Exhaustive Proofs

• Prove for every element in the domain
• Ex: \((n + 1)^3 \geq 3^n\) for \(n \in \{0, 1, 2, 3, 4\}\)
 – Exhaustive Proof:
 – \((0 + 1)^3 \geq 3^0\)
 • \(1 \geq 1\)
 – \((1 + 1)^3 \geq 3^1\)
 • \(8 \geq 3\)
 – \((2 + 1)^3 \geq 3^2\)
 • \(27 \geq 9\)
 – \((3 + 1)^3 \geq 3^3\)
 • \(64 \geq 27\)
 – \((4 + 1)^3 \geq 3^4\)
 • \(125 \geq 81\)
 – □
Proof by Cases

• Prove for every case in the theorem
• Ex: if n is an integer, then $n^2 \geq n$
 – Proof by cases:
 – Case $n \geq 1$:
 • $n \cdot n \geq 1 \cdot n$
 • $n^2 \geq n$
 – Case $n \leq 1$:
 • $n^2 \geq n$, since n^2 is positive and n is negative
 – Case $n = 0$:
 • $0^2 \geq 0$
 – The claim holds in all cases □
Leveraging Proof by Cases

• When you can’t consider every case all at once
• When there’s no obvious way to start, but extra information in each case helps
• Ex: Formulate and prove a conjecture about the final digit of perfect squares
 – List some perfect squares
 – Look at the final digit \((13^2 = 169)\)
 – See a pattern?
Theorem: The final digit of a perfect square is 0, 1, 4, 5, 6, or 9.

Proof:

- $n = 10a + b$, $b \in \{0, 1, 2, ..., 9\}$
- $n^2 = (10a + b)^2 = 10(10a^2 + 2ab) + b^2$

 - n^2 and b^2 have the same final digit
- Case $b = 0$:
 - $0^2 = 0$, n^2 ends in 0
- Case $b \in \{1, 9\}$:
 - $1^2 = 1, 9^2 = 81$, n^2 ends in 1
- Case $b \in \{2, 8\}$:
 - $2^2 = 4, 8^2 = 64$, n^2 ends in 4
- Case $b \in \{3, 7\}$:
 - $3^2 = 9, 7^2 = 49$, n^2 ends in 9
- Case $b \in \{4, 6\}$:
 - $4^2 = 16, 6^2 = 36$, n^2 ends in 6
- Case $b = 5$:
 - $5^2 = 25$, n^2 ends in 5

\square
Leveraging Proof by Cases

• Theorem: \(x^2 + 3y^2 = 8 \) has no integer solutions
• Proof by Cases:
 – \(x^2 \leq 8 \) \(|x| < 3 \)
 – \(3y^2 \leq 8 \) \(|y| < 2 \)
 – 15 cases
 • \(x \in \{-2, -1, 0, 1, 2\} \)
 • \(y \in \{-1, 0, 1\} \)
 – 6 cases
 • \(x^2 \in \{0, 1, 4\} \)
 • \(y^2 \in \{0, 1\} \)
 – \leq 6 cases
 • \(x^2 \in \{0, 1, 4\} \)
 • \(3y^2 \in \{0, 3\} \)
 • \(4 + 3 = 7 \neq 8 \)
 – \(\therefore \) no integer solutions \(\square \)
Without Loss of Generality (wlog)

- Assert that the proof for one case can be reapplied with only straightforward changes to prove other specified cases.
- Ex: Let \(x, y \) be integers. If \(xy \) and \(x + y \) are both even, then \(x \) and \(y \) are both even.
 - Proof
 - Use contraposition
 - \((x \text{ is odd}) \lor (y \text{ is odd}) \rightarrow ((xy \text{ odd}) \lor (x + y \text{ is odd})) \)
 - Assume \((x \text{ is odd}) \lor (y \text{ is odd}) \)
 - Wlog, assume \(x \) is odd.
 - Case \(y \) even:
 - \(x + y = (\text{odd}) + (\text{even}) = \text{odd} \checkmark \)
 - Case \(y \) odd:
 - \(xy = (\text{odd})(\text{odd}) = \text{odd} \checkmark \)
 - \(\therefore (x \text{ is odd}) \lor (y \text{ is odd}) \rightarrow ((xy \text{ odd}) \lor (x + y \text{ is odd})) \)
 - It follows that \(((xy \text{ even}) \land (x + y \text{ is even})) \rightarrow ((x \text{ even}) \land (y \text{ is even})) \)
 \(\square \)
• Exhaustive proof and proof by cases are only valid when you prove **every** case

