
Sparse Transformations and Preconditioners
for Hierarchical 3-D Capacitance Extraction

with Multiple Dielectrics ∗

Shu Yan
Texas A&M University

College Station, TX 77843

shu@ee.tamu.edu

Vivek Sarin
Texas A&M University

College Station, TX 77843

sarin@cs.tamu.edu

Weiping Shi
Texas A&M University

College Station, TX 77843

wshi@ee.tamu.edu

ABSTRACT
Capacitance extraction is an important problem that has
been extensively studied. This paper presents a significant
improvement for the fast multipole accelerated boundary
element method. We first introduce an algebraic trans-
formation to convert the n × n dense capacitance coeffi-
cient matrix into a sparse matrix with O(n) nonzero entries.
We then use incomplete Cholesky factorization or incom-
plete LU factorization to produce an effective preconditioner
for the sparse linear system. Simulation results show that
our algorithm drastically reduces the number of iterations
needed to solve the linear system associated with the bound-
ary element method. For the k×k bus crossing benchmark,
our algorithm uses 3-4 iterations, compared to 10-20 itera-
tions used by the previous algorithms such as FastCap [1]
and HiCap [2]. As a result, our algorithm is 2-20 times faster
than those algorithms. Our algorithm is also superior to the
multi-scale method [3] because our preconditioner reduces
the number of iterations further and applies to multiple di-
electrics.

Categories and Subject Descriptors: B.7.2 [Integrated
Circuits]: Design Aids — simulation, verification

General Terms: Algorithms.

Keywords: Capacitance extraction, interconnect, iterative
methods, preconditioning.

1. INTRODUCTION
The Boundary Element Method (BEM) is the basis for

many capacitance extraction algorithms. FastCap [1], Hi-
Cap [2], multi-scale [3], and other algorithms [4] are based on
BEM and accelerated with Fast Multiple Method (FMM).
The pre-corrected FFT algorithm [5] and the singular value

∗This research was supported by the NSF grants CCR-
0098329, CCR-0113668, EIA-0223785, and ATP grant 512-
0266-2001.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

decomposition algorithm [6] are based on BEM but not
FMM. The linear system arising from BEM is dense and
often solved by iterative methods. However for these dense
matrices, cost-effective preconditioners are difficult to con-
struct.

In this paper, we propose an algebraic linear transforma-
tion to convert the dense linear system from HiCap [2], into
an equivalent sparse system. The transformed linear system
is solved by CG or GMRES iterative methods. The sparse
structure is exploited to construct preconditioners based on
incomplete LU or incomplete Cholesky factorization. The
rate of convergence of the iterative methods increases dra-
matically through the use of these preconditioners. Experi-
mental results show that our algorithm is significantly faster
than all previous methods, including FastCap [1], SVD [6],
pre-corrected FFT [5], and multi-scale [3] on several stan-
dard benchmarks.

In Section 2, we review the integral equation approach for
capacitance extraction for uniform and multiple dielectrics,
and HiCap algorithm [2]. In Section 3, we introduce the
new algorithm. We present experimental results in Section
4 and conclusions in Section 5.

2. PRELIMINARY
The capacitance of an m-conductor geometry is summa-

rized by an m×m capacitance matrix C. To determine the
j-th column of the capacitance matrix, we compute the sur-
face charges on each conductor produced by raising conduc-
tor j to unit potential while grounding the other conductors.
Then Cij is numerically equal to the charge on conductor i.
This procedure is repeated m times to compute all columns
of C.

2.1 Uniform Dielectric
For conductors in the uniform media, each of them poten-

tial problems can be solved using an equivalent free-space
formulation where the conductor-dielectric interface is re-
placed by a charge layer of density σ. The charge layer
satisfies the integral equation

ψ(x) =

∫
surfaces

σ(x′)
1

4πε0‖x− x′‖dα
′, x ∈ surfaces,

(1)

where ψ(x) is the known conductor surface potential, dα′

is the incremental conductor surface area, x′ ∈ dα′, and
‖x− x′‖ is the Euclidean distance between x and x′.

