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Abstract

This paper presents a new approach to the solution of nonsymmetric linear systems

that uses hybrid techniques based on both direct and iterative methods� An implicitly

preconditioned modi�ed system is obtained by applying projections onto block rows of

the original system� Our technique provides the �exibility of using either direct or iter�

ative methods for the solution of the preconditioned system� The resulting algorithms

are robust� and can be implemented with high e�ciency on a variety of parallel archi�

tectures� The algorithms are used to solve linear systems arising from the discretization

of convection�di�usion equations as well as those systems that arise from the simulation

of particulate �ows� Experiments are presented to illustrate the robustness and parallel

e�ciency of these methods�

� Introduction

The past few decades have seen signi�cant advances in the development of iterative methods
for solving nonsymmetric linear systems� Coupled with advances in parallel architectures and
algorithms� such methods have provided the only means for large scale scienti�c simulations
in several disciplines� The lack of robustness of these iterative solvers� as well as the lack of
e�ective parallel preconditioners� however� have prevented these iterative solvers from being
as dependable as direct methods� The reader is referred to ��� �� for an overview of iterative
methods�

In this paper� we propose hybrid techniques for the solution of large sparse linear systems

Ax 	 b� 
��

in which A is assumed to be a nonsymmetric matrix� Our approach uses projections onto
subspaces of block rows to obtain a modi�ed system that is often favorably preconditioned as
well� In contrast to existing iterative methods� the proposed algorithms combine the use of
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direct and iterative methods to obtain hybrid strategies that can be implemented e�ciently
on parallel computers�

Before we provide details of our projectionbased hybrid schemes� we give an overview of
Krylov subspace methods in Section � along with issues relating to preconditioning� parallel
computation� and their lack of robustness� In Section � we discuss the origins of the linear
systems arising from particulate �uids� followed by an outline of projectionbased hybrid
algorithms and their parallel implementation� Conclusions are presented in Section ��

� Krylov Subspace Methods

Iterative methods in this class of algorithms construct an approximate solution to problem

�� in the socalled Krylov subspace� The Krylov subspace is de�ned as

Km
A� r�� 	 spanfr�� Ar�� A
�r�� � � � � A

m��r�g�

where r� 	 b�Ax� is the residual for an arbitrary initial vector x�� The approximate solution
xm lies in the shifted space x� � Km� and the residual is made to satisfy certain conditions�
Depending on the condition enforced on the residual� we obtain one of the many types of
Krylov subspace methods� One such approach requires the residual rm to be orthogonal to
the Krylov subspace� i�e�� b� Axm � Km
A� r��� This leads to well known methods including
the Conjugate Gradient 
CG� and Lanczos methods� When the residual is minimized over
Km
A� r��� we get methods like GMRES� MINRES� and ORTHODIR� Another approach is to
orthogonalize rm against a subspace such as Km
A

T � r��� methods such as BiCG and QMR
belong to this class�

The CG algorithm is one of the most successful solution methods for symmetric posi
tive de�nite linear systems� For nonsymmetric systems� the choice of a robust and practical
iterative method is unclear� GMRES� which is the most popular Krylov subspace method
for nonsymmetric systems� requires storage proportional to the number of iterations� Prac
tical implementations of this method include restarted or truncated GMRES� A number of
variants such as ��exible� GMRES� and GMRESR have been proposed recently� Relatively
inexpensive alternatives to GMRES can be found in BiCG and QMR algorithms� Some of
the shortcomings of these methods have been addressed in variants such as BiCGSTAB�
CGS� TFQMR� etc� In addition� block variants of all these methods have been proposed that
may be of advantage in certain situations�

In spite of several years of research� there are signi�cant lacunae in our understanding of
these methods� In particular� important issues related to the convergence of Krylov subspace
methods for nonsymmetric systems are not well understood� In addition� these algorithms
lack robustness leading to breakdown of the solution process� As an example� one may
consider practical implementations of GMRES that display unsatisfactory behavior due to
arbitrary parameters dictating the restart or truncation of the algorithm� In general� in this
class of iterative methods� it is di�cult to assure robustness for most nonsymmetric linear
systems that arise from practical applications�
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��� Preconditioning

