VCG Mechanism for Interdomain Routing

- Given a network with N nodes, denote node set N.
- Each node represents an AS (Autonomous system / Internet domain).
- Assume biconnected (at least two potential routes between any pair of nodes).
- For each pair of nodes (i, j), T_{ij} is the intensity of traffic (number of packets) from i to j.
- Node k incurs transit cost C_k for each transit packet it carries.

In Mechanism Design terminology, C_k is k's type.

Assume C_k is independent of which packet node k received packet from and which neighbor k sent packet to.

[The approach here can be extended to differing costs; in this case, have costs associated with edges rather than the nodes; the strategic agents would still be nodes.]

Cost vector $C := (C_1, \ldots, C_N)$ of all transit costs $C^{-k} := (C_1, \ldots, C_{k-1}, C_{k+1}, \ldots, C_N)$: all costs except C_k.

- Each node k is given a payment p_k to compensate it for carrying transit traffic.
- Assumption: Nodes that carry no traffic receive no payment.

GOAL: Send each packet along least cost path (LCP) with respect to the true costs C.
Denote by \(I_k(c; i, j) \) the indicator function of whether node \(k \) is on the LCP from \(i \) to \(j \) or not (then, \(I_k(c; i, j) = 1 \) or 0 respectively). We only count transit nodes \(k \), so that
\[
I_i(c; i, j) = I_j(c; i, j) = 0.
\]

When traffic is routed along LCPs, node \(k \) incurs a cost \(c_k \) for a packet sent from \(i \) to \(j \) if and only if \(k \in \text{LCP}(i, j) \).

The total cost of node \(k \) is:
\[
U_k(c) = c_k \sum_{i, j \in \text{N}} T_{ij} I_k(c; i, j).
\]

We want to minimize the total system cost \(V(c) \) (total cost to society) of routing all packets:
\[
V(c) = \sum_k U_k(c) = \sum_i \sum_{j \in \text{N}} T_{ij} \sum_{k \in \text{N}} I_k(c; i, j) c_k.
\]

Minimizing \(V(c) \) is equivalent to minimizing the path cost between \(i, j \) for all node pairs \((i, j)\).

Challenge: \(V(c) \) is defined in terms of true costs, but routing algorithm operates on declared costs. Since nodes' transit costs are private, we must rely on a pricing scheme to incentivize agents to report their true costs.

Solution: Algorithmic mechanism, which adapts the VCG mechanism to this routing problem.
Mechanism Design Set-up:

Input: the graph and the vector of declared costs C (we use C both for true and reported costs, to avoid cluttering notation; context will clarify which meaning is used).

Output: 1) the set of least cost paths (LCP) → allocation
2) the set of prices

We are looking for a strategyproof mechanism so agents have no incentive to lie about their costs.

The utility of node k is its payment minus cost:

\[\mathcal{U}_k(c) = p_k^k - \sum_{i,j \in N} T_{ij} I_k(c; i, j) c_k, \]

In this context, strategyproofness means that

\[\mathcal{U}_k(c) \geq \mathcal{U}_k(c_1, \ldots, c_k, x, \ldots, c_n) \quad \text{for all } X \quad \text{the vector } (c_1, \ldots, c_{k-1}, x, c_{k+1}, \ldots, c_n) \]

Theorem: When routing picks lowest-cost paths, and the network is biconnected, there is a unique strategyproof pricing mechanism that gives no payment to nodes that carry no transit traffic. The payments to transit nodes are of the form

\[p_k^k = \sum_{i,j \in N} T_{ij} p_{ij}^k, \quad \text{where} \]

\[p_{ij}^k = c_k I_k(c; i, j) + \left[\sum_{r \in N} I_r(c_1, \ldots, c_{k-1}, x, c_{k+1}, \ldots, c_n) \right] - \sum_{r \in N} I_r(c; i, j) c_r \]
Proof: By the Theorem of Green and Laffont (1979), proved in last lecture, any strategyproof mechanism that minimizes the social cost \(V(c) = \sum_{k \in \mathcal{C}} u_k(c) \) (namely, it's efficient), must be a VCG mechanism with payments of the form
\[
p^k = u_k(c) - V(c) + h_k(c^{-k}),
\]
where \(h_k \) is an arbitrary function of \(c^{-k} \).

[Recall from last lecture that Grove's transfers are:
\[
t_i(\theta) = \left[\sum_{j \neq i} v_j(x^*(\theta), \theta_j) \right] + h_i(\theta - \theta_i)
\]

welfare of agent \(j \) from the efficient allocation \(x^*(\theta) \) when his type is \(\theta_j \).

When \(c_k = \infty \), \(I_k(c|^{\infty}_k; i,j) = 0 \) for all \(i,j \) because the graph is biconnected and all other costs are finite. \(\Rightarrow p^k = 0 \) and \(u_k(c) = 0 \)

\[
\Rightarrow h_k(c^{-k}) = V(c^*|^{\infty}_k)
\]

\[
p^k = V(c^{|^{\infty}_k}) + u_k(c) - V(c)
= u_k(c) + \underbrace{\left[V(c^{|^{\infty}_k}) - V(c) \right]}_{\text{own cost}} \underbrace{\text{bonus equal to the positive externality node } k\text{'s presence brings to network}}_{\text{node } k\text{'s presence brings to network}}
= \sum_{i,j \in \mathcal{E}} T_{ij} \left[c_k I_k(c; i,j) + \sum_{r \in \mathcal{N}} I_r(c|^{\infty}_k; i,j) c_r - \sum_{r \in \mathcal{N}} I_r(c; i,j) \right]
= \sum_{i,j \in \mathcal{E}} T_{ij} p^k_{ij}, \text{ where}
\]

\[
p^k_{ij} = c_k I_k(c; i,j) + \sum_{r \in \mathcal{N}} c_r I_r(c|^{\infty}_k; i,j) - \sum_{r \in \mathcal{N}} c_r I_r(c; i,j)
= \text{k's cost for packets on path } (i,j) \text{ bonus equal to the reduction in cost node } k\text{'s presence brings to the network for path } (i,j).\]
Remarks about mechanism:

1) Although payments could have taken any form and could have depended arbitrarily on traffic matrix, they turned out to be a sum of per-packet payments that do not depend on the traffic matrix.

2) The prices $P_{i,j}^k = 0$ if node k is not on $LCP(i,j)$. So payments can be computed by counting packets as they enter node k, knowing the prices $P_{i,j}^k$.

3) The costs do not depend on the packets' source and destination but the prices do.

4) The payment to a node k for a packet from i to j is determined by the cost of the LCP and the cost of the LCP that does not go through k. The difference between the two is the positive externality that node k's presence brings to the network (the reduction in cost of the LCP when node k is present, compared to its cost when node k is absent).

Criticism of the VCG Mechanism: Overpayments

Suppose the costs of all nodes on top route are $e_i = 0$. Removing node A_i results in the LCP through B of cost 1, namely the cost of $LCP(S,T)$ increases by 1. Thus, each node A_i must be paid its cost plus a bonus of 1, resulting in total payment > n.