
Impact of Far-Field Interactions on Performance of
Multipole-Based Preconditioners for Sparse Linear

Systems∗

Ananth Y. Grama
Department of Computer Science

Purdue University
West Lafayette, IN 47907

ayg@cs.purdue.edu

Vivek Sarin
Department of Computer Science

Texas A&M University
College Station, TX 77843

sarin@cs.tamu.edu

ABSTRACT
Dense operators for preconditioning sparse linear systems
have traditionally been considered infeasible due to their ex-
cessive computational and memory requirements. With the
emergence of techniques such as block low-rank approxima-
tions and hierarchical multipole approximations, the cost
of computing and storing these preconditioners has reduced
dramatically. In our prior work [15], we have demonstrated
the use of multipole-based techniques as effective parallel
preconditioners for sparse linear systems. At one extreme,
multipole-based preconditioners behave as dense (bounded
interaction) matrices (multipole degree 0), while at the other
extreme, they are represented entirely as series expansions.
In this paper, we show that: (i) merely truncating the kernel
of the integral operator generating the preconditioner leads
to poor convergence properties; (ii) far-field interactions, in
the form of multipoles, are critical for rapid convergence;
(iii) the importance and required accuracy of far-field inter-
actions varies with the complexity of the problem; and (iv)
the preconditioner resulting from a judicious mix of near
and far-field interactions yields excellent convergence and
parallelization properties. Our experimental results are il-
lustrated on the Poisson problem and the generalized Stokes
problem arising in incompressible fluid flow simulations.

Categories and Subject Descriptors: G.4 Mathemati-
cal Software — Algorithm design and analysis, parallel and
vector implementations; G.1.3 Numerical Linear Algebra —
Linear systems (direct and iterative methods)

General Terms: Algorithms.

Keywords: Multipole methods, Preconditioning, Iterative
methods, Stokes problem.

∗This research was supported by the NSF grants NSF-CCR
9984400 and NSF-CCR 9972533.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’04, June 26–July 1, 2004, Saint-Malo, France.
Copyright 2004 ACM 1-58113-839-3/04/0006 ...$5.00.

1. INTRODUCTION
Conventional preconditioning techiques for sparse linear

systems have focused on representations with limited fill
that have sparse non-zero structure. This is critical for re-
stricting the storage and computational complexity of the
preconditioning step. In general, it is not necessary to have a
sparse non-zero structure to restrict the cost associated with
the preconditioner. Examples of such matrices include low-
rank matrices, Toeplitz matrices, and, more interestingly,
hierarchical operators based on analytical approximations
such as multipole representations.

Multipole methods were first proposed in the context of
particle dynamics methods and boundary element solvers.
The intuition behind hierarchical multipole methods is that
the influence of a set of entities coupled by the underly-
ing Green’s functions can be approximated by a bounded
degree multipole series. For example, the gravitational po-
tential due to a set of objects can be represented by their
center of mass, provided the evaluation point is sufficiently
far away. The coupling Green’s function in this case is deter-
mined by the Laplace operator, and is 1/r in three dimen-
sions, where r is the distance between source and observation
points. With this simple intuition, the entire domain can be
hierarchically decomposed and potentials computed at all
n source/observation points in O(n) time. This family of
hierarchical multipole methods includes the Fast Multipole
Method [10] and the method of Barnes and Hut [1].

Hierarchical multipole methods can be adapted to solve
integral equations for which a closed-form Green’s operator
and the associated multipole expansions are known. This
has been used to solve scattering problems and problems in
electrostatics with considerable success [3, 4, 5]. Since the
multipole expansions satisfy boundary conditions implicitly,
these methods have an added advantage over finite element
and finite difference methods for problems where boundary
conditions are specified at infinity. One such example is the
Sommerfield radiation condition for scattering problems.

In many problems, however, a closed form Green’s func-
tion is not available. Examples of this include scattering
from a dielectric and scattering from a dielectric embedded
in a conductor. Even in these cases, the functions’ decay-
ing nature can be exploited to construct a block low-rank
approximation to the matrix of coupling Green’s functions.
This allows computation and storage of the matrix as well
as its application to a vector in O(n) or O(n log n) time (de-

pending on the specific method used). This principle forms
the basis for dense solvers such as CDENSE [7].

