Shor’s Algorithm

Andreas Klappenecker
Given an integer n that is not prime, the goal is to find a nontrivial factor of n.
Main Idea (behind most Factoring Algorithms)

Given a positive integer n.

If you can find integers a and b such that

1. n divides $a^2 - b^2 = (a+b)(a-b)$
2. $a \not\equiv \pm b \pmod{n}$

then $\gcd(a\pm b, n)$ yields a nontrivial factor of n.
Example 1

Let \(n = 1271 \)

Given \(a = 36 \) and \(b = 5 \), we have

\[n \text{ divides } 36^2 - 5^2 = 1271 \]

\[36 \not\equiv \pm 5 \mod 1271 \]

Thus, we get \(\gcd(36 - 5, 1271) = 31 \) and \(\gcd(36 + 5, 1271) = 41 \)

In fact, \(1271 = 31 \times 41 \).

Problem: How can we find suitable integers \(a \) and \(b \)?
Example 2

Let \(n = 15 \).

For \(a = 14 \) and \(b = 1 \)

Then \(n \) divides \((a^2-b^2) = 196 - 1 = 195 = 15 \times 13\)

but \(14 = a \equiv -b = -1 \mod n \).

Here we fail to get a nontrivial factor as

\[
gcd(a-b,n) = 1 \quad \text{and} \quad gcd(a+b,n) = n.
\]
Main Idea behind Shor’s Algorithm

Given a positive integer n.

If you can find an integer a such that

n divides $a^2 - 1^2 = (a+1)(a-1)$, equivalently, $a^2 = 1 \mod n$

$a \not\equiv \pm 1 \mod n$

then $\gcd(a\pm 1, n)$ yields a nontrivial factor of n.

How can we find a suitable a?
Let c be an integer such that $\gcd(c,n)=1$.

The smallest positive integer r such that

$$c^r \equiv 1 \pmod{n}$$

is called the order of c modulo n.

\vspace{1cm}
Example

Let \(n = 15 \).

We determine the order of \(2 \) mod \(n \).

\[
2, \ 2^2, \ 2^3, \ 2^4 \equiv 1 \mod 16
\]

Thus, the order of \(2 \) mod \(n \) is 4.
Chinese Remainder Theorem: Let p and q be coprime integers. Then
$x \equiv a \mod{p}$
$x \equiv b \mod{q}$
has a unique solution x in the range $0 \leq x < pq$.

Corollary. There are four different solutions to $x^2 \equiv 1 \mod{pq}$, since
$x \equiv \pm 1 \mod{p}$
$x \equiv \pm 1 \mod{q}$
has four different solutions. Ex: $n=3*5$, $x_1 = 1$, $x_2=14$, $x_3 = 4$, $x_4 = 11$
Goal: Factor \(n \).

Choose an integer \(c \) such that \(\gcd(c,n) = 1 \). Compute the order \(r \) of \(c \).

If \(r \) is even and \(c^{r/2} \not\equiv -1 \mod n \), setting \(a = c^{r/2} \) and \(b = 1 \) yields

\[n \text{ divides } a^2 - b^2 = c^r - 1 \]

\[a \not\equiv \pm b \mod n, \text{ as } c^{r/2} \not\equiv \pm 1 \mod n \]

Therefore, \(\gcd(c^{r/2} \pm 1, n) \) yields a factor of \(n \).
Lemma. If \(n = \prod_{i=1}^{k} p_i^{a(i)} \) with \(p_i \) odd, then an element \(c \) chosen uniformly at random from \(\{ c \mid 0 \leq c < n, \gcd(c,n)=1 \} \) will have even order \(r \) and satisfy \(c^{r/2} \equiv -1 \mod n \) with probability \(\geq 1 - 1/2^{k-1} \).

Indeed, let \(r(i) \) denote order of \(c \mod p_i^{a(i)} \), and let \(d(i) \) denote the largest power of 2 dividing \(r(i) \).

If \(r \) is odd, then \(d(i)=1 \) for all \(i \).

If \(r \) is even and \(c^{r/2} \equiv -1 \mod n \), then \(c^{r/2} \equiv -1 \mod p_i^{a(i)} \), and we can conclude that \(r(i) \) divides \(r \) but does not divide \(r/2 \). Thus, \(d(i)>1 \). Furthermore, all \(d(i) \) must all be equal, since \(r = \text{lcm}(r(1),\ldots,r(k)) \).

In summary, the algorithm fails if and only if \(d(1)=\ldots=d(k) \).

The multiplicative group \(\mod p_i^{a(i)} \) is cyclic for odd \(p_i \). Therefore, the probability that a random element \(c \) in this multiplicative group has order divisible by \(d(i) \) is \(\leq 1/2 \). For \(c \) chosen uniformly at random all \(d(i) \) with \(1<i\leq k \) are equal to \(d(1) \) with probability \(\leq 1/2^{k-1} \). q.e.d.
Summary

Given an integer n.

If n is even, then return 2

else if n is a power of a prime p, then return p.

Choose c from \{ c \mid 1 < c < n, \gcd(c, n) = 1 \} uniformly at random.

Calculate order r of c mod n.

If r is even and \(c^{r/2} \not\equiv -1 \mod n \), then return \(\gcd(c^{r/2} - 1, n) \)

otherwise return “fail”