identical, and hence ϕ yields a different representation as well.

B Further Analysis of HYTREL

B.1 Effect of Input Table Size

As mentioned in Section 3, we have truncated the large tables and only keep a maximum of 30
rows and 20 columns in pretraining for efficiency purposes. However, the truncation does not affect
HYTREL’s ability to deal with large tables in downstream tasks. Our model can deal with the
arbitrary size of tables. This is different from the BERT-based TaLMs (e.g., TaBERT, TURL) that
have positional encodings, and the pretrained checkpoints limit the positions within a length of 512
for an input sequence. With the HYTREL, we can always build large hypergraphs with large tables by
adding more nodes under each hyperedge, without sacrificing information loss.

To further demonstrate this, we do experiments on the table type detection (TTD) dataset, as it has
relatively large tables (an average number of 157 rows). Below in Table 3 are the experimental results
of using different maximum row/column limitations with HYTREL (ELECTRA), and we fine-tune
the dataset on an NVIDIA A10 Tensor Core GPU (24GB).

Size Limitations
(#rows, #columns) Dev Acc (%) Test Acc (%) Training Time

(min/epoch)
GPU Memory Consumption
(memory used/batch size, GB/sample)

(3, 2) 78.47 78.00 3 0.14
(15, 10) 95.36 95.96 9 0.48
(30, 20) 96.23 95.81 14 0.58
(60, 40) 96.38 95.80 23 1.41
(120, 80) 96.02 95.71 51 5.13

(240, 160) 96.06 95.67 90 16.00

Table 3: Effect of Input Table Size

We can see that HYTREL has no difficulty dealing with the arbitrary size of input tables. However,
we also observe that the prediction performances are almost the same when we enlarge the table
size limitation to a certain number, but the time and hardware resource consumption will increase
dramatically. So we recommend using downsampling to deal with large tables, and it will be much
more efficient without hurting the performance.

B.2 Effect of Excessive Invariance

As we have emphasized, the invariant permutation property of a table restricts the permutation of
rows and columns to be independent. Arbitrary permutations of rows or columns can lead to an

17



excessive invariance problem, ultimately compromising the table’s semantics. Take Figure 6 as an
example, permuting the rows and columns independently will result in semantically the same table
(Upper), but arbitrarily permuting will break the semantics of the table and cause excessive invariance
(Below).

We use the TaBERT model to demonstrate the effect brought by the excessive invariance. As we
have introduced before, the TaBERT models use a linearization approach with positional encoding to
model a table. So they cannot preserve the table invariance property. However, we cannot achieve this
by simply removing the positions, as it will cause excessive invariance and it is equivalent to shuffling
all the cells in a table. As we emphasize, we only assume independent row/column permutation
invariance. We empirically show the effect of disabling the positional encodings for the TaBERT
model. As shown in Table 5, we evaluate the model on the Table Type Detection dataset. It turns out
that the excessive invariance will cause a significant performance decrease.

Club Country Founded

Barcelona ESP 1899

Real Madrid ESP 1902

Bayern München GER 1900

Soccer Clubs

Club Founded Country

Real Madrid 1902 ESP

Barcelona 1899 ESP

Bayern München 1900 GER

Soccer Clubs

Club Country Founded

Barcelona 1902 1899

Real Madrid ESP ESP

Bayern München GER 1900

Soccer Clubs

Figure 6: An example of table permutations.

Models Dev Acc (%) Test Acc (%)

TaBERT (K=1), w/ positions 94.11 93.44
TaBERT (K=1), w/o positions 88.62 88.91
TaBERT (K=3), w/ positions 95.82 95.22

TaBERT (K=3), w/o positions 92.80 92.44

Table 4: Excessive invariance causes performance slumping

B.3 Inference Complexity of the Model

Theoretical Analysis: Given a table with m rows and n columns, let’s assume each cell only
contains one token, and we use dot-product and single head in the attention operation. The inference
complexity comparison of one layer attention is:

Complexity BERT-based Methods HYTREL

w/o linear transformation O((mn)2 · d) O(mnd)
w/ linear transformation O((mn)2 · d+ (mn) · d2) O(mnd+ (mn) · d2)

Table 5: Inference Complexity

For the BERT-based methods, the input sequence length is mn, d is the hidden dimension. We can
see that our HyTrel has less complexity, and the difference comes from the dot-product for attention
scores. The query in the set transformer of HyTrel is a learnable vector with d dimension, it reduces
computation time of self-attention from quadratic to linear in the number of elements in the set [Lee
et al., 2019], with a complexity of O(mnd). In the self-attention, the query is a matrix from the

18



whole input sequence with (mn)× d dimensions, which has a complexity of O((mn)2 · d) in the
attention score calculation.