It is easy to see that a multipole operator is the ideal pre-
conditioner for the corresponding differential operator. For
instance, a multipole operator with the Green’s function 1/r
may be used as a preconditioner for the Laplace operator to
improve the rate of convergence of the iterative solver. The
preconditioning step in each iteration requires O(n) opera-
tions only since the cost of applying the multipole operator
is O(n).

In [15], we had discussed the application of a multipole-
based preconditioner to the solution of the Poisson problem
on a three dimensional domain. To further illustrate the use
of the preconditioner for more challenging problems, we had
considered the solution of the generalized Stokes problem
which arises in the simulation of incompressible fluid flows.
A parallel implementation of the algorithm achieved high ef-
ficiency on several platforms including the SGI Origin, IBM
p690, and x86-based SMPs.

The experiments presented in this paper indicate that (i)
merely truncating the kernel of the integral operator gener-
ating the preconditioner leads to poor convergence proper-
ties; (ii) far-field interactions, in the form of multipoles, are
critical for rapid convergence; (iii) the importance and re-
quired accuracy of far-field interactions varies with the com-
plexity of the problem; and (iv) the preconditioner resulting
from a judicious mix of near and far-field interactions yields
excellent convergence and parallelization properties.

The rest of the paper is organized as follows: Section 2
presents a brief overview of multipole methods and their use
as preconditioners for the Poisson problem and the gener-
alized Stokes problem; Section 3 discusses parallel formu-
lations and performance of the preconditioned solver; Sec-
tion 4 describes the results of varying accuracy parameters of
multipole-based matrix-vector products (mat-vecs) on con-
vergence and solution time; and conclusions are drawn in
Section 5.

2. PRELIMINARIES
In this section, we provide an overview of multipole-based

methods and their use as preconditioners. The reader should
refer to [15] for details.

2.1 Hierarchical Multipole-Based Methods
We start with a brief overview of hierarchical multipole

methods and their use in computing dense matrix-vector
products in O(n) time (or O(n log n) time) for an n × n
matrix. Consider the problem of determining the charge on
the surface of a conductor under given boundary conditions.
The charge distribution is related to the potential by the
following integral equation:

ψ(x) =

∫
∂Ω

G(x, x′)σ(x′)da′, (1)

where ∂Ω is the boundary of the domain Ω, G(x, x′) is the
Green’s function, ψ(x) is the given potential at point x on
the surface, σ(x) is the unknown surface charge density, and
da′ represents the surface element. The Green’s function
G(x, x′) in three dimensions is given by 1/r, where r is Eu-
clidean distance between x and x′.

The surface charge density can be approximated using n

known expansion functions:

σ(x) =
n∑

i=1

qiri(x). (2)

The coefficients of the expansion functions can be deter-
mined by using collocation conditions of the form

p = Cq, (3)

where p is a vector of the known potentials at n panels, C is
an n× n coupling matrix of Green’s functions, and q is the
vector of unknown coefficients. Since a large number of pan-
els are required for acceptable accuracy, iterative techniques
must be used to solve the system (3). At each iteration,
the most time-consuming component is the matrix-vector
product of the form p′ = Cq′, which requires computing the
potential at a set of n collocation points due to the charge
density of q′, as indicated in (2).

There are several ways of computing the required poten-
tials. The first approximation is that the charge densities
are uniform over a panel and that the charge is represented
as a point charge at the centeroid of the panel. This results
in a discrete potential estimation problem similar to the n-
body problem. This approximation is valid only when the
source and observation panels are far apart; i.e., ‖x − x′‖
is much larger than size of the element over which the in-
tegration is performed. This is not the case when we are
dealing with spatially proximate elements. In these cases,
Gaussian quadratures with larger number of Gauss points
must be used to compute the potential.