48.1

788

A Galerkin scheme is often used to numerically solve (1)
for σ. In this approach, the conductor surfaces are divided
into n small panels, A1, . . . , An, and a dense linear system
is built:

Pccqc = vc, (2)

where qc ∈ �n is the unknown vector of conductor panel
charges, vc ∈ �n is the vector of known conductor panel po-
tentials, and Pcc ∈ �n×n is the potential coefficient matrix.
Each entry of Pcc is defined as

pij =
1

ai

1

aj

∫
Ai

∫
Aj

1

4πε0‖xi − xj‖ dαjdαi (3)

for panels Ai and Aj , where ai and aj are panel areas.

2.2 Multiple Dielectrics
For solving the multiple dielectrics problems, we apply the

equivalent charge approach [7, 8] which uses the free-space
Green’s function in conjunction with total charge on the
conductor surfaces and polarization charge on the dielectric-
dielectric interfaces. Thus, the potential produced is given
by

ψ(x) =

∫
Sc

σc(x
′)

1

4πε0‖x− x′‖dα
′

+

∫
Sd

σd(x
′)

1

4πε0‖x− x′‖dα
′, (4)

where σc and σd are the charge densities on the conductor
surfaces Sc and the dielectric-dielectric interfaces Sd, respec-
tively. The interface condition

εa
∂ψa(x)

∂na
− εb ∂ψb(x)

∂na
= 0 (5)

should be satisfied at any point x on the dielectric-dielectric
interface. Here, εa and εb are the permittivities of the two
adjacent regions a and b, na is the normal to the dielectric-
dielectric interface at x pointing to dielectric a, and ψa and
ψb are the potentials at x in the dielectrics a and b, respec-
tively. Using the same numerical approach as that for the
uniform case, we transform (4) and (5) into the linear system

[
Pcc Pcd

Edc Edd

] [
qc

qd

]
=

[
vc

0

]
, (6)

where qc and qd are the charge vectors of the conductor
panels and dielectric-dielectric interface panels, respectively,
and vc is the potential vector of conductor panels. The
entries of Pcc and Pcd are defined in (3). The entries of
Edc and off-diagonal entries of Edd are defined as

eij = (εa − εb) ∂

∂na

1

ai

1

aj

∫
Ai

∫
Aj

1

4πε0‖xi − xj‖ dαjdαi,

and the diagonal entries of Edd are defined as

eii = (εa + εb)
1

2aiε0
.

2.3 HiCap Algorithm
For the convenience of discussion in later sections, HiCap

algorithm [2] is briefly introduced here. The algorithm con-
structs a hierarchical data structure for the potential coef-
ficient matrix by adaptively subdividing the conductor sur-
faces into panels to ensure that the coefficients are approxi-
mated to within a user-supplied tolerance.

Fig. 1 shows the hierarchical data structure of a poten-
tial coefficient matrix. The panels are stored as nodes in
the tree, and the coefficients are stored as links between the
nodes. Each tree represents a single conductor surface whose
surface panel is stored as the root node of the tree. Each
non-leaf node represents a panel that is further subdivided
into two child panels, which are stored as child nodes in the
tree. Each leaf node represents a panel that is not further
subdivided. The union of all the leaf nodes completely cover
the surfaces of the conductors. The coefficient matrix deter-
mined by the links of Fig. 1 is a block matrix with O(n)
block entries [2], where n is the number of leaf panels.

The potential on each leaf panel is evaluated in three
steps, which is the same as to compute the matrix-vector
productPq. The first step, AddCharge, computes the charge
of every panel in the tree through a depth-first traversal of
the tree that propagates the charge upward. The second
step, CollectPotential, computes the potential at each
panel Ai due to its interacting panels by adding up the
product of potential coefficient pij with charge at panel Aj ,
for each Aj that has an interaction with Ai. The third
step, DistributePotential, distributes the potential from
the non-leaf nodes to the leaf nodes through another depth
first traversal of the tree that propagates potential down to
the leaf nodes.