Empirical Analysis: We include comparison of our approach with the TaBERT baseline about the
inference time, including data processing (graph building time in HyTrel). As observable from the
table, the total inference time of our model is lesser compared to TaBERT, and the time cost for graph
building is not a bottleneck.

Datasets CTA CPA TTD TS
Total Samples 4844 1560 4500 1391
batch size 8 8 8 8

TaBERT (K=1) - data preparing 13 5 51 13
TaBERT (K=1) - inference 27 5 25 28
TaBERT (K=1) - total inference 40 10 76 41
TaBERT (K=3) - data preparing 14 5 52 13
TaBERT (K=3) - inference 85 16 79 80
TaBERT (K=3) - total inference 99 21 131 93
HyTrel - graph building 5 1 16 5
HyTrel - inference 16 6 17 13
HyTrel - total inference 21 7 33 18

Table 6: Inference Time Comparision (seconds)

• We keeps a maximal of 3 rows with the HyTrel model for fair comparison with the BERT (K=3)
models.

• The data preprocessing of TaBERT is to format the input tables (.json) into tensors, and the graph
building of HyTrel is to format the input tables (.json) into feature tensors and the incidence matrix
in hypergraphs.

• All experiments are conducted on a single A10 GPU, and the inference batch sizes are all chosen to
be 8 for all models and all dataset;

• We use the validation set of CTA, CPA and TTD for experiments. For TS with a small number of
tables that is tested with five fold cross-validation in the paper, here we use the whole dataset for
experiments.

C Details of the Experiments

C.1 Pretraining

C.1.1 Model Size

The parameter size of the HYTREL and the baseline TaBERT are as followed in Table 7. HYTREL
has more parameters mainly because of the Hyperedge Fusion block (Figure 2) that is absent from
the TaBERT model.

Models # Parameters (million)

TaBERT (K=1) 110.6
TaBERT (K=3) 131.9

HYTREL 179.4

Table 7: Model Size

C.1.2 Hyperparameters

The hyperparameter choices and resource consumption details of the pretraining are presented in
Table 8 and Table 9.

19



Models Batch
Size

Learning
Rate

Warm-up
Ratio

Max
Epochs

Weight
Decay Optimizer

HYTREL w/ ELECTRA 8192 5e−4 0.05 5 0.02 Adam
HYTREL w/ Contrastive 4096 1e−4 0.05 5 0.02 Adam

Table 8: Pretraining Hyperparameters

Models GPUs Accelerator Precision Training Time

HYTREL w/ ELECTRA 16 × NVIDIA A100 DeepSpeed (ZeRO Stage 1) bf16 6h / epoch
HYTREL w/ Contrastive 16 × NVIDIA A100 DeepSpeed (ZeRO Stage 1) bf16 4h / epoch

Table 9: Pretraining Cost

C.2 Fine-tuning

C.2.1 Details of the Datasets

TURL-CTA is a multi-label classification task (this means for one column, there can be multiple
labels annotated) that consists of 255 semantic types. In total, it has 628,254 columns from 397,098
tables for training, and 13,025 (13,391) columns from 4,764 (4,844) tables for testing (validation).

TURL-CPA dataset is also a multi-label classification task in which each pair of columns may belong
to multiple relations. It consists of a total number of 121 relations with 62,954 column pairs from
52,943 tables training sample, and 2,072 (2,175) column pairs from 1,467 (1,560) tables for testing
(validation). Similar to the CTA task, we use the pairwise column representations from HYTREL
with their corresponding hyperedge representations for fine-tuning.

WDC Schema.org Table Corpus consists of 4.2 million relational tables covering 43 schema.org
entity classes. We sample tables from the top 10 classes and construct a table type detection dataset
that contains 3,6000 training tables and 4,500 (4,500) tables for validation (testing).

PMC is a table corpus that is formed from PubMed Central (PMC) Open Access subset, and this
collection is about biomedicine and life sciences. In total, PMC contains 1,391 table pairs, where 542
pairs are similar and 849 pairs are dissimilar. For each pair of tables, we use their table representations
together with column representations from HYTREL for fine-tuning. As for evaluation, we follow
previous work [Habibi et al., 2020, Trabelsi et al., 2022] and report the macro-average of the 5-fold
cross-validation performance.