The required matrix-vector product can be computed us-
ing approximate hierarchical methods. The matrix C is
never computed explicitly. Instead panels are aggregated
and their impact on other panels is expressed in terms of
multipole expansions. We first introduce approximate hier-
archical methods for particle dynamics and then illustrate
how they can be used to compute matrix-vector products.

A number of hierarchical approximation techniques have
been proposed for particle dynamics. Of these, the methods
of Barnes and Hut [1], and the Fast Multipole Method [10]
have gained widespread popularity. In this paper, we use
an augmented version of the Barnes-Hut method for com-
puting the mat-vecs. The method works in two phases: the
tree construction phase and the force computation phase.
In the tree construction phase, a spatial tree representation
of the domain is derived. At each step in this phase, if the
domain contains more than s particles (for some preset con-
stant s), it is recursively divided into eight equal parts. This
process continues until each part has at most s elements.
The resulting tree is an unstructured oct-tree. Each inter-
nal node in the tree computes and stores an approximate
multipole series representation of the particles contained in
that sub-tree. Once the tree has been constructed, the force
or potential at each particle can be computed as follows: a
‘multipole acceptance criterion’ is applied to the root of the
tree to determine if an interaction can be computed; if not,
the node is expanded and the process is repeated for each
of the eight children. The multipole acceptance criterion for
the Barnes-Hut method computes the ratio of the distance
of the point from the center of mass of the box to the dimen-
sion of the box. If this ratio is greater than 1/α, where α is
a constant less than unity, an interaction can be computed.
The Barnes-Hut method is illustrated in Fig. 1.

d1

rs

Rs

d3

d2
rsd1 α if (/ >1/)

Rsd αif (/ > 1/)

Center of mass of domain

Centers of mass of subdomains

Source particle

 compute direct force interaction
 with the center of mass of domain.
else

 compute direct force computation
 with center of mass of subdomain 1
 else
 expand subdomain 1 further

 Apply similar criteria to domains 2, 3, and 4

4

21

3

d

Figure 1: Illustration of the Barnes-Hut method.

For computing mat-vecs, particles correspond to Gauss
points within elements and the force model between them
corresponds to numerical integration. Computing a mat-vec
in this manner involves the following steps:

1. Construct a hierarchical representation of the domain:
Given a domain discretization into elements, element
centers correspond to particle coordinates. An oct-tree
is constructed based on these element centers. Each
node in the tree stores the extremities along the x, y,
and z dimensions of the subdomain corresponding to
the node.

2. The number of particles in the tree is equal to the
product of the number of elements and the number of
Gauss points in the far field. In the case of a single
Gauss point in the far field, the multipole expansions
are computed with the center of the element as the
particle coordinate.

3. For computing the mat-vec, we need to compute the
potential at each of the n observation points. This
is done using a variant of the Barnes-Hut method.
The hierarchical tree is traversed for each of the el-
ements. If an element falls within the near field of the
observation element, integration is performed using di-
rect Gaussian quadrature. The far-field contributions
are computed using the multipole expansions. The α
criterion of the Barnes-Hut method is slightly modi-
fied. The size of the subdomain is now defined by the
extremities of all elements corresponding to the node
in the tree. This is unlike the original Barnes-Hut
method which uses the size of the box for computing
the α criterion.

2.2 Multipole-Based Preconditioners
Multipole-based approximation schemes described in the

preceding section can be directly used as solvers or precon-
ditioners for the Laplace operator. Consider the following
Laplace problem:

∆u = 0 in Ω, u = g on ∂Ω. (4)

Physically, this problem is identical to one of estimating
the potential in the interior of a perfectly conducting body,
given the boundary potential. Since ∆u corresponds to the

charge and all charge resides on the boundary of a conduc-
tor, the correspondence is natural. The sparse linear system
associated with this problem, Ax = 0, discretizes the Lapla-
cian operator in the interior of the domain. To solve this
sparse system, we can place m charges on the boundary of
the conductor. We must now estimate these charges, sub-
ject to the constraint that the potential induced by these
charges satisfies the boundary conditions. This reduces the
problem to an equivalent dense linear system of the form
p = Cq, discussed before. Here, C is the dense matrix of
coupling Green’s functions (1/r in three dimensions). Itera-
tive methods for solving this system require a mat-vec with
matrix C, which can be computed using multipole methods.
Once boundary charges have been estimated, the potential
at interior points can be estimated easily using multipole
methods as well. If a higher level of accuracy is desired, this
multipole-based solver can be used as a preconditioner for
an outer sparse solver.

