Problem Set 4
CSCE 411
Andreas Klappenecker

The assignment is due Friday, Sep 30, 2011, before class.

Exercise 1 (15 points). Solve Exercise 15.2-1 on page 378 of our textbook. Use the algorithm given in class. Show the arrays, and explain how the solution is derived from these arrays.

Exercise 2 (15 points). Solve Exercise 15.2-2 on page 378.

Exercise 3 (15 points). Solve Exercise 15.4-1 on page 396. Show your work!

Exercise 4 (15 points). Solve Exercise 15.4-2 on page 396.

Exercise 5 (20 points). Solve Exercise 15.4-5 on page 397.

Exercise 6 (20 points). Solve Problem 15-2 on page 405. [Hint: Suppose the sequence is represented by an array \(s[i..j]\). Notice that \(s[i, j]\) contains a palindrome of length \(\geq 2\) when \(s[i] = s[j]\). Let \(l[i, j]\) denote the length of a maximum length palindrome in \(s[i, j]\). Relate \(l[i, j]\) to subproblems.]