Parallel Performance of Hierarchical Multipole
Algorithms for Inductance Extraction*

Hemant Mahawar!**, Vivek Sarin!, and Ananth Grama?

! Department of Computer Science, Texas A&M University,
College Station, TX, U.S.A.
{mahawarh, sarin}@cs.tamu.edu
2 Department of Computer Science, Purdue University, West Lafayette, IN, U.S.A.
ayg@cs.purdue.edu

Abstract. Parasitic extraction techniques are used to estimate signal
delay in VLSI chips. Inductance extraction is a critical component of the
parasitic extraction process in which on-chip inductive effects are esti-
mated with high accuracy. In earlier work [I], we described a parallel
software package for inductance extraction called ParlS, which uses a
novel preconditioned iterative method to solve the dense, complex linear
system of equations arising in these problems. The most computation-
ally challenging task in ParlS involves computing dense matrix-vector
products efficiently via hierarchical multipole-based approximation tech-
niques. This paper presents a comparative study of two such techniques:
a hierarchical algorithm called Hierarchical Multipole Method (HMM)
and the well-known Fast Multipole Method (FMM). We investigate the
performance of parallel MPI-based implementations of these algorithms
on a Linux cluster. We analyze the impact of various algorithmic param-
eters and identify regimes where HMM is expected to outperform FMM
on uniprocessor as well as multiprocessor platforms.

1 Introduction

The design and testing phases in the development of VLSI chips rely on accu-
rate estimation of the signal delay. Signal delay in a VLSI chip is due to the
parasitic resistance (R), capacitance (C), and inductance (L) of the interconnect
segments. At high frequencies, the physical proximity of interconnect segments
leads to strong inductive coupling between neighboring conductors. This cou-
pling arises because a magnetic field is created when current flows through a
conductor. This magnetic field opposes any change in the current flow within
the conductor as well as in the neighboring conductors. Self-inductance is the

* Support for Mahawar and Sarin was provided by NSF-CCR 9984400, NSF-CCR
0113668, and Texas ATP 000512-0266-2001 grants. Grama’s research was supported
by NSF-EEC 0228390 and NSF-CCF 0325227 grants. Computational resources were
acquired through NSF-DMS 0216275 grant.

** Corresponding author.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 450-&1] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Parallel Performance of Hierarchical Multipole Algorithms 451

resistance offered to change in current within the conductor. Mutual inductance
refers to the resistance offered to change in current in a neighboring conduc-
tor. Inductance extraction refers to the process of estimating self and mutual
inductance between interconnect segments of a chip.

To estimate inductance between a set of conductors in a particular config-
uration, one needs to determine current in each conductor under appropriate
equilibrium conditions. The surface of each conductor is discretized using a uni-
form two-dimensional grid whose edges represent current-carrying filaments. The
potential drop across a filament is due to its own resistance and due to the induc-
tive effect of other filaments. Kirchoff’s current law is enforced at the grid nodes.
This results in a large dense system of equations that is solved using iterative
methods such as the generalized minimum residual method (GMRES) [2]. Each
iteration requires a matrix-vector product with the coefficient matrix, which can
be computed without explicitly forming the matrix itself. Matrix-vector prod-
ucts with the dense matrix are computed approximately via multipole algorithms
such as the Fast Multipole Method (FMM) [3}4].

In an earlier paper [I], we described an object-oriented parallel inductance
extraction software called ParlS. The software uses a formulation in which cur-
rent is restricted to the subspace satisfying Kirchoff’s law through the use of
solenoidal basis functions. The reduced system of equations is solved by a pre-
conditioned iterative solver in which products with the dense coefficient matrix
and the preconditioner are computed via FMM. Improved formulation and the
associated preconditioning is responsible for significant reduction in computa-
tional and storage requirements [5]. ParlS achieves high parallel efficiency on a
variety of multiprocessors with shared-memory, distributed-memory, and hybrid
architectures.