Now, consider the problem of computing a function u on
a domain Ω such that

∆u = f in Ω, u = g on ∂Ω, (5)

where f and g are known functions. The associated linear
system of equations has the form

Ax = b, (6)

in which b and x can again be interpreted as vectors of
charges and potentials, respectively, at n points in the in-
terior of the domain. In contrast to the previous case, the
potential at the boundary points is a result of interior as
well as boundary charges. To reduce the problem to one
defined on the boundary nodes, we must first cancel the
effect on boundary potential of the internal nodes. To do
this, we locate m points on the boundary where we estimate
the potential due to internal nodes. We subtract this po-
tential from the specified boundary conditions f to define a
dense problem over the m boundary nodes. The charges at
these boundary nodes are therefore determined by solving
an m×m linear system of the form (3) with p = g−g′ where
g′ is the potential on the boundary due to interior charges.
Once the boundary charges are known, x can again be com-
puted as the potential due to the interior and boundary
charges.

The linear system for the boundary charges is solved us-

ing an iterative method. The multipole-based approxima-
tions that are used to compute matrix-vector products with
the dense coefficient matrix introduce errors in the solution.
Nevertheless, one can use this approach as a precondition-
ing step for an outer iterative method which is used to solve
(6). Since the linear system for the preconditioning step is
defined only on the boundary, the inner iterative solve is not
expensive.

2.2.1 Application to Incompressible Flows
The generalized Stokes problem arises in the solution of

time-dependent Navier-Stokes equations for incompressible
fluid flows. It consists of solving the following linear system:

[
1

∆t
M + νL B
BT 0

] [
u
p

]
=

[
f
0

]
, (7)

where u is the fluid velocity, p is the pressure, ∆t is the time
step, ν is the viscosity, and M , L, and BT are the mass,
Laplace, and divergence matrices, respectively. The linear
system is large, sparse, and indefinite due to the incompress-
ibility constraint BTu = 0, which forces the velocity to lie in
a discrete divergence-free subspace. While the primary chal-
lenge in developing robust preconditioners for this system is
due to the indefiniteness of the matrix, parameters such as
viscosity and time step also influence the effectiveness of the
preconditioner.

The linear system in (7) can be transformed to the fol-
lowing reduced system by restricting velocity to the discrete
divergence-free subspace:

P T

[
1

∆t
M + νL

]
Px = P T f, u = Px. (8)

Here, P is a basis for the discrete divergence-free subspace
which is identical to the null space of BT . While the sym-
metric positive definite character of the reduced system al-
lows use of the CG method, it introduces additional com-
plexity in constructing preconditioners.

In order to compute a discrete divergence-free basis P
with modest computational and storage requirements, we
observe that circulating flows or vortices can be used as a
divergence-free basis in the continuum space. The discrete
counterpart uses the edges of a mesh to define circulating
flows that are divergence-free in the discretized domain. One
can obtain these flows by computing the null space of sub-
matrices of BT defined over local regions of the mesh. Each
such flow is represented as a vector, and the set of these vec-
tors forms the columns of P (see, e.g., [14] for details). The
matrix P is sparse due to the local support of the flows. In
addition, matrix-vector products with P can be computed
directly from the local flow vectors without assembling the
matrix itself. Due to the unavailability of P , several com-
monly used preconditioning techniques such as those based
on incomplete factorizations are no longer viable.

