Simon's Algorithm: The Quantum Part
Andreas Klappenecker
Given: a Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}^n$ such that there exists an s in $\{0,1\}^n$ so that for all x, y in $\{0,1\}^n$ the following property holds:

$$f(x) = f(y) \text{ if and only if } x = y \text{ or } x \oplus s = y$$

where \oplus is the bitwise xor operator ($=\text{addition mod 2}$).

Goal: Find s
Example

Let n=3.

The function \(f(x) \) is a 2-to-1 function.

We have \(s=101 \)

Notice: You might have to evaluate as many as \(2^{n-1}+1 \) different arguments to find \(s \).
Quantum Algorithm

The quantum part is particularly simple:

All 2n qubits are initialized to |0>. MSBs are input, and LSBs are output

Apply Hadamard gate, then B_f, followed by Hadamard gates and measurement.

$$B_f = \begin{cases} \mathbb{C}^{2^n} \otimes \mathbb{C}^{2^n} \\ |x\rangle \otimes |y\rangle \rightarrow \mathbb{C}^{2^n} \otimes \mathbb{C}^{2^n} \\ |x\rangle \otimes |y \oplus f(x)\rangle \end{cases}$$
Initial state: $|0^n\rangle \otimes |0^n\rangle$
After Hadamard gates are applied to n most significant bits, we get
\[
\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \otimes |0^n\rangle
\]
Quantum Algorithm

\[\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \otimes |0^n\rangle \]

Applying \(B_f \) yields

\[\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \otimes |f(x)\rangle \]
Quantum Algorithm

\[
\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \otimes |f(x)\rangle
\]

Applying Hadamard gates yields

\[
\frac{1}{2^n} \sum_{x \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle \otimes |f(x)\rangle
\]
Measurement

The state before measurement is given by

\[
\frac{1}{2^n} \sum_x \sum_y (-1)^{x \cdot y} |y\rangle \otimes |f(x)\rangle = \sum_{y \in \{0,1\}^n} |y\rangle \otimes \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)
\]

If \(s = 0 \), then \(f(x) \) is injective, hence bijective.

Then the probability to observe \(y \) is given by

\[
\left\| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right\|^2 = \left\| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |x\rangle \right\|^2 = \frac{1}{2^n}
\]
If $s \neq 0$, then for each z in $\text{ran}(f)$, there exist two distinct arguments x_z and x'_z such that $f(x_z) = z = f(x'_z)$, and $x_z \oplus s = x'_z$. The probability to observe y is given by

$$\left\| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right\|^2 = \left\| \frac{1}{2^n} \sum_{z \in \text{ran}(f)} ((-1)^{x_z \cdot y} + (-1)^{x'_z \cdot y}) |z\rangle \right\|^2$$

$$= \left\| \frac{1}{2^n} \sum_{z \in \text{ran}(f)} (-1)^{x_z \cdot y} (1 + (-1)^{s \cdot y}) |z\rangle \right\|^2 = \begin{cases} 2^{-(n-1)} & \text{if } s \cdot y = 0 \\ 0 & \text{if } s \cdot y = 1 \end{cases}$$
Conclusions

For all s in $\{0,1\}^n$, the observed strings y are uniformly distributed among $\{ y \mid s \cdot y = 0 \}$.

Strategy: Repeat the quantum algorithm $n-1$ times to obtain elements $Y = \{ y_1, ..., y_{n-1} \}$.

If the vectors in Y are linearly independent, then there exists precisely one nonzero s' in $\{0,1\}^n$ such that $s' \cdot y_k = 0$ for all k.

If $f(s') = f(0)$, then $s = s'$; otherwise $s = 0$.