In this paper, we present a comparative study of multipole-based methods
for computing dense matrix-vector products. We consider the well-known FMM
algorithm and a hierarchical algorithm, called Hierarchical Multipole Method
(HMM), which can be considered as a variant of the FMM based on particle-
cluster multipole evaluations only (related to a Barnes-Hut type approach [6]).
We present parallel formulations of these methods and discuss their performance
on a Beowulf cluster. We analyze the impact of parameters such as the multipole
degree (d), the multipole acceptance criterion threshold («), and the maximum
number of particles allowed in a leaf box (s) on these methods. Since these param-
eters influence both accuracy and cost, it is important to develop a framework
to select the optimal method for a given set of parameters. The experimental
results presented in this paper can be used to identify the optimal method for
difference parameter subspaces.

The paper is organized as follows — Section [2] outlines the inductance extrac-
tion problem, the solenoidal basis method, and the software design of ParlIS;
Section [3] describes HMM and FMM algorithms and outlines their parallel for-
mulations; Section Ml presents a set of experiments on an AMD cluster to illus-
trate the performance of these methods for a range of parameters; and Section [
presents concluding remarks.

452 H. Mahawar, V. Sarin, and A. Grama

2 Background

2.1 Inductance Extraction Problem

For a set of t conductors, we need to determine an ¢ X t impedance matrix
that represents pairwise mutual inductance among the conductors at a given
frequency. The element (I,k) of the matrix equals the potential drop across
conductor [when there is zero current in all the conductors except conductor k
that carries unit current. The kth column is computed by solving an instance
of the inductance extraction problem with the right hand side denoting unit
current flow through conductor k. The impedance matrix can be computed by
solving ¢ instances of this problem with different right hand sides.

The current density J at a point r is related to potential ¢ by the following
equation [7]

. A J(r') ’

P+ | fr v = Vo) 1)
where p is magnetic permeability of the material, p is the resistivity, r is position
vector, w is frequency, ||r — r’|| is the Euclidean distance between r and r’, and
j = +v/—1. The volume of the conductor is denoted by V and incremental volume
with respect to r’ is denoted by dV’.

To obtain a numerical solution for (), each conductor is discretized into a
mesh of n filaments f1, fa,..., fn. Current is assumed to flow along the filament
length. The current density within a filament is assumed to be constant. Filament
currents are related to the potential drop across the filaments according to the
linear system

R+ jwL]L; = Vy, (2)

where R is an n x n diagonal matrix of filament resistances, L is a dense induc-
tance matrix denoting the inductive coupling between current carrying filaments,
I; is the vector of filament currents, and V is the vector of potential difference
between the ends of each filament. The kth diagonal element of R is given by
Rik = pli/ax, where I, and ay are the length and cross-sectional area of the
filament fj, respectively. Let ux denote the unit vector along the kth filament.
The elements of the inductance matrix L are given by

Ly = / / ——dVjdV].
471- apag rkefk T]Efz Hrk I'lH

Kirchoff’s current law states that the net current flow into a mesh node must
be zero. These constraints on current lead to additional equations

B'1; =1, (3)

where BT is a sparse m x n branch index matrix and I, is the known branch
current vector of length m with non-zero values corresponding to the source
currents. The branch index matrix defines the connectivity among filaments and
nodes. The (k,l) entry of the matrix is —1 if filament [originates at node k, 1
if filament [terminates at node k, and 0 otherwise. Since the unknown filament

Parallel Performance of Hierarchical Multipole Algorithms 453

potential drop V; can be represented in terms of node potential V,, by the

relation BV,, = V¢, one needs to solve the following system of equations to
determine the unknown filament current Iy and node potential V,,
R+juL-B||I;| |0 (4)
BT 0 V.| |Ls|°

For systems involving a large number of filaments, it is not feasible to compute
and store the dense matrix L. These linear systems are typically solved using
iterative techniques such as GMRES. The matrix-vector products with L are
computed using fast hierarchical methods such as the FMM. The main hurdle
in this matrix-free approach is the construction of effective preconditioners for
the coeflicient matrix.