• Ex: every positive integer is the sum of 18 fourth powers of integers.
 – 79 is the counterexample

• Ex: if x is a real number, then x^2 is positive
 – Case x is positive:
 • $(\text{positive})(\text{positive}) = (\text{positive})$ ✓
 – Case x is negative:
 • $(\text{negative})(\text{negative}) = (\text{positive})$ ✓
 – Case x is zero:
 • $(\text{zero})(\text{zero}) = \text{zero}$ X
Existence Proofs

• To prove \(\exists x P(x) \)
 – Constructive: find a witness
 – Nonconstructive: shown without witness

• Ex: Show that there exists some integer that is expressible as the sum of 2 cubes in 2 different ways
 – Constructive proof: \(1729 = 10^3 + 9^3 = 12^3 + 1^3 \)
Existence Proofs

• Ex: Show that there exists 2 irrational numbers \(x, y \) such that \(x^y \) is rational
 – Nonconstructive proof:
 • Known: \(\sqrt{2} \) is irrational
 • Consider \(x = y = \sqrt{2} \), so \(x^y = \sqrt{2}^{\sqrt{2}} \)
 • If \(\sqrt{2}^{\sqrt{2}} \) is rational, then \(x = y = \sqrt{2} \) are the witnesses
 • If \(\sqrt{2}^{\sqrt{2}} \) is irrational, then let \(x = \sqrt{2}^{\sqrt{2}} \) and \(y = \sqrt{2} \)
 \[x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2 \]
 – \(x = \sqrt{2}^{\sqrt{2}} \) and \(y = \sqrt{2} \) are the witnesses
 • Either way, we found irrational \(x, y \) such that \(x^y \) is rational
 – We just don’t know which value to use for \(x \)
Uniqueness Proofs

• “exactly one element satisfies $P(x)$”
 – Existence: $\exists x \ P(x)$
 – Uniqueness: $\forall y \ P(y) \rightarrow (y = x)$
 – $\exists x \forall y \ P(x) \land (P(y) \rightarrow (y = x))$
 – $\exists x \forall y \ P(y) \leftrightarrow (y = x)$
Uniqueness Proofs

• $ar + b = 0$ has a unique solution when a, b are real and $a \neq 0$
 – Proof:
 – Existence
 • $ar + b = 0$
 • $ar = -b$
 • $r = \frac{-b}{a}$
 – Uniqueness
 • Assume $\exists s \ as + b = 0$
 • Then, $ar + b = as + b$
 • $ar + b - b = as + b - b$
 • $\frac{ar}{a} = \frac{as}{a}$
 • $r = s$
 – $\therefore r = \frac{-b}{a}$ is the solution to $ar + b = 0$
Proof Strategies

• Forward
 – Start with premises, plug and chug to the conclusion.
 • Direct proof
 – Start with negation of conclusion, plug and chug to negation of premises
 • Indirect proof

• Backward
 – Work backwards from the conclusion to find the correct steps for a direct proof
Backward Reasoning

• Prove that $\frac{(x+y)}{2} \geq \sqrt{xy}$ for positive reals x, y

\[- \frac{(x+y)}{2} \geq \sqrt{xy} \]

\[- \frac{(x+y)^2}{4} \geq xy \]

\[- (x + y)^2 \geq 4xy \]

\[- x^2 + 2xy + y^2 \geq 4xy \]

\[- x^2 - 2xy + y^2 \geq 0 \]

\[- (x - y)^2 \geq 0 \]

\[\therefore \frac{(x+y)}{2} \geq \sqrt{xy} \]
Adapting Existing Proofs

• Theorem: $\sqrt{3}$ is irrational
 – Proof: $\sqrt{2}$ is irrational, use that proof

• \sqrt{n} is irrational when n is not a perfect square.
 – Same kind of proof: contradiction
Tilings

• Can a standard checkerboard (8 × 8) be tilled by dominoes?
 – Yes.

• Can a standard checkerboard with one corner missing be tilled by dominoes?
 – No.
 – 63 squares is not an even number of squares

• Can a standard checkerboard with two opposite corners missing be tilled by dominoes?
 – No.
 – Opposite corners have the same color.
 • 32 black + 30 white cannot be tiled because each domino covers 1 white and 1 black square