In order to improve the convergence of iterative methods� some form of preconditioning
must be applied� A preconditioner is a matrix M whose inverse is assumed to be a close
approximation to the inverse of A� Instead of 
��� we now solve the preconditioned linear
system M��A 	 M��b� The iterative algorithms of the previous section can be reformulated
so that each iteration requires the solution of the system� My 	 d�

The most popular class of preconditioners are the incomplete LU factorizations that ap
proximate the matrix M by constructing sparse approximations of the LU factors of A�
Attempts to improve such preconditioners rely on increasing the nonzeros of the approx
imate factors� specifying droptolerance for retaining nonzero elements� enforcing rowsum
constraints� and ordering the rows and columns prior to computing the factors� Block vari
ants of these schemes have also been proposed� While such techniques are useful for certain
classes of problems� they fail quite often leading to nonconvergence of the iterative Krylov
subspace scheme�

Another useful preconditioning technique relies on domain decomposition methods for
solving PDEs� Solution of the PDE on subdomains is used as an approximation to the
global solution� When the subproblems are also solved iteratively� one obtains an innerouter
iterative scheme� Another promising alternative computes the sparse approximate inverse
M�� directly� This has the advantage of using the matrixvector product y 	 M��d in each
iteration� Unlike typical ILU preconditioners that require triangular solves� these algorithms
can be quite e�ective on parallel computers�

It must be pointed out that the main requirements of a good preconditioner are the
following� 
i� the productM��A should have a favorable spectrum that improves convergence
� the closer it is to the identity� the better� 
ii� M should be easy to invert� and 
iii� M 
or
M��� should have a sparse representation� Furthermore� it is vital that operations involving
the construction and application ofM orM�� be implemented with high e�ciency on parallel
computers� Alternatively� one may conceive a strategy to modify the problem in order to
obtain an implicitly preconditioned linear system such that matrixvector products with this
modi�ed system are e�ciently parallelized� Computing robust preconditioners that satisfy
these properties has largely been a matter of experimentation so far�

��� Parallelism

Large scale realistic simulations are feasible only with e�cient preconditioned iterative so
lution techniques implemented on fast parallel computers� The iterative methods described
above use the following types of operations� vector operations 
scaled additions and dot prod
ucts�� matrixvector products� preconditioner computation� and preconditioner application

e�g�� triangular solves�� The operations on the preconditioner are frequently the bottle
neck in parallel implementations� In addition� dot products tend to become expensive for
methods such as GMRES that require orthogonalization with a set of vectors� These observa
tions again underscore the need for e�ective parallel preconditioning techniques for iterative
methods�
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� Hybrid Parallel Solvers

The general structure of commonly used preconditioned Krylov subspace methods is the
following� a preconditioner is computed prior to the start of the iterative process� then at
each iteration� a system with the preconditioner matrix is solved via a direct or an iterative
method� The hybrid solution techniques presented in the following sections di�er signi�cantly
in philosophy from the Krylov subspace methods described previously�

The iterative algorithms discussed here are hybrid techniques derived from the applica
tion of direct and iterative algorithms to the overall solution process� The balance scheme
discussed in Section ��� provides the �exibility of using a direct or iterative method to con
struct a reduced system that must be solved only once to obtain the solution� The reduced
system can� again� be solved either by direct or iterative methods� Solution of the reduced
system with a direct method yields a technique with the opposite structure to that of the pre
conditioned Krylov subspace methods� The implicit block Jacobi preconditioning approach
presented in Section ��� is an alternate hybrid iterative algorithm for obtaining a reduced sys
tem� This is applicable to systems that can be partitioned into nonsingular diagonal blocks�
and may be used as a robust parallel preconditioner�

��� Particulate Flow Problem

In this paper� we consider the motion of large number of particles in liquids under the action
of the hydrodynamic forces and torques exerted by the suspending �uid� Such simulations
are aimed at Newtonian �uids that are governed by the NavierStokes equations as well as
several popular models of viscoelastic �uids� Particulate �ow simulations are applicable to
a number of industrial problems such as sedimentation� �uidization and slurry transport of
solid particles�

For our experiments� we consider an incompressible �uid �owing a twodimensional pe
riodic channel with a pressure gradient set against gravity 
Fig� ��� and Np solid particles
moving freely in the �uid� The equations for �uid and particle motion are�

�
�u

�t
� �u � ru 	 �g �rp�r � �� 
��

r � u 	 �� 
��

M
dU

dt
	 F� 
��

dX

dt
	 U� 
��

where � is the �uid density� g is gravity� p is the pressure� u is the �uid velocity� � is the extra
stress tensor 
for Newtonian �uids� � 	 �
ru�ruT ��� X andU are the generalized position
and velocity vectors of particles� respectively� and F constitutes the forces and torques acting
on the particles� M denotes the generalized mass matrix of the particles� A noslip condition
for the �uid velocity on the particle surface gives the additional equation

u 	 U� r� �� 
��
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in which r is the position vector from the center of the particle to a point on its surface� and
� is the angular velocity of the particle�
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Figure �� Two solid particles moving in a periodic channel�

The physical system is evolved from an initial state by the backward Euler method� At
each time step� a system of nonlinear algebraic equations is solved using Newton�s method�
which further requires the solution of a series of linear systems involving the Jacobian of the
nonlinear equations� A mixed �nite elements approximation with P��P� pair of elements is
used for these equations�

The most timeconsuming aspect of the computation is the solution of linear systems of
the following form� �

B� A BT G

B � �
E F M

�
CA
�
B� u

p

U

�
CA 	

�
B� f

�
h

�
CA � 
��

For typical simulations� the velocity unknowns for the particles are a very small fraction of
the velocity and pressure unknowns� often less than ����� of the total number of unknowns�
This suggests the following two approaches to deal with the particle unknowns� The �rst one
factors the matrix in 
�� as shown below�

�
B�

I � �
� I �
 E  F I

�
CA
�
B�

A BT G

B � �

� �  M

�
CA
�
B� u

p

U

�
CA 	

�
B� f

�
h

�
CA �

where


  E�  F � 	 
E� F �

�
A BT

B �

�
��

�  M 	 M � 
E� F �

�
A BT

B �

�
�� �

G

�

�
�
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It is easy to see that one doesn�t need to compute the submatrix 
  E�  F � at all� On the other
hand� the matrix  M is computed explicitly by solving the saddlepoint problem

�
A BT

B �

��
Z�

Z�

�
	

�
G

�

�
� 
!�

with multiple righthand sides� Once the particle velocities U have been determined� one
can recover the remaining unknowns u and p by solving another saddlepoint problem of a
similar form� �

A BT

B �

��
u

p

�
	

�
 f
�

�
� 
��

The convergence of an iterative method is known to be faster for multiple righthand sides�
This approach is especially e�ective when the number of particle unknowns is relatively small�

For larger number of particles� one may use a di�erent factorization of the matrix in 
���

�
B� I �  G

� I �
� � I

�
CA
�
B�

 A  BT �
B � �
E F M

�
CA
�
B�

u

p

U

�
CA 	

�
B�
f

�
h

�
CA �

where  G 	 GM���  A 	 A�GM��E� and  BT 	 BT �GM��F � The main computation now
consists of solving the system

�
 A  BT

B �

��
u

p

�
	

�
"f
�

�
� 
���

The sparsity structure of  A and  B is similar to A and B� except for the additional �ll resulting
from the coupling between velocity and pressure unknowns on the surface of a particle�

One can further reduce the systems in 
!�� 
�� and 
��� to the following form�

BA��CTp 	 g� 
���

which is then solved by an iterative method such as GMRES� The conjugate gradients method