2.2 The Solenoidal Basis Method

We present a brief overview of the solenoidal basis method for solving (@) (see,
e.g., [0] for details). Consider the discretization of a ground plane shown in Fig. [Tl
Current flowing through the filaments must satisfy Kirchoft’s law at each node
in the mesh. The bold line indicates a path for current that satisfies boundary
conditions. Current is made up of two components: constant current along the
bold line shown on the left and a linear combination of mesh currents as shown in
the partial mesh on the right. This converts the system in (@) into the following
system with a different right hand side

R+ jwL —B 1 F
el g

The main difference between matrix representations in [{@l) and (&) is that the
former uses current boundary conditions and the later uses potential boundary
conditions.

Solenoidal functions are a set of basis functions that satisfy conservation
laws automatically. Figure [Il shows how to construct unit circular flows on mesh
cells that automatically satisfy Kirchoff’s law at the grid nodes. The unknown
filament currents can be expressed in the solenoidal basis: I = Px, where z is
vector of unknown mesh currents and P is a sparse matrix whose columns denote
filament current in each mesh. A column of P consists of four non-zero entries
that have the value 1 or —1 depending on the direction of current flow in the
filaments of the cell.

The system (B) is converted to a reduced system

PT[R + jwL] Pz = PTF, (6)

which is solved by a preconditioned iterative method. The preconditioning step
involves product with a dense matrix that represents the inductive coupling
among filaments placed at the cell centers. This preconditioning scheme can be
implemented using FMM as well, and leads to rapid convergence of the iterative

454 H. Mahawar, V. Sarin, and A. Grama

L
hﬂﬂm
hﬂﬂﬂ
mwmm
il

Fig. 1. Discretization of a ground plane with a mesh of filaments (left) and solenoidal

[I Y-dimension filament

l:' X — dimension filament

current flows in each mesh cell (right) (Reproduced from [5])

method. On a set of benchmark problems, a serial implementation of this soft-
ware is up to 5 times faster than FastHenry [7], a commonly available induction
extraction software, with only one-fifth of memory requirements [5].

2.3 ParI$: Parallel Inductance Extraction Software

We have developed an object-oriented parallel implementation of the solenoidal
basis algorithm for inductance extraction [I]. This software combines the ad-
vantages of the solenoidal basis method, fast hierarchical methods for dense
matrix-vector products, and a highly effective preconditioning scheme to provide
a powerful package for inductance extraction. In addition, the software includes
an efficient parallel implementation to reduce overall computation time [§] on
multiprocessors.

The building blocks of ParlS are conductor elements. Each conductor is uni-
formly discretized with a mesh of filaments. Kirchoff’s law constraints on the
filament currents of a conductor contribute a block in the system matrix. The
most time-consuming step in the solution of the reduced system involves matrix-
vector products with the impedance matrix, which is the sum of a diagonal ma-
trix R and a dense inductance matrix L. Since the preconditioning step involves
matrix-vector product with a dense matrix, which is similar to L, it is worthwhile
to reduce the cost of the matrix-vector product with L.

3 Hierarchical Multipole-Based Algorithms

The computational complexity of a matrix-vector product with a dense n x n
matrix is O(n?). This can be reduced significantly through the use of hierarchi-

Parallel Performance of Hierarchical Multipole Algorithms 455

cal approximation techniques. These algorithms exploit the decaying nature of
the % kernel for the matrix entries to compute approximations with acceptable
error. Higher accuracy can be achieved at the expense of more computation.
Well-known techniques such as the Barnes-Hut [6] method compute particle-
cluster interactions to achieve O(nlogn) complexity, whereas the Fast Multipole
Method (FMM) [4] computes cluster-cluster interactions in addition to particle-
cluster interactions to achieve O(n) complexity.

