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Abstract

Rapid evaluation of potentials in particle systems is an
important and time-consuming step in many physical simu-
lations. Over the past decade, the development of treecodes
such as the Fast Multipole Method (FMM) and the Barnes-
Hut method has enabled large scale simulations in domains
such as astrophysics, molecular dynamics, and material sci-
ence. FMM and related methods rely on fixed degree poly-
nomial (p) approximations of the potential of a set of points
in a hierarchy. In this paper, we present a sequence of re-
sults to illustrate that keeping the multipole degree constant
can lead to large aggregate errors. An alternate strategy
based on a careful selection of the multipole degree leads to
asymptotically lower errors; while incurring minimal com-
putation overhead for practical problem sizes. The paper
presents theoretical results for computing the degree of a
particle-cluster interaction, the error associated with the
interaction, the error associated with a particle for all of
its interactions, and the computational complexity of the
new method. These results show that it is possible to reduce
the simulation error asymptotically while incurring minimal
computational overhead. The paper also presents experi-
mental validation of these results on a 32 processor Origin
2000 in the context of problems ranging from astrophysics
to boundary element solvers. In addition to verifying the-
oretical results, we also show that it is possible to achieve
excellent parallel speedup for the treecode.

1. Introduction

The problem of evaluating the potential due to a set of
particles is an important and time-consuming one. The de-
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velopment of fast treecodes such as the Barnes-Hut and Fast
Multipole Methods forn-body systems has enabled large
scale simulations in astrophysics [11, 12, 15] and molecu-
lar dynamics [3]. Coupled with efficient parallel process-
ing, these treecodes are capable of yielding several orders
of magnitude improvement in performance [8, 17, 16]. In
addition, treecodes also have applications in the solution of
dense linear systems arising from boundary element meth-
ods [5, 6, 14, 7, 13].

The all-to-all nature of interactions in typical particle
systems implies that an accurate formulation of then-body
problem has anO(n2) complexity for ann particle system.
This complexity can be reduced by exploiting the decay-
ing nature of the interaction between bodies. For example,
in astrophysical simulations, distant galaxies can be viewed
as point masses placed at their centers-of-mass. Many fast
algorithms use this principle to acceleraten-body simula-
tions.

The Barnes-Hut method is one of the most popular meth-
ods due to its simplicity. It works in two phases: the tree
construction phase and the force computation phase. In the
tree construction phase, a spatial tree representation of the
domain is derived. At each step in this phase, if the domain
contains more thans particles (for some preset constants),
it is recursively divided into four equal parts (eight parts in
three dimensions). This process continues until each part
hass elements or fewer. The resulting tree is an unstruc-
tured quad-tree (oct-tree in three dimensions). This tree is
now traversed in post-order. Each internal node in the tree
computes and stores an approximate representation of the
particles contained in that sub-tree. This representation can
either be a monopole or a multipole series. For astrophysi-
cal simulations, this can often be approximated by the cen-
ter of mass of the particles contained in the tree. Once the
tree has been constructed, the force or potential at each par-
ticle can be be computed as follows: the multipole accep-
tance criterion is applied to the root of the tree to determine
if an interaction can be computed; if not, the node is ex-
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panded and the process is repeated for each of the four (or
eight) children. The multipole acceptance criterion for the
Barnes-Hut method computes the ratio of the distance of the
point from the center of mass of the box to the dimension
of the box. If this ratio is greater than some constant�,
an interaction can be computed. The Barnes-Hut method is
illustrated in Figure 1.
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Figure 1. Illustration of the serial Barnes-Hut
method.

For a balanced tree, each of then particles needs
O(logn) interactions. Using ap-term multipole expansion,
each interaction takesO(p2) time. This results in a total
computational complexity ofO(p2n logn). However, the
tree size can be made arbitrarily large by bringing a pair of
particles successively closer. The corresponding tree needs
a large number of boxes to resolve the pair into separate
boxes. Due to this, the worst case complexity of this tech-
nique is unbounded [4, 1]. However, using box-collapsing
techniques (the box is first collapsed to the smallest box that
contains all the particles in the subdomain), this complexity
can be reduced. There are some recent results demonstrat-
ing that it is beneficial to work with binary trees as opposed
to higher order trees [2]. Binary trees with controlled split

allow better aspect ratios for partitions while reducing the
number of nodes in the tree.