3. NEW ALGORITHM
The linear system arising in the capacitance extraction for

both uniform dielectric (2) and multiple dielectrics (6) has
the following form

Pq = v. (7)

In this section, we introduce the new algorithm that trans-
forms the dense system (7) to a sparse system, which is then
solved by a preconditioned iterative method. Our discussion
is based on HiCap [2]. The algorithm is outlined below.

New Algorithm

1. Construct the factorization P = JTHJ.

2. Transform the dense system (7) to equivalent sparse

system P̃q̃ = ṽ.

3. Compute a preconditioner for P̃.

4. Solve P̃q̃ = ṽ via preconditioned CG or GMRES.

5. Compute capacitance.

3.1 Constructing Factorization of P (Step 1)
Consider the coefficient matrix implied by the hierarchical

data structure of HiCap [2] in Fig. 1. Let n be the number
of leaf panels and N be the total number of leaf and non-leaf
panels. Let q,v ∈ �n denote the charge and potential vec-
tors of the leaf panels, respectively. Let H ∈ �N×N be the

789

✡
✡

❏
❏

A13 A14

✡
✡

❏
❏

A6 A7

A2

A1

A3

A5A4

✚
✚✚




✡
✡

❏
❏

A9

A8

A10

A12A11

✚
✚✚




✡
✡

❏
❏

✗ ✔
❄ ❄

☛ ✟
❄ ❄
� ✏
❄ ❄

☛ ✟
❄ ❄

✗ ✔
❄ ❄

� ✏
❄ ❄

☛ ✟
❄ ❄

✛ ✘
❄ ❄

� ✏
❄ ❄

✗ ✔
❄ ❄

✲✛ ✲✛

✲✛ ✲✛

✲✛ ✲✛

	✁✛ 	✁✛

	✁✛ 	✁✛

✄✂✲ 	✁✛ ✄✂✲ 	✁✛

Figure 1: Hierarchical data structure and potential
coefficients.

matrix of links among panels in the hierarchical data struc-
ture, including both leaf and non-leaf panels. For any two
panels with no links in between, the corresponding entries in
H are zero. Clearly, H is a sparse matrix with the number
of nonzero entries equal to the number of block entries in
P. Let J ∈ �N×n represent the tree structure. Each row of
J corresponds to a panel, either leaf or non-leaf, and each
column corresponds to a leaf panel. Each entry Ji,j is 1 if
panel i contains the leaf panel j, and is 0 otherwise. Let
qN ,vN ∈ �N be the charge and potential vectors of the N
panels, respectively, where vN is due to the corresponding
interacting panels. The three steps for matrix-vector multi-
plication in Section 2.3 can be written as

• AddCharge: qN = Jq,

• CollectPotential: vN = HqN , and

• DistributePotential: v = JTvN .

The three steps can be combined to obtain the factorization

P = JTHJ.

3.2 Transforming Linear System (Step 2)

3.2.1 Overview
Given the matrix J, we can construct an orthogonal trans-

formation F ∈ �N×N (described later in this section), such
that

FJ =

[
W
0

]
,

where W ∈ �n×n. Thus,

P = JTHJ

= (FJ)T
(
FHFT

)
(FJ)

=
[
WT 0

] (
FHFT

) [
W
0

]
,

where FHFT can be represented as

FHFT =

[
P̃ ×
× ×

]
,

in which P̃ is sparse (we show this property later). Since

P =WTP̃W, the linear system (7) can be transformed to
the sparse system

P̃q̃ = ṽ, (8)

where q̃ =Wq and ṽ =W−Tv.

3.2.2 Constructing F
We first introduce a basic transformation that is used to

construct F. Given

Ĵk =


 1 1
ck 0
0 ck


 ,

there exists an orthogonal matrix

F̂k =




√
2

ck
2+2

ck√
2(ck

2+2)

ck√
2(ck

2+2)
ck√

ck
2+2

− 1√
ck

2+2
− 1√

ck
2+2

0 1√
2

− 1√
2


 ,

such that

F̂kĴk =


 ck+1 ck+1

0 0
ek −ek


 , (9)

where

ck =

{
1, k = 1√

c2
k−1+2

2
, k > 1

and ek =
ck√
2
.