3.1 Hierarchical Multipole Method

The hierarchical multipole method (HMM) can be viewed either as an aug-
mented version of the Barnes-Hut method or as a variant of FMM that uses
only particle-cluster multipole evaluations. The method works in two phases:
the tree construction phase and the potential computation phase. In the tree
construction phase, a spatial tree representation of the domain is derived. At
each step in this phase, if the domain contains more than s particles, where s
is a preset constant, it is recursively divided into eight equal parts. This pro-
cess continues until each part has at most s elements. The resulting tree is an
unstructured oct-tree. Each internal node in the tree computes and stores an
approximate multipole series representation of the particles contained in its sub-
tree. The multipole series of a node is computed from the series of its children
through an up-traversal of the nodes from the leaves to the root. Once the tree
has been constructed, the potential at each particle can be computed as follows:
a multipole acceptance criterion is applied to the root of the tree to determine
if an interaction can be computed; if not, the node is expanded and the process
is repeated for each of the eight children. The multipole acceptance criterion
computes the ratio of the distance of the point from the center of the box to
the dimension of the box. If this ratio is greater than «, where « is a constant
greater than v/3/2, an interaction can be computed.

3.2 Fast Multipole Method

Parl$S uses a variant of FMM to compute approximate matrix-vector products
with dense matrices. FMM is used to compute the potential at each filament
due to the current flow in all filaments. The algorithm divides the domain into
eight equal non-overlapping subdomains, and continues the process recursively
until each subdomain has at most s filaments, where s is a parameter that is
chosen to maximize computational efficiency. A subdomain is represented by a
subtree whose leaf nodes contain the filaments in the subdomain. These subdo-
mains are distributed across processors. The potential evaluation phase consists
of two traversals of the tree. During the up-traversal, multipole coefficients are
computed at each node. These coefficients can be used to compute potential
due to all the filaments within the node’s subdomain at a far away point. The
multipole computation does not require any communication between processors.
During the down-traversal, local coefficients are computed at each node from the
multipole coefficients. The local coefficients can be used to compute potential

456 H. Mahawar, V. Sarin, and A. Grama

due to far away filaments at a point within the node’s subdomain. Potential due
to near by filaments is computed directly.

3.3 Parallel Formulation

To exploit parallelism at the conductor level, each conductor is assigned to a
different processor. The data structures native to a conductor are local to its
processor. This includes the filaments in a conductor and the associated oct-
tree. With the exception of matrix-vector products with the inductance matrix,
all other computations are local to each conductor.

The matrix-vector product with the inductance matrix involves two types of
filament interactions. Interactions among the filaments of the same conductor
are computed locally by the associated processor. To get the effect of filaments
in other conductors, a processor needs to exchange multipole coefficients with
other processors. Since matrix-vector products with the dense inductance matrix
and the preconditioner are computed at each iteration, ParlS identifies those
nodes in a conductor’s tree that are required by other conductors during a pre-
processing step. The cost of this step is amortized over the number of iterations
of the solver. While computing the dense matrix-vector product, communication
is needed for the translation of the multipole coefficients of these nodes to nodes
on other processors. Communication is also needed between adjacent nodes that
belong to different subtrees when computing direct interactions. This type of
communication is proportional to the number of filaments on the subdomain
boundary.

Additional parallelism is available within each conductor. By assigning dif-
ferent processes or threads to all the nodes at a specific level in the oct-tree,
we are able to partition the computation for subdomains among processes.
Fewer processes can be assigned to the top part of the oct-tree to further im-
prove parallel efficiency. With different sized conductors, one can have more
processes associated with larger conductors. This scheme allows load balanc-
ing to a certain extent. A variety of parallel implementations are discussed in
[9-12].

MPI Communication

Conductor 1 Conductor 2 Conductor k Conductor n

Fig. 2. Two-tier parallelization scheme implemented in ParlS

Parallel Performance of Hierarchical Multipole Algorithms 457

A two-tier parallelization approach shown in Fig. Blsimplifies the implementa-
tion in hybrid or mixed mode using both MPI and OpenMP. The software can be
executed on a variety of platforms ranging from shared-memory multiprocessors
to workstation clusters seamlessly [I].