The similarity of this approach with the vorticity-velocity
function formulation of the Navier-Stokes equations for in-
compressible flows can be exploited to develop a precondi-
tioner for the reduced system. Observe that the mat-vecs
Px and P T y compute the discrete curl of the functions rep-
resented by x and y, respectively. Furthermore, the mat-vec
P TPx represents the application of the Laplace operator,
say Ls, defined on the discrete divergence-free space. The

reduced system may be approximated as shown below:

1

∆t
P TMP + νP TLP ≈ 1

∆t
MsLs + νL2

s,

and preconditioned by the following matrix:

G =

[
1

∆t
Ms + νLs

]
Ls, (9)

where Ms is the equivalent mass matrix for the flow vectors.
Since the preconditioned system is spectrally equivalent to
a symmetric positive definite matrix, one can use precon-
ditioned CG to solve the reduced system (8). Experiments
reported in [14] show that the preconditioner is very effective
over a large range of values for ∆t and ν.

To illustrate the effectiveness of the preconditioner, we
consider the driven cavity problem on a three-dimensional
cube. We use the Marker-and-Cell (MAC) scheme in which
the domain is discretized by an n × n × n uniform mesh.
Pressure unknowns are defined at the nodes and velocity
unknowns are defined at the mid-point of the edges. The
x-component of velocity is defined on the edges along x-
axis. Similarly, the y- and z-components of the velocity are
defined on the edges along y-axis and z-axis, respectively.
This gives a linear system with n3 pressure unknowns and
3n2(n− 1) velocity unknowns.

The mesh is made up of an (n − 1) × (n − 1) × (n − 1)
array of cubes. The local divergence-free flows are defined
on the faces of these cubes. The normals to the faces are
used to divide the flows into x, y, and z components. The
preconditioning step requires computing

z =
[
∆t−1I + νLs

]−1
L−1

s r,

where Ls is a Laplace matrix with a block diagonal struc-
ture: Ls = diag[Lx, Ly, Lz]. The matrix Lx is the Laplace
operator for the x-component of the divergence-free flows,
and is defined on a mesh with nodes at the mid-points of
the faces supporting these flows. The matrices Ly and Lz

are defined in a similar manner. Dirichlet boundary condi-
tions are assumed in each case.

The influence of the mesh width h, viscosity ν and time
step ∆t is indicated by the following condition number esti-
mate:

κ

(
1

∆t
M + νL

)
=
τ + 12

τ + h2
, τ =

h2

ν∆t
.

Tables 1 and 2 have been reproduced from [15] to illustrate
the effectiveness of the preconditioner. Table 1 shows that
the number of iterations required by the CG method to solve
the reduced system in (8) is dramatically reduced by the use
of the preconditioner in (9). The preconditioning step uses
the multipole-based preconditioner for the Poisson problem
and an inner CG method for the Helmholtz problem. The
diagonal dominance of the Helmholtz problem assures rapid
convergence without additional preconditioning. The outer
CG iterations were terminated when the relative residual
norm reduced below 10−4.

Table 2 shows the number of iterations required by the
preconditioned CG method for several instances of the gen-
eralized Stokes problem. Depending upon the value of τ , the
condition number of the reduced system ranges from O(h−2)
to O(h−4). The preconditioner ensures a stable convergence
rate which is nearly independent of problem parameters.

Table 1: Effectiveness of the preconditioner for the
generalized Stokes problem (τ = 10−3).

Iterations
Mesh Size Unknowns Unprec. Prec.
8 × 8 × 8 1856 66 8

16 × 16 × 16 15616 208 12
32 × 32 × 32 128000 772 17

Table 2: Effectiveness of the preconditioner for var-
ious instances of the generalized Stokes problem.

τ = h2/ (ν∆t)
Mesh Size 10−3 10−1 100 101 103

8 × 8 × 8 8 8 6 5 5
16 × 16 × 16 12 10 8 6 6
32 × 32 × 32 17 13 10 7 7

3. PARALLEL PERFORMANCE
The multipole-based preconditioning step is the most ex-

pensive component of the iterative solver. The execution
time in the experiments in Tables 1 and 2 is dominated
by the hierarchical multipole-based matrix-vector products
with the dense preconditioner, with over 90% of total time
spent in the preconditioning step. The remaining compo-
nents of the iterative solver include sparse matrix-vector
products and vector operations, which can be parallelized
easily once the mesh has been partitioned across processors.
Conventional mesh partitioning packages such as METIS
and CHACO can be used to obtain good partitions.

