The Birthday Problem

Andreas Klappenecker
The Birthday Problem

What is the probability p_{uni} that among a group of m people, at least two share the same birthday?
Solution

Let's solve the problem for arbitrary planets. Let's assume that the m people live on a planet that has n days per year. Then

$$p_{\text{uni}} = 1 - \frac{n(n-1) \cdots (n-m+1)}{n^m}$$

is the probability that no two share a birthday, so

$$p_{\text{uni}} = 1 - \prod_{i=1}^{m-1} \left(1 - \frac{i}{n} \right),$$

assuming that $m \leq n$ and the birthdays are independent and uniformly distributed.
Lower Bound

Since $1-x \leq \exp(-x)$ holds for all real numbers x, we have

$$p_{uni} = 1 - \prod_{i=1}^{m-1} \left(1 - \frac{i}{n} \right) \geq 1 - \exp \left(- \sum_{i=1}^{m-1} \frac{i}{n} \right) = 1 - \exp \left(- \frac{(m-1)m}{2n} \right).$$
Consequence

Therefore, if we consider $m \geq \frac{1}{2} \left(1 + \sqrt{1 - 8n \ln \delta}\right)$ people, where δ is a real number in the range $0 < \delta \leq 1$, then the probability p_{uni} that at least two of them have a common birthday satisfies $p_{uni} \geq 1 - \delta$. For example, when $n = 365$, we have

<table>
<thead>
<tr>
<th>m</th>
<th>23</th>
<th>42</th>
<th>59</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{uni}</td>
<td>0.5</td>
<td>0.9</td>
<td>0.99</td>
<td>0.999</td>
</tr>
</tbody>
</table>
The Flaw

There are fewer births on weekends than during the week.
There are fewer births on July 4 than on other days in July.
There are significant seasonal variations.

=> Birthdays are not uniformly distributed.
Nonuniform Birthday Problem

Let p_k denote the probability that a person is born on the k-th day of the year, where $1 \leq k \leq n$. Then the probability p_{nu} that among m people at least two have the same birthday using the distribution (p_1, p_2, \ldots, p_n) of birthdays is given by

$$p_{nu} = 1 - m!e_m(p_1, p_2, \ldots, p_n),$$

where e_m denotes the m-th elementary symmetric function,

$$e_m(x_1, \ldots, x_n) = \sum_{1 \leq j_1 < j_2 < \cdots < j_m \leq n} x_{j_1} x_{j_2} \cdots x_{j_m}.$$
Relation

Any probability distribution majorizes the uniform distribution,

\[(1/n, 1/n, \ldots, 1/n) \prec (p_1, p_2, \ldots, p_n),\]

which means that the sum of the \(k\) largest probabilities in \{\(p_1, \ldots, p_n\}\} is at least \(k/n\) for all \(k\) in the range \(1 \leq k \leq n\). Since the elementary symmetric functions are Schur-concave (meaning that they are monotonically decreasing with respect to the relation \(\prec\)), it follows that \(e_m(1/n, 1/n, \ldots, 1/n) \geq e_m(p_1, p_2, \ldots, p_n).\)
Therefore, we can conclude that

\[p_{\text{uni}} = 1 - \frac{n(n-1) \cdots (n-m+1)}{n^m} \leq 1 - m! e_m(1/n, 1/n, \ldots, 1/n) = p_{\text{nu}}. \]
Relation

One can show the following relation between uniform and nonuniform distribution case:

\[p_{uni} = 1 - \frac{n(n-1) \cdots (n-m+1)}{n^m} \]

\[= 1 - m! e_m(1/n, 1/n, \ldots, 1/n) \]

\[\leq 1 - m! e_m(p_1, p_2, \ldots, p_n) = p_{nu}, \]

as \(e_m \) is a so-called Schur-concave function.
References