4 Experiments

To investigate the performance of hierarchical multipole algorithms used in ParlS
we considered the cross-over benchmark problem. Figure [3] shows two layered
cross-over of interconnect segments called buses. The problem consists of deter-
mining the impedance matrix of these buses. Each bus is assumed to be 2cm long
and 2mm wide. Buses within a layer are separated by 300um while the layers
are separated by 3mm. This problem leads to a non-uniform point distribution
for the dense matrix-vector multiplication algorithm.

The main goal of this study is to analyze the performance of HMM and FMM
codes within ParlS. Instead of solving the full inductance extraction problem, we
observed the performance of the codes for a fixed number of GMRES iterations.
Each iteration involved dense matrix-vector products with the coefficient matrix
as well as the preconditioner. The results are identical to the case when the
full inductance extraction problem is solved because the dense matrix-vector
products account for over 98% of the execution time (see, e.g., [0]).

A generalized notion of efficiency is used to provide a uniform basis to com-
pare different experiments. We compute scaled efficiency as shown below:

BOPS

Es P (7)

where p is the number of processors and BOPS is the average number of base
operations executed per second. A base operation equals the cost of computing
a direct interaction between a pair of filaments. In principle, BOPS should re-
main unchanged when the number of conductors and filaments per conductor
are varied. With this definition of efficiency, it possible to compare the perfor-
mance of the code on a variety of benchmarks that require different number of
interactions. The experiments were conducted on the Tensor cluster at Texas
A&M University. The cluster consists of 1.4GHz 64-bit AMD Opteron proces-
sors running LAM/MPT on SuSE-Linux, connected via Giga-bit ethernet. GNU
compilers were used on Tensor for compiling the code.

P77 7 7 77 7 7 7 7 7 7 77 7

Fig. 3. The cross-over benchmark

458 H. Mahawar, V. Sarin, and A. Grama

4.1 Impact of Parameters

The performance of the hierarchical multipole algorithms depends on the choice
of multipole degree (d), the multipole acceptance criterion determined by «,
and the maximum number of particles allowed per leaf box (s). Since d and «
parameters influence accuracy of the approximate dense matrix-vector product,
a fair comparison is possible only when the impedance error is bounded. In these
experiments, the impedance error was always within 1% of a reference value that
was calculated by FMM with d = 8.

The dominant computation in FMM consists of multipole-to-local transla-
tions (M2Ls) with computational cost proportional to (d + 1)*. The dominant
computation in HMM consists of multipole evaluations at particles (M2Ps) with
computational cost proportional to (d + 1)2. Table [shows that with increase
in d, the FMM time increases proportional to (d + 1)%, while the HMM time
increases proportional to (d+1)2. For HMM experiments, a was chosen to be 1.

Table 1. Effect of the multipole degree (d) on the execution time, in secs, for different
choices of maximum particles per leaf box (s)

FMM code HMM code
d s=2 s=8 s=32 s=128 s=2 s=8 s=32 s=128

1 49.5 183 12.7 29.9 25.7 21.5 21.3 348
225.8 62.5 25.3 328 46.8 36.5 31.3 419
4 1513.3 398.2 110.8 50.7 110.8 84.5 63.0 61.9

[\

The execution time for both methods decreases when s is increased due to
a decrease in the number of M2Ls and M2Ps. The cost of direct interactions is
proportional to s? and is negligible for small values of s. Direct interactions begin
to dominate the overall cost for large values of s, resulting in higher execution
time. Table [Il shows that when s is increased, the FMM execution time reduces
rapidly due to reduction in M2Ls, until the direct interactions begin to dominate
the computational cost. Similarly, the HMM execution time decreases due to
reduction in M2Ps, until the direct interactions begin to dominate. The decrease
in the HMM case is not as rapid due to the lower complexity of M2Ps compared
to M2Ls. For a given problem, one can identify (d, s) pair that minimizes the
execution time for each method.