This section gives an outline of an efficient parallel formu-
lations of the multipole-based preconditioning step (see [15]
for details). As described in Section 2.2, the multipole-
based preconditioner is posed as a boundary-enforced solve
in which unknown boundary charges are computed to sat-
isfy the boundary condition on potential. The interior and
boundary charges are then used to evaluate potential inside
the domain. The kernel operation in each case is a dense
matrix-vector product, which is computed using a multipole-
based hierarchical method. A single instance of this method
requires a tree construction and a tree traversal. Since the
tree construction phase is relatively inexpensive (requiring
less than 2% of total time in our experiments) we focus on
efficient parallelization of the tree traversal phase. It has
been observed by us and others in the past [9, 18, 19] that
an effective parallelization strategy can be derived from the
observation that two spatially proximate particles are likely
to interact with largely the same nodes in the tree. This
leads to a partitioning strategy in which spatially proximate
particles are aggregated into a single concurrent computa-
tional unit.

In our parallel formulation, we first sort the nodes in
the mesh in a proximity preserving order such as a Peano-
Hilbert ordering, and group a set of m nodes into a single
thread. The parameter m should be chosen in such a way
that the number of threads is greater than the number of
processors p by a factor log p. This is generally adequate for
ensuring load balance in the tree traversal phase as well as
amortizing the cost of remote communication.

This parallel formulation of multipole methods on SMP
multiprocessors such as the SGI Origin and IBM p690 is ob-
served to yield high performance and excellent scalability.
The multipole operator is implemented in POSIX threads
and is portable across a range of serial and parallel plat-
forms. The performance of the operator is a function of a
number of parameters – the degree of multipole series, the
α parameter of the Barnes-Hut method, and the underlying
architecture, in addition to the problem size.

Increasing the degree d of the multipole series increases
the volume of data (as O(d2)) that must be communicated
from remote nodes. While the corresponding computation
also increases (as O(d2)), the associated per-word communi-
cation time exceeds per-degree computation time. Therefore
the efficiency can be expected to decrease with increasing de-
gree. (Note that this does not hold for translation of multi-
pole operators since translation complexity varies as O(d4).)
Decreasing the α parameter of the Barnes-Hut method in-
creases the range of interaction, and therefore results in a
lower efficiency for the corresponding parallel formulation.

The preconditioning step in the CG method consists of
three different types of multipole-based dense matrix-vector
products: (i) computation of boundary potential from inte-
rior charges, (ii) computation of boundary charges via an in-
ner GMRES method that requires boundary potential com-
putation from boundary charges at each iteration, and (iii)
computation of interior potential from all the charges. Since
the last step of the computation involves the greatest num-
ber of potential evaluations, it dominates the cost of the
preconditioning step. The objective of this set of experi-
ments is to demonstrate that it is possible to achieve high
efficiency in an algorithm that requires each of these three
steps (with associated data redistribution).

Table 3 provides a summary of the parallel performance
of the algorithm (see [15] for details). On 8 processors of
the IBM p690, the code exhibits parallel efficiency in excess
of 80% in most cases. The parallel efficiency of the code is
retained on x86 Solaris SMPs with up to 8 Pentium pro-
cessors indicating that for multipole-based preconditioners,
these SMPs can be an inexpensive alternative to high-end
multiprocessors.

4. IMPACT OF MULTIPOLE EXPANSION
PARAMETERS

To understand the impact of various parameters associ-
ated with the multipole preconditioner on the rate of con-
vergence of the iterative methods, we run a number of test
cases of a preconditioned Poisson solve. We present the
results of these experiments in Table 4. Specifically, we at-
tempt to understand the following: (i) role of far-field poten-
tial in convergence, (ii) interplay between accuracy of inner
(preconditioning) solve and time to solution, (iii) required
accuracy on far-field potential estimate, and (iv) behavior
of iteration counts with number of unknowns.

