Polynomial-Time Reductions

Andreas Klappenecker

[partially based on slides by Professor Welch]
Formal Languages and Decision Problems
Languages and Decision Problems

Language: A set of strings over some alphabet

Decision problem: A decision problem can be viewed as the formal language consisting of exactly those strings that encode YES instances of the problem.

Yes instance:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No instance:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>?</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Let us encode positive integers in binary representation.

The decision problem “Is x a prime?” has the following representation as a formal language:

$L_{Primes} = \{10, 11, 101, 111, \ldots\}$

where 10 encodes 2, 11 encodes 3, 101 encodes 5, and so on.
Polynomial Reduction
Polynomial Reduction

Let L_1 be a language over an alphabet V_1.

Let L_2 be a language over an alphabet V_2.

A polynomial-time reduction from L_1 to L_2 is a function $f: V_1^* \rightarrow V_2^*$ such that

1. f is computable in polynomial time
2. For all x in V_1^*, x is in L_1 if and only if $f(x)$ is in L_2
Polynomial Reduction

all strings over L_1's alphabet

all strings over L_2's alphabet

f
Polynomial Reduction

all strings over \(L_1 \)'s alphabet

\[L_1 \]

\[\text{f} \]

all strings over \(L_2 \)'s alphabet

\[L_2 \]
Polynomial Reduction

All strings over L_1's alphabet

$\{L_1\}$

$\{L_2\}$

f
Polynomial Reduction

all strings over L_1's alphabet

f

all strings over L_2's alphabet
Polynomial Reduction

all strings over L_1's alphabet

all strings over L_2's alphabet

$L_1 \xrightarrow{f} L_2$
Polynomial Reduction

all strings over L_1's alphabet

all strings over L_2's alphabet

f
Polynomial Reduction

All strings over L_1's alphabet

f

All strings over L_2's alphabet
Polynomial Reduction

all strings over L_1's alphabet

L_1

f

all strings over L_2's alphabet

L_2
Polynomial Reduction

- YES instances map to YES instances
- NO instances map to NO instances
- computable in polynomial time
- Notation: $L_1 \leq_p L_2$
- [Think: L_2 is at least as hard as L_1]
Polynomial Reduction Theorem

Theorem If $L_1 \leq_p L_2$ and L_2 is in P, then L_1 is in P.

Proof. Let A_2 be a polynomial time algorithm for L_2. Here is a polynomial time algorithm A_1 for L_1.

- **input:** x
- **compute** $f(x)$
- **run** A_2 on input $f(x)$
- **return** whatever A_2 returns
Theorem If $L_1 \leq_p L_2$ and L_2 is in P, then L_1 is in P.

Proof: Let A_2 be a polynomial time algorithm for L_2. Here is a polynomial time algorithm A_1 for L_1.

- input: x
- compute $f(x)$
- run A_2 on input $f(x)$
- return whatever A_2 returns

$|x| = n$
Theorem If $L_1 \leq_p L_2$ and L_2 is in P, then L_1 is in P.

Proof. Let A_2 be a polynomial time algorithm for L_2. Here is a polynomial time algorithm A_1 for L_1.

• input: x
• compute $f(x)$
• run A_2 on input $f(x)$
• return whatever A_2 returns

$|x| = n$ takes $p(n)$ time
Polynomial Reduction Theorem

Theorem If $L_1 \leq_p L_2$ and L_2 is in P, then L_1 is in P.

Proof. Let A_2 be a polynomial time algorithm for L_2. Here is a polynomial time algorithm A_1 for L_1.

- **input:** x
- **compute** $f(x)$
- **run** A_2 on input $f(x)$
- **return** whatever A_2 returns

$|x| = n$ takes $p(n)$ time

takes $q(p(n))$ time
Polynomial Reduction Theorem

Theorem If $L_1 \leq_P L_2$ and L_2 is in P, then L_1 is in P.