HMM has an additional parameter for the multipole acceptance criteria. A
large value of a improves the accuracy of the approximate dense matrix-vector
product at additional computational cost. Larger values of « increase the number
of direct interactions as well as the number of M2Ps by ensuring that multipole
evaluations at particles are computed for smaller boxes. This behavior is clear in
Tables 21 and Bl The increase in time with a can be estimated from the increase
in the number of direct interactions. A choice of s = 8 is used in Table [2] and
d = 2 is used in Table[3

Parallel Performance of Hierarchical Multipole Algorithms 459

Table 2. Effect of the multipole acceptance criterion threshold («) on the execution
time, in secs, of the HMM code for different choices of multipole degree (d)

a d=1 d=2 d=4

1 215 36.5 845
1.540.1 70.6 158.2

Table 3. Effect of the multipole acceptance criterion threshold («)) on the execution
time, in secs, of the HMM code for different choices of maximum particles per leaf
box (s)

a s=2 s=8 s=32

1 46.8 36.5 31.3
1.589.3 70.5 59.5

4.2 Parallel Performance

The parallel performance of FMM and HMM codes is primarily determined by
the ratio of computation to communication. To compute M2L between a pair
of oct-tree nodes residing on different processors, multipole coefficients must
be exchanged. This requires communication of (d + 1)? data units followed by
M2L computation, which is proportional to (d + 1)%. Thus, the computation-
to-communication ratio grows rapidly with increase in d. On the other hand,
computing M2P between a node and a particle requires communication of (d+1)?
data units followed by M2P computation, which is proportional to (d + 1)2. In
this case, there will be limited effect of d on the parallel performance as long as
the multipole coefficients received by a processor ¢ are stored and reused by the
particles on gq.

The use of scaled efficiency E; defined in (7)) allows us to scale the problem
linearly with processors. A cross-over problem with p conductors was chosen for
experiments that used p processors. This benchmark is characterized by proxim-
ity between pairs of conductors on different layers. Thus, the number of M2Ls
and M2Ps requiring communication grows linearly with the number of conduc-
tors p. Similarly, the number of direct interactions that require communication
between processors also grows linearly with p. This is observed in Table @ for
the HMM code with a = 1.

The computation in FMM is varied, with M2Ls forming the dominant com-
ponent. Table Al shows the parallel execution time for the FMM code for s = 8
and s = 32. The execution time grows much faster with p for the case when
s = 32 because of reduced M2Ls and increased direct interactions. This behav-
ior is consistent with the observation that the FMM code achieves higher parallel
efficiency for larger d.

The scaled efficiency allows us to compare the performance if the two meth-
ods. Table [6] shows the efficiency of the HMM and FMM codes on the cross-over

460

H. Mahawar, V. Sarin, and A. Grama

problem with s = 8 and @ = 1. The codes maintain high efficiency as p in-
creases. The efficiency also increases when d is increased, and the effect is more

pronounced in the FMM code.

A comparison of the parallel execution time of the two methods for different
values of d is also instructive. Table [[lshows the ratio of parallel execution times

Table 4. Impact of multipole degree (d) on the execution time, in secs, of the HMM
code on p processors for two different choices of maximum particles per leaf box (s)

s=38 s =32
d p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8
1 21.5 26.5 50.9 105.8 21.3 244 48.8 94.1
2 36.5 46.5 96.5 184.3 31.3 38.3 779 157.5
4 84.5 101.9 220.9 436.8 63.0 78.2 169.6 347.9

Table 5. Impact of multipole degree (d) on the execution time, in secs, of the FMM
code on p processors for two different choices of maximum particles per leaf box (s)

s=38 s =32
d p=1 p=2 p=4 p=8§ p=1 p=2 p=4 p=8
1 183 25.7 34.5 59.2 12.7 13.9 404 944
2 625 725 87.5 131.3 | 25.3 26.6 58.0 126.3
4 398.2 431.4 470.9 683.3 | 110.8 113.4 165.7 277.8