The inner (preconditioning) solve is characterized by the
following parameters – the stopping criteria, the restart as-
sociated with GMRES, and the accuracy parameters of the
dense mat-vec. In this study, we focus on the accuracy pa-
rameters of the dense mat-vec, namely, the degree of the
multipole series and the α criterion (which determines the
cutoff between near-field and far-field). The other param-
eters have been the subject of numerous studies (see, for

Table 3: Runtime (in seconds) and efficiency of the
parallel algorithm on IBM p690 and x86 Solaris
shared-memory multiprocessors.

IBM p690
Mesh Size p = 1 p = 8 Efficiency

30 × 30 × 30 19.96 3.25 0.77
40 × 40 × 40 31.18 4.80 0.81
50 × 50 × 50 68.88 9.69 0.81

4-processor SMP (550 MHz P3)
Mesh Size p = 1 p = 4 Efficiency

30 × 30 × 30 41.39 13.19 0.78
40 × 40 × 40 67.37 20.76 0.81
50 × 50 × 50 129.87 39.49 0.82

8-processor SMP (750 MHz Xeon)
Mesh Size p = 1 p = 8 Efficiency

30 × 30 × 30 28.78 5.97 0.60
40 × 40 × 40 47.23 7.19 0.82
50 × 50 × 50 115.29 16.70 0.86

instance analysis of FMGMRES). We examine the impact
of the multipole degree and α criterion on problem sizes
ranging from 20 × 20 × 20 (8K unknowns) to 40 × 40 × 40
(64K unknowns). Trends evident from our result show that
the performance gains of our preconditioner increase sharply
with increasing number of unknowns.

We present the results of these experiments in Table 4.
The execution time gives solution time on a 2.4GHz P4
workstation with 1GB RAM running Solaris. The column
marked “Dense” refers to the case when α was chosen to en-
sure that all interactions were near field interations thereby
eliminating error in the dense mat-vec.

Table 4 illustrates several important facts. None of the in-
stances converge to solution in 20 iterations if far-field is not
accounted for (multipole degree 0). This demonstrates the
need for incorporating far field potentials for convergence.
In many cases, while a less accurate inner mat-vec resulted
in larger number of outer iterations, the associated time was
lower. However, if the accuracy of the mat-vec was very low,
convergence is not guaranteed. For this reason, it is impor-
tant to select the right accuracy parameters. Finally, in most
cases, a low-order approximation of the far field is adequate,
and ideal for fast convergence. Multipole series present an
excellent means for achieving this approximation.

5. CONCLUSIONS
In this paper, we have examined the impact of various

parameters associated with hierarchical multipole methods
on the preconditioner’s performance and associated runtime.
In particular, we demonstrate the following results: (i) ac-
counting for far-field is critical for convergence – specifically,
convergence was not observed in any of the test cases when
far-field was not taken into account, (ii) while convergence
in terms of iteration count is a function of accuracy of in-
ner iteration (in each case the dense inner mat-vec yields
best iteration counts), minimum time is achieved at judi-
ciously selected values of multipole degree and α which de-
termines the cutoff between near-field and far-field, (iii) in

Table 4: Impact of multipole expansion parameters
on the rate of convergence and acceleration. Run-
time (in seconds) and iterations (in paranthesis) are
shown.

Mesh size: 20 × 20 × 20
Degree α=0.91 α=0.77 α=0.67 Dense

0 — — — 12.54 (3)
1 — — —
2 3.23 (3) 4.03 (3) 5.19 (3)

Unpreconditioned: 0.82 (799)

Mesh size: 30 × 30 × 30
Degree α=0.91 α=0.77 α=0.67 Dense

0 — — — 93.36 (2)
1 8.42 (3) 11.28 (3) 15.30 (3)
2 17.63 (3) 22.71 (3) 30.03 (3)

Unpreconditioned: 13.35 (1895)

Mesh size: 40 × 40 × 40
Degree α=0.91 α=0.77 α=0.67 Dense

0 — — — 454.28 (2)
1 20.82 (3) 28.83 (3) 40.00 (3)
2 34.50 (3) 23.61 (2) 32.51 (2)

Unpreconditioned: 59.87 (3451)
— indicates no convergence in 20 iterations

general, a low-order approximation of the far-field is ade-
quate for fast convergence, however, in some cases, conver-
gence at this coarse approximation is not guaranteed, (iv)
as the number of unknowns become large, the number of
iterations in the preconditioned solve stays largely constant,
resulting in considerable time savings compared to unpre-
conditioned solves, and (v) multipole-based preconditioners
are extremely simple to parallelize and can yield excellent
parallel performance.