Proof. Let A_2 be a polynomial time algorithm for L_2. Here is a polynomial time algorithm A_1 for L_1.

- **input:** x
- **compute** $f(x)$
- **run** A_2 on input $f(x)$
- **return** whatever A_2 returns

$|x| = n$
- takes $p(n)$ time
- takes $q(p(n))$ time
- takes $O(1)$ time
Implications

• Suppose that $L_1 \leq_p L_2$

• If there is a polynomial time algorithm for L_2, then there is a polynomial time algorithm for L_1.

• If there is no polynomial time algorithm for L_1, then there is no polynomial time algorithm for L_2.
HC \leq_p TSP
Suppose that we are given a set of cities, distances between all pairs of cities, and a distance bound B.

Traveling Salesman Problem: Does there exist a route that visits each city exactly once and returns to the origin city with a total travel distance $\leq B$?

TSP is in NP: Given a candidate solution (a tour), add up all the distances and check if total is at most B.
Example of a Reduction

Theorem \(\text{HC} \leq_p \text{TSP} \).

Proof. Given a graph \(G \), the Hamiltonian circuit decision problem tries to decide whether or not \(G \) has a Hamiltonian circuit.

A polynomial reduction from HC to TSP has to transform \(G \) into an input for the TSP decision problem. More precisely, the graph \(G \) needs to be transformed in polynomial time into a configuration of (cities, distances, and bound \(B \)) such that

\(G \) has a Hamiltonian circuit iff the resulting TSP input has a tour of cities that has a total distance \(\leq B \).
The Reduction

Given undirected graph $G = (V,E)$ with m nodes, construct a TSP input like this:

- set of m cities, labeled with names of nodes in V
- distance between u and v is 1 if (u,v) is in E, and is 2 otherwise
- bound $B = m$

This TSP input be constructed in time polynomial in the size of G.
Figure for Reduction

HC input

TSP input

Hamiltonian cycle: 1,2,3,4,1

dist(1,2) = 1
dist(1,3) = 1
dist(1,4) = 1
dist(2,3) = 1
dist(2,4) = 2
dist(3,4) = 1
bound = 4

tour w/ distance 4: 1,2,3,4,1
Figure for Reduction

HC input

no Hamiltonian cycle

TSP input

no tour w/ distance at most 4

dist(1,2) = 1
dist(1,3) = 1
dist(1,4) = 2
dist(2,3) = 1
dist(2,4) = 2
dist(3,4) = 1
bound = 4
Correctness of the Reduction

- Check that input G is in HC (has a Hamiltonian cycle) if and only if the input constructed is in TSP (has a tour of length at most m).

- \Rightarrow Suppose G has a Hamiltonian cycle $v_1, v_2, \ldots, v_m, v_1$.

- Then in the TSP input, $v_1, v_2, \ldots, v_m, v_1$ is a tour (visits every city once and returns to the start) and its distance is $1 \cdot m = B$.
Correctness of the Reduction

- \leq: Suppose the TSP input constructed has a tour of total length at most m.
 - Since all distances are either 1 or 2, and there are m of them in the tour, all distances in the tour must be 1.
 - Thus each consecutive pair of cities in the tour correspond to an edge in G.
 - Thus the tour corresponds to a Hamiltonian cycle in G.
Implications

• If there is a polynomial time algorithm for TSP, then there is a polynomial time algorithm for HC.

• If there is no polynomial time algorithm for HC, then there is no polynomial time algorithm TSP.
Transitivity of Reductions

Theorem: If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

Proof:

- $L_1 \xrightarrow{f} L_2 \xrightarrow{g} L_3$
Theorem: If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

Proof:

$\begin{array}{c}
\text{L}_1 \\
\xrightarrow{f} \\
\text{L}_2 \\
\xrightarrow{g} \\
\text{L}_3 \\
\xleftarrow{g(f)} \\
\end{array}$