The Fast Multipole Method (FMM) of Greengard and
Rokhlin [10] is another hierarchical technique for comput-
ing n-body interactions. Unlike the Barnes-Hut method,
FMM computes potentials instead of forces. These poten-
tials may be electrostatic, gravitational or others depending
on the application. It is easy to see that force is equal to
the gradient of potential, and therefore can be easily com-
puted from the latter. Furthermore, since potential is a scalar
quantity, it simplifies many computations. FMM computes
the potential due to a cluster of particles at the center of
other well separated clusters. This can then be disseminated
to individual particle positions to determine required po-
tentials. FMM therefore uses cluster-cluster interactions in
addition to particle-cluster interactions. The computational
complexity of FMM was originally shown to beO(n) for
uniform distributions. Callahan and Kosaraju [4] show that
the complexity of the potential estimation phase can be re-
duced toO(n) for arbitrary distributions with preprocessing
for computing well-separated sets.

The dominant cost in both of these treecodes is the po-
tential (or force) estimation phase. This involves computing
interactions betweenp term multipoles; which takes time
O(p2). If the complexity of the potential estimation phase
in a treecode isO(R), then usingp term multipoles results
in a complexity ofO(p2R) in three dimensions. For uni-
form distributions,R = n logn for Barnes Hut andR = n
for FMM.

In this paper, we address the errors associated with these
methods. We present a sequence of theoretical results which
show that the error in these methods can be reduced signif-
icantly by selecting the multipole degree appropriately for
different clusters. Furthermore, we show that for practical
problem sizes, this adds minimal computational complex-
ity. We illustrate these theoretical results in the context of
both particle simulations as well as boundary element meth-
ods. These experiments are presented for a 32 processor
SGI Origin 2000. The POSIX threads based treecode is also
shown to yield excellent speedups even for relatively small
problems.

2. Global Error Estimate for Barnes-Hut
Method

The potential due to a set of charges located within a
sphere of radiusrs at an observation point at distancer from
the origin can be expressed as a multipole series. The error
in a truncated multipole series of degreep was first derived
by Greengard and Rokhlin [9, 10]. The following theorem
from [9] describes the multipole expansion and the associ-
ated error.



Theorem 1 Suppose
that k charges of strengthsfqj ; j = 1; : : : ; kg are located
at the pointsfPj = (�j ; �j ;  j)g (in spherical coordinates),
with j�j j < rs. Then for any pointP = (r; �;  ) 2 IR3 with
r > rs, the potential�(P ) is given by

�(P ) =
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m=nX
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rn+1
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Furthermore, for anyp � 1, the error in the truncated mul-
tipole series of degreep is given by
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and is bounded by
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whereA =
Pk

j=1 jqj j.

Proof See page 54 of [9]. 2

We now present a sequence of theorems that bound the
ratio rs=r on both sides. This bound is used to quantify the
error associated with a single interaction in the Barnes-Hut
method. We bound the number and type of interactions for
each particle and show that by holding the error associated
with each interaction constant, we can reduce the overall er-
ror significantly. We provide theorems for determining the
multipole degree to keep interaction error constant. Finally,
we show that the computational complexity of varying the
multipole degree in the prescribed manner adds little addi-
tional overhead for practical problem sizes.

Theorem 2 In the Barnes-Hut method, the ratiors=r for
particle-cluster interactions is bounded as follows:

�0 <
rs
r
< �

where�0 and� are constants.