6. REFERENCES
[1] J. Barnes and P. Hut. A hierarchical O(n log n) force

calculation algorithm. Nature, Vol. 324, 1986.

[2] R. Bramley and V. Menkov. Parallel Preconditioners
with Low Rank Off-Diagonal Blocks. Technical Report
TR446, Indiana University, 1996.

[3] R. Coifman, V. Rokhlin, and S. Wandzura. The fast
multipole algorithm for the wave equation: A
pedestrian prescription. IEEE Antennas and
Propagation Magazine, 35(3), 1993.

[4] B. Dembart and E. Yip. A 3D fast multipole method
for electromagnetics with multiple levels. In
Proceedings of the 11th Annual Review of Progress in
Applied Computational Electromagnetics, Monterey,
CA, 1995.

[5] N. Engheta, W. Murphy, V. Rokhlin, and
M. Vassiliou. The fast multipole method for
electromagnetic scattering problems. IEEE
Transactions on Antennas and Propagation, 40(6),
1992.

[6] G. Karypis and V. Kumar. Parallel multilevel k-way
partitioning scheme for irregular graphs. SIAM
Review, 41(2):278–300, 1999.

[7] S. Goreinov, E. Tyrtyshnikov, and A. Yeremin.
Matrix-free iterative solution strategies for large dense
linear systems. Technical Report EM-RR 11/93,
Elegant Mathematics, Inc., 1993.

[8] A. Grama, A. Gupta, G. Karypis, and V. Kumar,
Introduction to parallel computing, Addison Wesley,
2003.

[9] A. Grama, V. Kumar, and A. Sameh. Parallel
hierarchical solvers and preconditioners for boundary
element methods. SIAM Journal on Scientific
Computing, 20(1):337–358, 1998.

[10] L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. J. Comp. Physics, Vol.
73:325–348, 1987.

[11] B. Hendrickson and R. Leland. The CHACO user’s
guide version 2.0, Technical Report SAND94-2692.
Sandia National Laboratories, Albuquerque, NM,
1994.

[12] M. R. Hestenes and E. Stiefel. Methods of conjugate
gradients for solving linear systems. Journal of
Research of the National Bureau of Standards, Vol.
49:409–436, 1952.

[13] Y. Saad and M. H. Schultz. GMRES: A generalized
minimal residual algorithm for solving nonsymmetric
linear systems. SIAM Journal on Scientific and
Statistical Computing, Vol. 7:856–869, 1986.

[14] S. R. Sambavaram. High Performance Parallel
Algorithms for Incompressible Flows. M. S. Thesis.
Texas A&M University, 2002.

[15] S. R. Sambavaram, V. Sarin, A. H. Sameh, and
A. Grama. Multipole-based preconditioners for large
sparse linear systems. Parallel Computing, Vol.
29:1261–1273, 2003.

[16] V. Sarin and A. H. Sameh. Hierarchical divergence-free
bases and their application to particulate flows.
Journal of Applied Mechanics, Vol. 70:44–49, 2003.

[17] V. Sarin and A. H. Sameh. An efficient iterative
method for the generalized Stokes problem. SIAM
Journal of Scientific Computing, 19(1):206–226, 1998.

[18] J. P. Singh, C. Holt, J. L. Hennessy, and A. Gupta. A
parallel adaptive fast multipole method. In Proceedings
of the Supercomputing ’93 Conference, 1993.

[19] M. S. Warren and J. K. Salmon. A parallel hashed
oct-tree N-body algorithm. In Proceedings of the
Supercomputing ’93 Conference, 1993.

