Strassen's Matrix Multiplication
Andreas Klappenecker

[partially based on slides by Prof. Welch]
Matrix Multiplication

Consider two $n \times n$ matrices A and B

Recall that the matrix product $C = AB$ of two $n \times n$ matrices is defined as the $n \times n$ matrix that has the coefficient

$$c_{kl} = \sum_{m} a_{km} \cdot b_{ml}$$

in row k and column l, where the sum ranges over the integers from 1 to n; the scalar product of the k^{th} row of a with the l^{th} column of B.

The straightforward algorithm uses $O(n^3)$ scalar operations.

Can we do better?
Idea: Use Divide and Conquer

The divide and conquer paradigm is important general technique for designing algorithms. In general, it follows the steps:

- divide the problem into subproblems
- recursively solve the subproblems
- combine solutions to subproblems to get solution to original problem
Divide-and-Conquer

Let write the product $A \cdot B = C$ as follows:

$$
\begin{array}{cc}
A_0 & A_1 \\
A_2 & A_3 \\
\end{array}
\times
\begin{array}{cc}
B_0 & B_1 \\
B_2 & B_3 \\
\end{array}
=
\begin{array}{cc}
A_0 \times B_0 + A_1 \times B_2 & A_0 \times B_1 + A_1 \times B_3 \\
A_2 \times B_0 + A_3 \times B_2 & A_2 \times B_1 + A_3 \times B_3 \\
\end{array}
$$

- Divide matrices A and B into four submatrices each
- We have 8 smaller matrix multiplications and 4 additions. Is it faster?
Divide-and-Conquer

Let us investigate this recursive version of the matrix multiplication.

Since we divide A, B and C into 4 submatrices each, we can compute the resulting matrix C by

- 8 matrix multiplications on the submatrices of A and B,
- plus $\Theta(n^2)$ scalar operations
Divide-and-Conquer

- Running time of recursive version of straightforward algorithm is

 \[T(n) = 8T(n/2) + \Theta(n^2) \text{ and } T(2) = \Theta(1) \]

 where \(T(n) \) is running time on an \(n \times n \) matrix

- Master theorem gives us:

 \[T(n) = \Theta(n^3) \]

- Can we do fewer recursive calls (fewer multiplications of the \(n/2 \times n/2 \) submatrices)?
Strassen's Matrix Multiplication

\[A \times B = C \]

\[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \times \begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array} = \begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array} \]

- \[P_1 = (A_{11} + A_{22})(B_{11} + B_{22}) \]
- \[P_2 = (A_{21} + A_{22}) \times B_{11} \]
- \[P_3 = A_{11} \times (B_{12} - B_{22}) \]
- \[P_4 = A_{22} \times (B_{21} - B_{11}) \]
- \[P_5 = (A_{11} + A_{12}) \times B_{22} \]
- \[P_6 = (A_{21} - A_{11}) \times (B_{11} + B_{12}) \]
- \[P_7 = (A_{12} - A_{22}) \times (B_{21} + B_{22}) \]

\[C_{11} = P_1 + P_4 - P_5 + P_7 \]
\[C_{12} = P_3 + P_5 \]
\[C_{21} = P_2 + P_4 \]
\[C_{22} = P_1 + P_3 - P_2 + P_6 \]
Strassen's Matrix Multiplication

- Strassen found a way to get all the required information with only 7 matrix multiplications, instead of 8.

- Recurrence for new algorithm is

 \[T(n) = 7T(n/2) + \Theta(n^2) \]
Solving the Recurrence Relation

Applying the Master Theorem to

\[T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n) \]

with \(a=7\), \(b=2\), and \(f(n) = \Theta(n^2)\).

Since \(f(n) = O(n^{\log_b(a)-\varepsilon}) = O(n^{\log_2(7)-\varepsilon})\),

case a) applies and we get

\[T(n) = \Theta(n^{\log_b(a)}) = \Theta(n^{\log_2(7)}) = O(n^{2.81}). \]
Discussion of Strassen's Algorithm

- Not always practical
 - constant factor is larger than for naïve method
 - specially designed methods are better on sparse matrices
 - issues of numerical (in)stability
 - recursion uses lots of space
- Not the fastest known method
 - Fastest known is $O(n^{2.3727})$ [Winograd–Coppersmith algorithm improved by V. Williams]
 - Best known lower bound is $\Omega(n^2)$