Proof Consider the scenario illustrated in Figure 2. Since
a particles interacts with a box b, but not with its parent
box B,

r � r0

and
R < R0

Here, r0 = rs=� andR0 = 2rs=�. Using the triangle
inequalityR+ rs=

p
2 � r, we can show that

(
2

�
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1p
2
)�1 � rs

r
� �
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Figure 2. Establishing bounds on rs
r

in a
Barnes-Hut algorithm. An interaction with
box b indicates that particle s could not in-
teract with its parent box B. This is used to
establish the lower bounds.
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The bounds onrs=r are tight. For smaller values of�,
this bound tends to�=2 � rs=r � �. For example, for
� = 0:6, the bounds are0:25 � rs=r � 0:6.

Theorem 3 In Barnes-Hut method, a particle interacts
with a bounded number of boxes of a given size.

Proof Since�0 � rs=r � �, the centers of all boxes of
sizers lie within an annular region defined by the following
relation:

rs
�
� r � rs

�0

and the boxes lie completely within the annular region de-
fined by:

rs
�
� rsp

2
� r � rs

�0
+

rsp
2



The ratio of the volume of this annular region and the vol-
ume of a single box gives the following upper bound in three
dimensions on the number of boxes of sizers:

nmax � 4�

3
[(

1

�0
+

1p
2
)3 � (

1

�
� 1p

2
)3]
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Theorem 4 Suppose thatk charges of strengthsfqj ; j =
1; :::; kg are located within a sphere of radiusrs. Then,
for the Barnes-Hut method with�-criterion for well-
separatedness, the error in potential outside the sphere at a
distancer from the center of the sphere due to these charges
is bounded by

� � A

r � rs
(
rs
r
)p+1 � A

rs
� �p+2

1� �

wherep is the degree of the truncated multipole expansion
with p > 1 and

A =

kX
j=1

jqj j

Proof The first part of this theorem

� � A

r � rs
(
rs
r
)p+1 (2)

is proved on page 54 of [9]. For proving the second part
of this theorem, using the�-criterion of the Barnes-Hut
method, we know thatrs=r < �. Therefore,

rs � �r

r � rs � r(1� �)

1

r � rs
� 1

r
� 1

1� �

We know that1=r � �=rs. Making this substitution, we
have

1

r � rs
� �

rs
� 1

1� �

Substituting this into Equation 2, we have

� � A

rs

�p+2

1� �
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This theorem illustrates the problem as also the solution
proposed in this paper. The associated error grows linearly
with the net charge of the particle clusters. Moreover, the
size of the largest cluster with which an interaction is com-
puted in the Barnes-Hut method can be shown to be a con-
stant factor of the total simulation domain. Therefore, the

associated errors can be large, and even unbounded for un-
structured distributions. However, in applications such as
protein simulations, the charge density is largely uniform
across the domain of simulation. In such applications, the
overall error in the Barnes-Hut method grows linearly with
the magnitude of charge in the system. For larger systems,
this error may become unacceptable.

Theorem 4 also provides an easy way for controlling er-
ror in particle-cluster interactions. By increasing the poly-
nomial degreepwith increasingA, the error in each interac-
tion can be bounded by a constant. Since it has been shown
that a single particle interacts with a fixed number of clus-
ters of a given size, the overall error accumulated in all in-
teractions of a particle can be logarithmically bounded. The
next three theorems determine the variation of polynomial
degree for constant error, the computational complexity of
this new method, and its error bounds.

Theorem 5 The polynomial degreepk required for a
particle-cluster interaction for constant error is given by

pk = pj +
k � j

log�
+

logAj � logAk
log�

Here, Ak is the current cluster at levelk, andAj is the
smallest cluster at levelj of the hierarchy for which the de-
sired error criterion is satisfied.