For the convenience of discussion, we define element tree as
the tree with one root and two children. The transformation
for J is done by a depth-first traversal of the corresponding
tree, propagating the transformation upward to the root.
Fig. 2 illustrates the procedure.

Starting from height k = 1, as shown in Fig. 2(a), for
each element tree rooted at height 1, i.e. tree (B, C, D)

and (E, F, G), we can identify the corresponding Ĵ1 block
in J. We construct the transformation F1 which transforms
all Ĵ1 blocks to F̂1Ĵ1 blocks and leaves the rest of J un-
changed. Next, as illustrated in Fig. 2(b), we identify the
element tree at height k = 2, i.e. tree (A, B, E), and cor-

responding Ĵ2 block in F1J. Note that the rows for A, B
and E have two instances of the Ĵ2 block in the columns C,
F and D, G, respectively. We construct transformation F2

which transforms the Ĵ2 blocks to F̂2Ĵ2 blocks and leaves
the rest of F1J unchanged. In this way, the transformation
is propagated to root. Finally, as shown in Fig. 2(c), we
permute the nonzero rows to the top part with the permu-
tation matrix E. The overall transformation is summarized
as F = EF2F1. It is easy to see that in FJ, only rows cor-
responding to the root or the right child nodes are nonzero.

Generally, for a tree of height h, the transformation is

F = EFhFh−1 · · ·F2F1,

where Fk is constructed according to the element trees of
height k. Since all Fks and E are orthogonal, F is orthogo-
nal.

3.2.3 Computing FHFT

The matrix H is transformed by applying the transforma-
tions Fk, k = 1, . . . , h in order, as shown below

Hk+1 = FkHkF
T
k , k = 1, . . . , h,

790

C D F G

B E

A✬

✫

✩

✪

✬

✫

✩

✪

✑
✑✑

◗
◗◗

❙❙�� �� ❙❙

✲

A
B
C
D
E
F
G

A
B
C
D
E
F
G

C D F G C D F G
1 1 1 1
1 1
1

1
1 1
1

1

1 1 1 1
c2c2

0 0
e1-e1

c2c2

0 0
e1-e1

J F1J

F1

(a). Transformation with F1

C D F G

B E

A

✬

✫

✩

✪
✑

✑✑
◗

◗◗

❙❙�� �� ❙❙

✲

A
B
C
D
E
F
G

A
B
C
D
E
F
G

C D F G C D F G
1 1 1 1
c2c2

e1-e1
c2c2

-e1e1

c3c3c3c3

0 0 0 0

e1-e1
e2e2-e2-e2

e1 -e1

F1J F2F1J

F2

(b). Transformation with F2

C D F G

B E

A
✑

✑✑
◗

◗◗

❙❙�� �� ❙❙

✲

A
B
C
D
E
F
G

A
E
D
G
B
C
F

C D F G C D F G
c3c3c3c3

-e1e1
e2e2-e2-e2

e1-e1

c3c3c3c3
e2e2-e2-e2
e1-e1

e1-e1

F2F1J EF2F1J

E

(c). Permuting rows with E

Figure 2: The procedure of constructing the trans-
formation F for a tree of height 2.

where H1 = H, and then by applying the permutation ma-
trix

FHFT = EHh+1E
T.

With the hierarchical data structure, the transformation is
done by a depth-first traversal of the tree, propagating the
transformation upward, in a manner similar to the process
of constructing the transformation matrix F. The procedure
is described below.

H2Pt(Panel Ai)

{

if (Ai is leaf)

return;

if (Ai has children) {

H2Pt(Ai.left);

H2Pt(Ai.right);

}

ElementTreeTransform(Ai);

}

Here, the subroutine ElementTreeTransform(Ai) updates
the three rows of H, corresponding to Ai, Ai.left and
Ai.right, by multiplying the rows by F̂k from left side,
where k is the height of Ai in the tree. The subroutine
also updates the three columns of H, corresponding to Ai,
Ai.left and Ai.right, by multiplying the columns by F̂T

k

from right side .