C.2.2 Hyperparameters

The hyperparameter choices for fine-tuning both the TaBERT and the HYTREL models are as followed.
For the primary hyperparameters batch size and learning rate, we choose the batch size to
be as large as possible to fit the GPU memory constraint, and then use grid search to find the best
learning rate. Other hyperparameters are kept the same as in previous work.

Tasks Batch
Size

Learning
Rate

Warm-up
Ratio

Max
Epochs

Weight
Decay Optimizer

Column Type Annotation 256 1e−3 0.05 50 0.02 Adam
Column Property Annotation 256 1e−3 0.05 30 0.02 Adam

Table Type Detection 32 5e−5 0.05 10 0.02 Adam
Table Similarity Prediction 16 5e−5 0.05 10 0.02 Adam

Table 10: Hyperparameters for Fine-tuning HYTREL. We use the same settings for all variants of
HYTREL (no pretraining, pretraining with ELECTRA and Contrastive objectives)

20



Tasks Batch
Size

Learning
Rate

Warm-up
Ratio

Max
Epochs Optimizer

Column Type Annotation 64 (K=3), 128 (K=1) 5e−5 0.1 10 Adam
Column Property Annotation 48 (K=3), 128 (K=1) 1e−5 (K=3), 2e−5 (K=1) 0.1 10 Adam

Table Type Detection 64 5e−5 0.1 10 Adam
Table Similarity Prediction 8 5e−5 0.1 10 Adam

Table 11: Hyperparameters for Fine-tuning TaBERT.

C.2.3 Details of the Baselines

TaBERT [Yin et al., 2020] is a representative TaLM that jointly learns representations for sentences
and tables. It flattens the tables into sequences and pretrains the model from BERT checkpoints.
Since we use the same source and prepossessing for the pretraining tables, we use it as our main
baseline. TaBERT is not yet evaluated on the table-only tasks, we fine-tune the base version with
both K=1 and K=3 row number settings on all the tasks. We also evaluate the TaBERT model that is
randomly initialized and see how much it relies on the pretraining.

TURL [Deng et al., 2020] is another representative TaLMs that focuses on web tables with cell values
as entities connected to the knowledge base. It also flattens the tables into sequences and pretrains
from TinyBERT [Jiao et al., 2020] checkpoints. It introduces a vision matrix to incorporate table
structure into the representations. We copy the reported results for CTA and CPA tasks. For a fair
comparison, we use the fine-tuning settings with metadata (captions and headers) but without external
pretrained entity embeddings.

Doduo [Suhara et al., 2022] is a state-of-the-art column annotation system that fine-tunes the BERT
and uses table serialization to incorporate table content. We copy the reported results for the CTA
and CPA tasks.

For each specific task and dataset, we also report the state-of-the-art baseline results from previous
work. For the TURL-CTA dataset, we use the reported results of Sherlock [Hulsebos et al., 2019]. For
the TURL-CPA dataset, we use the reported results of fine-tuning the BERTbase [Devlin et al., 2019]
model. For the PMC dataset, we use the reported results from two baselines: TFIDF+Glove+MLP,
which uses TFIDF and Glove [Pennington et al., 2014] features of a table with a fully connected
MLP model, and TabSim [Habibi et al., 2020] that uses a siamese Neural Network to encode a pair of
tables for prediction.

21


	Introduction
	HyTrel Model
	Formatter & Embedding Layer
	Hypergraph Encoder
	Invariances of the HyTrel Model
	Pretraining Heads

	Experiments
	Pre-training
	Fine-tuning[4]
	Baselines
	Main Results

	Qualitative Analysis
	HyTrel Learns Permutation Robust Representations 
	HyTrel Learns the Underlying Hierarchical Table Structure
	HyTrel Demonstrates Effective Pretraining by Capturing the Table Structures

	Related Work
	Limitations
	Conclusion
	Details of the Proofs
	Preliminaries
	Proofs

	Further Analysis of HyTrel
	Effect of Input Table Size
	Effect of Excessive Invariance
	Inference Complexity of the Model

	Details of the Experiments
	Pretraining
	Model Size
	Hyperparameters

	Fine-tuning
	Details of the Datasets
	Hyperparameters
	Details of the Baselines