Proof From Theorem 4, we know that

� � A

rs

�p+2

1� �

We assume the error associated with a single interaction to
be a constant�. Letdj be the smallest cluster for which this
error criterion is satisfied. In the original multipole method,
for all other domains with higher aggregate charge, this er-
ror criteria will be violated. To compensate for this, assume
another clusterdk at a higher level in the tree. Since the
error associated with these two domains is equal, we have

Ak
rsk

�pk+2

1� �
=
Aj
rsj

�pj+2

1� �

or
Aj
Ak

rsk
rsj

= �pk�pj (3)

Here,
rsk
rsj

= 2k�j

Substituting in Equation 3 and simplifying, we have

pk = pj +
k � j

log�
+

logAj � logAk
log�
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In general, we select a minimum degree of interaction as-
sociated with the threshold value ofAj and increase multi-
pole degree for larger cluster sizes. For structured domains,
it is easy to control the polynomial degree in this manner
since the increase in polynomial degree is not large. The
multipole series are computed a-priori to the maximum re-
quired degree (this is possible since all parameters for the
degree of an interaction are available at the time of tree-
construction). This technique does not work very well for
unstructured domains because it might result in very large
degree multipoles. This difficulty can be overcome in two
ways: (i) by altering the� criterion of the Barnes-Hut
method; or (ii) by computing and storing the increased de-
gree multipoles. In this paper, we will concentrate largely
on uniform distributions; but will demonstrate empirically
that the paradigm works for unstructured domains as well.

We now examine the error associated with the Barnes-
Hut method with this improved multipole degree selection
criteria:

Theorem 6 The error in the piecewise ap-
proximate Barnes-Hut method for structured distributions
isO(�p+1 logA).

Proof This proof follows naturally from Theorems 2, 3,
4, 5; namely, the number of interactions with subdomains
at any level are constant; the number of subdomain interac-
tions is logarithmic in the number of particles; and the error
associated with a single particle-subdomain interaction is
constant. 2

The reader will note that this error is considerably less
than the error bound on the original fixed-degree multipole
based Barnes-Hut method. The only issue that remains to
be resolved is the increased computation introduced by the
additional multipole evaluations. The next theorem shows
that this additional computation is minimal.

Theorem 7 For a structured particle distribution, the com-
putational complexity of the piecewise approximate Barnes-
Hut method is given byO(n(p+ l)3). Here,l is the number
of levels of the hierarchical decomposition.

This result can be extended to unstructured distributions
as well using the box-collapsing and flexible splitting tech-
niques of Callahan and Kosaraju [4]. It is useful to note that
the complexity of the original Barnes-Hut method grows as
O(p2n logn). The number of levels in a uniform distribu-
tion l grows aslog8 n assuming a single particle per leaf
cell. For typical values ofp (6 - 7 degree approximations),
this corresponds to between 256K - 2M particles. In order
to optimize cache performance and for lower algorithmic
constants, leaf nodes of the tree often represent clusters of
up to 32 or 64 particles. This increases the number of par-
ticles to between 8M and 64M. Thus, even for very large

scale simulations, the improved method is within a small
constant off the fixed-degree method. In general, forl � p,
the complexity of the improved method is within7=3 of the
original method. Clearly, the new method yields significant
improvements in error while incurring minimum additional
overhead.

3. Experimental Results

3.1. Experimental Setup

The improved and original Barnes-Hut methods are
coded for an Origin 2000 and tested with up to 32 pro-
cessors. The code is based on POSIX threads and opti-
mized for single-processor cache performance, data-locality
across processors, and false sharing. The parallel formula-
tion exploits the concurrency available in independent tree
traversal of each particle. The particles are sorted in a
proximity-preserving order (a Peano-Hilbert ordering) and
force computation for sets ofw particles are aggregated
into a single thread. Here,w is a user specified parame-
ter. Typically, in our experiments, we used 100 particles per
thread. For a 40K particle simulation, this corresponds to
400 threads. This is adequate for balancing load across 32
processors. The hierarchical tree is also stored in a spatial
order to optimize cache performance. We refer the reader
to [7, 8, 17, 16] for a more detailed explanation of these
schemes.