InFHFT, only the submatrix P̃, which contains the trans-
formed links among root nodes and right child nodes, is our
concern. The matrix P̃ is sparse because the number of
nonzero entries in P̃ is comparable to the number of block
entries in P, which is O(n). This has been observed in the
simulations as well (see, e.g., Fig. 3).

10 2 10 3 10 4 10 510 4

10 5

10 6

10 7

Matrix dimension

Number of block entries in
Number of nonzero entries in

slope=1

10 2 10 3 10 4 10 510 4

10 5

10 6

10 7

Number of block entries in
Number of nonzero entries in

P

slope=1

P�

Figure 3: Number of nonzero entries in P̃ and the
number of block entries in P for different problem
sizes.

3.2.4 Computing ṽ
The rows of the transformed matrix F̂kĴk are orthogonal

for all k. It follows that the rows of W are orthogonal and
WWT is a diagonal matrix which can be easily inverted.
This property is exploited when computing ṽ:

ṽ =W−Tv =
(
WWT

)−1

Wv.

Moreover, the sum of entries in each row of W is zero ex-
cept for the rows corresponding to the root nodes of the
trees for the interface and conductor surface panels. As a
result, ṽ has nonzero entries of value ch+1

−1 only at the
root rows which correspond to the conductor surfaces with
1 volt, where h is the height of the root.

3.3 Solving Transformed System (Steps 3–4)
For the problem with uniform media, the sparse linear

system (8) is symmetric. We use incomplete Cholesky fac-
torization with no fill to compute the preconditioner. Pre-
conditioned Conjugate Gradients method is used to solve
the system. For the problem with multiple dielectrics, the
sparse linear system is unsymmetric. The preconditioner is
computed from incomplete LU factorization of the coeffi-
cient matrix. No fill is allowed during factorization. We use
right preconditioned GMRES method to solve the system.

3.4 Computing Capacitance (Step 5)
We compute the capacitance directly by adding the entries

of q̃ at the root nodes of each conductor, scaled by ch+1
−1.

This is valid because the entries of q̃ = Wq corresponding
to root nodes are the sum of all leaf panel charges of the
trees, scaled by ch+1.

3.5 Complexity Analysis
The complexity of constructing the factorization of P in

Step 1 is O(n) [2]. Transformation of the linear system in

791

Step 2 usually takes O(n log n) time. Since the number of

nonzeros in P̃ is O(n), incomplete factorization can be done
in O(n) operations. Each iteration requires a matrix-vector

product with P̃ and two triangular solves with the factors
of the preconditioner. Thus, Steps 3 and 4 take O(n) time
when the number of iterations is small. The computation
of capacitance in Step 5 takes linear time. The overall com-
plexity of this algorithm is O(n log n+mn), where m is the
number of conductors.

Figure 4: 4x4 bus with two layers of dielectrics (sec-
tion view).

M1

M6

M2

M3

M4

M5

M7

M8

Air

Substrate

1.0rε =

11.8rε =

2 mµ

2 mµ

1 mµ

1 mµ

1 mµ

1 mµ

1 mµ

1 mµ

1 mµ

2 mµ

0.8 mµ

0.4 mµ

Figure 5: Example with 48 metal conductors and 8
dielectric layers. Metal wires are shaded. Relative
permittivity of M1 is 3.9, M2 through M6 is 2.5, and
M7 and M8 is 7.0. Layers M2 through M5 have 10
conductors each whereas layers M7 and M8 have 4
conductors each.

4. EXPERIMENTAL RESULT
Four algorithms are compared: FastCap [1] with expan-

sion order 2, FastCap with expansion order 1, HiCap [2]
and the new algorithm. In [2], HiCap algorithm can only
solve problems in uniform media. To make the comparison
complete, we extend HiCap to cover the multiple dielectrics.