Table 6. Efficiency of the extraction codes on p processors for different choices of

multipole degree (d)

HMM code FMM Code
d p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8
1 0.99 093 094 0.86 0.98 0.74 0.87 0.87
1.00 0.92 0.90 0.92 0.99 0.86 0.97 0.98
4 1.00 0.98 0.93 0.94 1.00 0.93 1.04 0.98

Table 7. Ratio of the execution time of FMM and HMM codes on p processors for

different choices of multipole degree (d)

s=38 s =32
d p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8
1 09 10 07 06 06 06 08 1.0
1.7 16 09 0.7 08 07 07 038
4 4.7 42 21 1.6 1.8 1.4 1.0 0.8

Parallel Performance of Hierarchical Multipole Algorithms 461

of FMM and HMM codes for d = 1,2,4 and s = 8,32. It is clear that HMM
is superior to FMM when a larger value of d is used. The comparative advan-
tage of HMM is diminished for s = 32 due to improved performance of FMM.

5 Conclusions

This paper presents a comparison of multipole-based methods for computing
dense matrix-vector products in inductance extraction problems. The Fast Mul-
tipole Method is compared with a hierarchical multipole method on a set of
benchmark problems. Numerical experiments are conducted on an AMD cluster
for range of parameters such as the multipole degree (d), the multipole accep-
tance criterion threshold («), and the maximum number of particles allowed in a
leaf box (s). The results provide insight into the relative merits of these methods
and suggest ways to determine the optimal method for a given set of parameters.

References

1. Mahawar, H., Sarin, V.: Parallel software for inductance extraction. In: Proceedings
of the International Conference on Parallel Processing, Montreal, Canada (2004)
2. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing
Company, Boston (1996)
3. Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. The
MIT Press, Cambridge, Massachusetts (1988)
4. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. Journal of
Computational Physics 73 (1987) 325-348
5. Mahawar, H., Sarin, V., Shi, W.: A solenoidal basis method for efficient inductance
extraction. In: Proceedings of the IEEE Design Automation Conference, New
Orleans, Louisiana (2002) 751-756
6. Barnes, J., Hut, P.: A hierarchical O(n log n) force calculation algorithm. Nature
324 (1986) 446-449
7. Kamon, M., Tsuk, M.J., White, J.: FASTHENRY: A multipole-accelerated 3D
inductance extraction program. IEEE Transaction on Microwave Theory and
Techniques 42 (1994) 1750-1758
8. Mahawar, H., Sarin, V.: Parallel iterative methods for dense linear systems in
inductance extraction. Parallel Computing 29 (2003) 1219-1235
9. Grama, A., Kumar, V., Sameh, A.: Parallel hierarchical solvers and precondition-
ers for boundary element methods. SIAM Journal on Scientific Computing 20
(1998) 337-358
10. Sevilgen, F., Aluru, S., Futamura, N.: A provably optimal, distribution-
independent, parallel fast multipole method. In: Proceedings of the International
Parallel and Distributed Processing Symposium, Cancun, Mexico (2000) 77-84
11. Singh, J.P., Holt, C., Totsuka, T., Gupta, A., Hennessy, J.L.: Load balancing and
data locality in hierarchical n-body methods. Journal of Parallel and Distributed
Computing 27 (1995) 118-141
12. Teng, S.H.: Provably good partitioning and load balancing algorithms for parallel
adaptive N-body simulation. STAM Journal of Scientific Computing 19 (1998)
635-656

	Introduction
	Background
	Inductance Extraction Problem
	The Solenoidal Basis Method
	ParIS: Parallel Inductance Extraction Software

	Hierarchical Multipole-Based Algorithms
	Hierarchical Multipole Method
	Fast Multipole Method
	Parallel Formulation

	Experiments
	Impact of Parameters
	Parallel Performance

	Conclusions