3.2. Application and Problem Instances

The treecode was tested in the context of particle sim-
ulations as well as boundary element solvers. Problem
instances for particle simulations range from uniform to
highly irregular distributions in three dimensions. Uniform
distributions correspond to a random distribution of points
distributed equally across the domain. Irregular distribu-
tions are generated using a Gaussian density function or
overlapped Gaussian distributions (multiple Gaussians su-
perimposed). Figure 3 illustrates examples of the three
distributions. The number of particles in these distribu-
tions range from 20K to 100K. The simulation instances are
namedipfng for irregular distributions withn particles and
uniformfng for uniform distributions withn particles. The
sizes of problem instances are selected to enable running
various experiments on them. Errors in larger instances be-
come more difficult to estimate since the accurate algorithm
scales asO(n2). The notion of error in a simulation is for-
mally defined as follows: leta be the vector correspond-
ing to the accurate potentials atn particles; if the potentials
computed from the treecode are represented by the vector
a0 then the error� in the simulation is defined as:

� = maxjai � a0ij i = 1 .. n



Figure 3. Sample distributions for experi-
ments: (a) Gaussian (24K particles), and (b)
Overlapped Gaussians (45K particles).

The treecode was also used to solve dense linear systems
arising from boundary element methods for solving inte-
gral equations. The core of these iterative solvers is the ap-
plication of the dense coefficient matrix to an intermediate
vector. The coefficient matrix is generated by the Green’s
function of the Laplace’s equation. The Green’s function
is � log r in two dimensions and1=r in three dimensions.
Problems of this nature arise in the computation of charge
density given a potential distribution over a conductor; or
for computing heat flows. The surface of the domain is
discretized into triangles. The integration over the surface
is performed using Gaussian quadrature. A fixed number
of Gauss-points are located inside the triangle and inserted
into the hierarchical domain representation. Using this hier-
archical domain, the potential is computed at the vertices of
the triangles and matched to the boundary values. This pro-
cess forms a single matrix-vector product that is required at

each step of the GMRES iterative solver.

Figure 4. Charge density on the surface of a
cylinder with one end fixed at a potential of
0V and the other end at 1V.

We use this technique to solve charge distribution prob-
lems on complex 3-D geometries. In Figure 4, we illustrate
a simple problem instance with 572 triangles and 288 nodes.
The corresponding dense linear system has 288 unknowns
(one for each unknown charge density). The performance of
our code was validated on three larger problems: propeller
(140800 triangles, 70439 nodes), gripper1 (142296 trian-
gles, 71152 nodes), and gripper2 (185856 triangles, 92918
nodes). The first instance is a propeller from an airplane
and the next two are surface discretizations of an industrial
gripper. It is easy to see that these correspond to highly un-
structured problem instances, since a bulk of the volume is
empty and the nodes are concentrated on the surface.

3.3. Performance and Accuracy of the Improved
Method

In this section, we examine the runtime and error prop-
erties of the two methods. The computation is expressed
in terms of the number of multipole term expansions. This
grows asp2 for a p-term multipole expansion. The num-
ber of terms expanded is a very good indication of the serial
complexity of the method. The reason we use this (instead
of wall clock time) is because we are comparing serial com-
plexities and errors; and as such would like to avoid effi-
ciency factors introduced by parallelism; or time discrepan-
cies introduced by other processes on the machine.

Table 1 illustrates the errors and the number of term ex-
pansions. From these tables, it is easy to see that the growth
in error is much faster in the original method than in the
improved method. Furthermore, the term expansions of the



n Error(orig) Error(new) Terms(orig) Terms(new)
Structured distributions
10000 0.012027 0.012027 12293460 12293460
15000 0.017326 0.010399 24665616 25274289
20000 0.025982 0.016820 59631516 60443782
30000 0.036880 0.017386 94953456 96171621
80000 0.098395 0.019327 253741860 297318482
Unstructured distributions
45000 2.479027 0.334691 70094952 102045637
82000 2.307508 0.268452 179039880 224057225

Table 1. Error and computation associated
with the original and new methods. The ta-
ble shows that error in the improved method
grows much slower than the original method
with minimal increase in computation.

two methods are not very different. This is also illustrated
by the graphical representation in Figure 5 and is in good
agreement with our theoretical results.