The algorithms are executed on a Sun UltraSPARC En-
terprise 4000. The uniform media examples are from [1].
In addition, we experiment with the k × k bus crossing in
two dielectrics, as shown in Fig. 4. The media surrounding
the upper layer conductors has permittivity of 3.9ε0 and the

lower layer conductors are in media with 7.5ε0. The shaded
box is the interface of the two media layers. Each bus is
scaled to 1m × 1m × (2k + 1)m, where m is meter. The
distance between buses in the same layer is 1m and the dis-
tance between the two bus layers is 2m. We define the error
of capacitance matrices C′ as ‖C−C′‖F /‖C‖F , where ‖•‖F

is the Frobenius norm.

0 5 10 15 20 25 30 3510
-5

10
-4

10
-3

10
-2

R
es

id
ua

l

Number of iterations

0 10 20 30 40 50 60 70 80 90 100 110

R
es

id
ua

l

Time(s)
10

10

10

10

-5

-4

-3

-2

FastCap(order=2)
HiCap
New algorithm

Figure 6: Comparison of convergence rate.

Table 1 compares the four algorithms. The new algorithm
is the fastest and uses much less memory compared to Fast-
Cap. The error of the new algorithm is below 2.5%, which
is satisfactory in practice. The new algorithm uses more
memory than HiCap because of the extra storage for trans-
formed sparse system. This can be improved with careful
implementation.

We test on structures with more conductors and dielec-
tric layers as shown in Fig. 5. Similar structures with 68
and 116 conductors are also tested. The experimental re-
sult of HiCap and new algorithm are reported in Table 2.
We can not use FastCap to solve these examples because of
prohibitive time and memory requirement.

Fig. 6 shows that the residual norm decreases rapidly for
the new algorithm. In contrast, the decrease is slower for
HiCap. As a result, the new algorithm requires much less
time to solve the problem.

In addition to these experiments, we studied the perfor-
mance of the new algorithm on the parallel-plate problem.
It is well known that this problem yields ill-conditioned sys-
tems when the two plates are very close to each other. For
a problem with plate size 20m× 20m and distance between
two plates 0.01m, HiCap requires 67 iterations to converge.
In contrast, the new algorithm needs only 5-6 iterations.

The multi-scale method [3] uses a similar idea to sparsify
the dense matrix P. However there are three differences with
the proposed method. First, the multiscale method is based
on high order FMM, whereas our method is based on Hi-
Cap. It was shown that the hierarchical approach in HiCap
is more efficient and kernel independent [2]. Second, their
method has been applied to uniform dielectric only, while
our method is applied to multiple dielectrics. Finally, their
preconditioner is block diagonal, while ours uses incomplete
Cholesky or LU factorization. Based on the limited infor-
mation in [3], we present a comparison of the number of
iterations needed to reduce the residual norm below 10−9

792

for k × k bus crossing benchmarks. Table 3 shows that the
number of iterations required by the new algorithm is less
than the multiscale method.

We also expect our algorithm to be faster than the pre-
corrected FFT algorithm [5] and the SVD algorithm [6].
On standard benchmarks, these methods are only 2–3 times
faster than FastCap, whereas our algorithm is much faster
than FastCap.

Table 1: Comparison of four methods. Time is CPU
seconds, iteration is average number of iterations for
solving one conductor, memory is MB, convergence
tolerance is 1%, and error is with respect to FastCap
(order=2).

FastCap FastCap HiCap New
(order=2) (order=1) algorithm

4x4 Bus with Uniform Dielectric
Time 18.63 19 1.3 1.2
Iteration 8 14.9 9 3
Memory 25.7 16.7 1.6 2.4
Error — 0.05% 0.97% 1.07%
Panel 2736 2244

6x6 Bus with Uniform Dielectric
Time 113.9 68.5 2.4 1.5
Iteration 14.4 14.5 11.9 3.2
Memory 62.5 40.3 1.9 2.9
Error — 1.12% 2.19% 2.25%
Panel 5832 3168

8x8 Bus with Uniform Dielectric
Time 206 204 29.2 9.7
Iteration 12 21.9 13.8 3.5
Memory 112 67 7.2 12.1
Error — 1.04% 1.4% 1.45%
Panel 10080 8576

