Longest Common Subsequence

Andreas Klappenecker
Subsequences

Suppose you have a sequence $X = <x_1, x_2, \ldots, x_m$ of elements over a finite set S.

A sequence $Z = <z_1, z_2, \ldots, z_k$ over S is called a subsequence of X if and only if it can be obtained from X by deleting elements.

Put differently, there exist indices $i_1 < i_2 < \ldots < i_k$ such that

$$z_a = x_{i_a}$$

for all a in the range $1 \leq a \leq k$.
Suppose that X and Y are two sequences over a set S.

We say that Z is a common subsequence of X and Y if and only if

- Z is a subsequence of X
- Z is a subsequence of Y
The Longest Common Subsequence Problem

Given two sequences X and Y over a set S, the longest common subsequence problem asks to find a common subsequence of X and Y that is of maximal length.
Naïve Solution

Let X be a sequence of length m,

and Y a sequence of length n.

Check for every subsequence of X whether it is a subsequence of Y,

and return the longest common subsequence found.

There are 2^m subsequences of X. Testing a sequences whether or not it is a subsequence of Y takes $O(n)$ time. Thus, the naïve algorithm would take $O(n2^m)$ time.
Dynamic Programming

Let us try to develop a dynamic programming solution to the LCS problem.
Let $X = < x_1, x_2, \ldots, x_m >$ be a sequence.

We denote by X_i the sequence

$$X_i = < x_1, x_2, \ldots, x_i >$$

and call it the ith prefix of X.
LCS Notation

Let X and Y be sequences.

We denote by $\text{LCS}(X, Y)$ the set of longest common subsequences of X and Y.
Optimal Substructure

Let $X = < x_1, x_2, \ldots, x_m >$

and $Y = < y_1, y_2, \ldots, y_n >$ be two sequences.

Let $Z = < z_1, z_2, \ldots, z_k >$ is any LCS of X and Y.

a) If $x_m = y_n$ then certainly $x_m = y_n = z_k$

and Z_{k-1} is in LCS(X_{m-1}, Y_{n-1})
Optimal Substructure (2)

Let $X = \langle x_1, x_2, \ldots, x_m \rangle$

and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ be two sequences.

Let $Z = \langle z_1, z_2, \ldots, z_k \rangle$ be any LCS of X and Y.

b) If $x_m \not\equiv y_n$ then $x_m \not\equiv z_k$ implies that Z is in LCS(X_{m-1}, Y)

c) If $x_m \not\equiv y_n$ then $y_n \not\equiv z_k$ implies that Z is in LCS(X, Y_{n-1})
Overlapping Subproblems

If \(x_m = y_n \) then we solve the subproblem to find an element in LCS \((X_{m-1}, Y_{n-1})\) and append \(x_m \).

If \(x_m \neq y_n \), then we solve the two subproblems of finding elements in LCS\((X_{m-1}, Y_n)\) and LCS\((X_m, Y_{n-1})\) and choose the longer one.
Recursive Solution

Let X and Y be sequences.

Let $c[i,j]$ be the length of an element in LCS(X_i, Y_j).

$$c[i,j] = \begin{cases}
0 & \text{if } i=0 \text{ or } j=0 \\
 c[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } x_i = y_j \\
 \max(c[i,j-1],c[i-1,j]) & \text{if } i,j>0 \text{ and } x_i \neq y_j
\end{cases}$$
Dynamic Programming Solution

To compute length of an element in LCS(X,Y) with X of length m and Y of length n, we do the following:

- Initialize first row and first column of c with 0.
- Calculate $c[1,j]$ for $1 \leq j \leq n$,
 - $c[2,j]$ for $1 \leq j \leq n$...
- Return $c[m,n]$
- Complexity $O(mn)$.
Dynamic Programming Solution (2)

How can we get an actual longest common subsequence?

Store in addition to the array c an array b pointing to the optimal subproblem chosen when computing $c[i,j]$.
Animation

http://wordaligned.org/articles/longest-common-subsequence
LCS \((X,Y)\)

\[
\begin{align*}
 m &\leftarrow \text{length}[X] \\
 n &\leftarrow \text{length}[Y] \\
 \text{for } i &\leftarrow 1 \text{ to } m \text{ do} \\
 &\quad c[i,0] \leftarrow 0 \\
 \text{for } j &\leftarrow 1 \text{ to } n \text{ do} \\
 &\quad c[0,j] \leftarrow 0
\end{align*}
\]
LCS \((X,Y) \)

for \(i \leftarrow 1 \) to \(m \) do
 for \(j \leftarrow 1 \) to \(n \) do
 if \(x_i = y_j \)
 \(c[i,j] \leftarrow c[i-1,j-1] + 1 \)
 \(b[i,j] \leftarrow "D" \)
 else
 if \(c[i-1,j] \geq c[i,j-1] \)
 \(c[i,j] \leftarrow c[i-1,j] \)
 \(b[i,j] \leftarrow "U" \)
 else
 \(c[i,j] \leftarrow c[i,j-1] \)
 \(b[i,j] \leftarrow "L" \)
Greedy Algorithms

There exists a greedy solution to this problem that can be advantageous when the size of the alphabet S is small.