3.4. Parallel Performance of the Treecodes

In this section, we present the speedup achieved by the
treecode for the original as well as the new methods. These
experiments are presented in Table 2 for a 32 processor SGI
Origin 2000. The speedup is computed as the ratio of the
runtime of the threaded version with multiple kernel threads
to that of the single thread version. Since it is difficult to
mask processors from the thread scheduler, the results are
only available for 32 processors. It is evident from the ta-
ble that the performance of the treecode is extremely good,
with parallel efficiencies in the range of 80 - 90%. This
must be tempered by the observation that the dataset for
the two simulations presented is roughly 140 MB. A sin-
gle processor of the Origin has a L2 cache of 4 MB; and
across 32 processors, a total cache of 128 MB. This is in-
deed very close to the data-set size. Consequently, at this
level, the program works almost entirely out of L2 cache
and this contributes to the excellent performance. Never-
theless, the treecode yields excellent speedups on the Origin
2000.

The new algorithm yields slightly poorer speedups than
the original algorithm. This is because the new algorithm
fetches longer multipole series. However, the effect of
this increased communication is not very significant be-
cause a large fraction of the data is local to the processor.
The increased communication volume can also be estimated
in a manner similar to the computation and shown to be
bounded.
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Figure 5. A comparison of the error and com-
putational cost of the original and new meth-
ods illustrates the close agreement with the-
oretical results and advantages of the new
scheme.

3.5. Performance of the Matrix-Vector Product

In Table 3, we present single iteration accuracy and run-
times for the new and original methods. The errors are com-
puted with respect to a 9 degree polynomial since the exact
method took an inordinately large amount of time. From the
table, once again it is evident that the new method yields
significantly better error properties while adding minimal
computational overhead. The matrix-vector product was
used in a GMRES solver with a restart of 10 and was ob-
served to converge very well. This is consistent with the di-

Problem Serial Parallel
Original New Original New

uni40K 195.46 212.41 6.68 (29.26) 7.37 (28.82)
non-u46K 360.93 390.68 11.67 (30.92) 12.97 (27.83)

Table 2. Runtimes (in seconds) and speedups
(in parenthesis) for single-thread and multi-
threaded versions of a single iteration of the
treecode on a 32 processor SGI Origin 2000.



Problem: Propeller; Num. triang: 140800
Num. nodes: 70439; Num. Gauss points: 6

Algorithm Degree Time Error
Original 4 31.83 0.000406
Improved 4* 33.60 0.000026
Reference 9 100.81 -
Exact > 900.0 -

Problem: Gripper2; Num. triang: 185856
Num. nodes: 92918; Num. Gauss points: 6

Algorithm Degree Time Error
Original 4 46.40 0.000516
Improved 4* 50.13 0.000028
Reference 9 151.21 -
Exact > 900.0 -

Table 3. Single iteration accuracy and run-
times (seconds) on a 32 processor SGI Origin
2000 for the new and original methods. The
new method yields significantly better errors
while incurring minimal computational over-
head.

agonal dominance of the kernel (1=r generating function).
Using this method, we were able to solve dense systems
with over 100K unknowns in a few minutes.

4. Ongoing Work and Conclusions

Hierarchical treecodes have proven to be a critical com-
ponent of large scale n-body computations. In this paper,
we have presented an improved treecode that yields con-
siderably better error bounds while incurring minimal com-
putational overhead. We prove these bounds theoretically
and demonstrate them experimentally for uniform as well
as non-uniform distribution. Parallel formulations of these
techniques are shown to yield excellent speedups on a 32
processor SGI Origin 2000. The treecode is also applied to
solving large scale boundary element problems. The per-
formance of the new matrix-vector product is shown to be
superior to the original method. The results presented in
this paper can easily be extended to the the Fast Multipole
Method as well. We are currently exploring this and extend-
ing our theoretical results to unstructured distributions.
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