4x4 Bus with Two Layer Dielectrics
Time 63 36 1.7 2.4
Iteration 13 14 9 3
Memory 68 39 3.0 4.3
Error — 0.69% 1.09% 1.02%
Panel 3456 2120

6x6 Bus with Two Layer Dielectrics
Time 162 104 10.4 6.6
Iteration 17.1 17 11.3 3
Memory 92 61 6.3 10.3
Error — 0.58% 1.00% 1.29%
Panel 5448 4120

8x8 Bus with Two Layer Dielectrics
Time 324 197 32.0 15.0
Iteration 18 18 12.8 3
Memory 133 86.9 11.5 18.9
Error — 0.0% 1.40% 1.45%
Panel 7968 6784

5. CONCLUSION
This paper proposes a new algorithm to transform the

dense block linear system arising in capacitance extraction
into a sparse system which is then solved by a preconditioned
iterative method. The sparse structure allows construction

Table 2: Comparison of HiCap and the new algo-
rithm. Time is CPU seconds, iteration is average
iteration number for solving one conductor, mem-
ory is MB, convergence tolerance is 1%. FastCap
is not included because of the prohibitive time and
memory requirements.

48 conductors 68 conductors 116 conductors
HiCap New HiCap New HiCap New

alg. alg. alg.
Time 533 139 3011 650 12930 2875
Iteration 18.7 3.9 25.3 3.8 36.8 5.3
Memory 43 68 115 188 406 733
Panel 19840 42912 138552

Table 3: Comparison of iteration numbers for multi-
scale method and new algorithm. Experiments are
for k × k bus crossing conductors. Convergence tol-
erance is 10−9.

1× 1 2× 2 4× 4 6× 6 8× 8
Multiscale 12 17 18 18 18
New 7 14 13 14 16

of inexpensive but highly effective preconditioners based on
incomplete factorization techniques.

The experimental results show that the new algorithm
beats HiCap in terms of number of iterations and running
time. But the memory requirement is larger than HiCap.
Compared with FastCap, the new algorithm is about 20
times faster and uses only about 10 % memory.

The application of the new algorithm is not confined to
the extraction based on HiCap. It is applicable to other
techniques based on multipole methods, where the linear
system is represented by block matrix.

6. ACKNOWLEDGMENTS
The authors thank Sani Nassif for suggestion and exam-

ples that improved the presentation.

7. REFERENCES
[1] K. Nabors and J. White, “FastCap: A multipole accelerated 3-d

capacitance extraction program,” IEEE Trans. on CAD, pp.
1447–1459, 1991.

[2] W. Shi, J. Liu, N. Kakani, and T. Yu, “A fast hierarchical
algorithm for 3-d capacitance extraction,” IEEE Trans. on CAD,
pp. 330–336, 2002.

[3] J. Tausch and J. White, “A multiscale method for fast
capacitance extraction,” Proc. DAC, pp. 537–542, 1999.

[4] M. Beattie and L. Pileggi, “Electromagnetic parasitic extraction
via a multipole method with hierarchical refinement,” Proc.
ICCAD, pp. 437–444, 1999.

[5] J. R. Phillips and J. White, “A precorrected FFT method for
capacitance extraction of complicated 3-d structures,” IEEE
Trans. CAD, pp. 1059–1072, 1997.

[6] S. Kapur and D. E. Long, “IES3: A fast integral equation solver
for efficient 3-dimensional extraction,” Proc. ICCAD, pp.
448–455, 1997.

[7] T. K. Sarkar S. M. Rao and R. F. Harrington, “The electrostatic
field of conducting bodies in multiple dielectric media,” IEEE
Trans. on Microwave Theory Tech., pp. 1441–1448, 1984.

[8] K. Nabors and J. White, “Multipole-accelerated capacitance
extraction algorithm for 3-d structures with multiple
dielectrics,” IEEE Trans. on CAS, pp. 946–954, 1992.

793