CG� is preferred when A is symmetric positive de�nite� and C 	 B� This approach is feasible
only if one has a fast method to compute solutions of the type Ax 	 b which occur at each
step of the iterative process�

The choice of an inner iterative method for the system Ax 	 b depends heavily on
the nature of the matrix A� which is sensitive to simulation parameters such as the time
step� viscosity� and �uid velocity� The time step is adaptively chosen during the simulation�
Furthermore� since �uid velocity may change substantially over the entire simulation� no
particular solution method is suitable throughout the computation� For instance� when the
time step is very small� A approaches the velocity mass matrix� and GMRES with diagonal
preconditioner work quite well� For larger time steps� although A is no longer diagonally
dominant� it may be real positive� especially for viscous �uids� in such cases� GMRES with
approximate factorization preconditioners may su�ce� However� it must be noted that these
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preconditioners are not parallelizable and susceptible to breakdown� The implicit block
Jacobi preconditioner described in Section ��� has been shown to be a robust and parallel
alternative for systems in which the diagonal blocks are nonsingular� this is recommended
for real positive matrices�

With increasing �uid velocity� use of a large time step often results in A which is nonsym
metric and inde�nite� In this situation� approximate factorization based preconditioners and
solvers fail to converge to the solution� The next section describes an alternative approach�
the balance scheme� that can be used to solve these systems without breakdown or loss of
parallel performance�

��� The Balance Scheme

In this section� we present a hybrid parallel algorithm for the solution of nonsymmetric sparse
linear systems such as those arising in particulate �ows� Our technique is based on a new
approach based on projections onto subspaces spanned by block rows of the linear system�

See e�g�� ��� !� �� ��� for more details�� This approach is most suitable for banded linear
systems with bandwidth that is about ������ of the total number of unknowns� In this
method a reduced system� de�ned only on unknowns common to consecutive block rows� is
computed and solved by a direct or iterative method� We have also provided extensions of
our algorithm ��� for the case where the reduced system is available only implicitly through
matrixvector products�

Consider a banded system that can be represented in the following block form

�
BBBBBBB�

A� B�

C� A� B�

� � � � � �

Cp�� Ap�� Bp��

Cp Ap

�
CCCCCCCA

�
BBBBBBBBB�

x�
��
x�
���

�p��
xp

�
CCCCCCCCCA

	

�
BBBBBBB�

b�

b�
���
���
bp

�
CCCCCCCA
� 
���

The rows of A have been partitioned into p blocks� and the unknowns �i are common to
consecutive blocks of the matrix� The ith block row is given as Ei 	 
Ci� Ai� Bi�� and the ith
system is given as

�
Ci Ai Bi

��B�
��i��
xi

�i

�
CA 	 bi� 
���

The general solution of the ith system is x 	 pi �Qiyi� where pi is a particular solution� Qi

is a basis for N 
Ei�� and yi is an arbitrary vector� The common unknown vector �i
yi� is
determined from the ith system as well as the 
i � ��th system� Let us designate ��i
yi���
to be the value of �i
yi� determined from the 
i � ��th system� Enforcing the constraints
�i
yi� 	 ��i
yi���� i 	 �� � � � � p� �� we obtain the reduced system

My 	 g� 
���
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where

M 	

�
BBBB�
Q��� �Q���

Q��� �Q���

� � � � � �

Qp���� �Qp��

�
CCCCA � g 	

�
BBBB�

p��� � p���

p��� � p���
���

pp�� � pp����

�
CCCCA � 
���

The linear system 
��� may be solved by computing the solutions of each of the underdeter
mined systems 
���� followed by the solution of the reduced system 
���� The algorithm is
thus given by�

Algorithm Balance Scheme

�� Solve the underdetermined systems of block rows to obtain
pi and Qi� 
i 	 �� � � � � p��

�� Solve the reduced system My 	 g�

�� Backsubstitute y to determine all xi and �i�

It is not essential to explicitly form the reduced system� For such a situation� the algorithm
has been extended to allow the computation of matrixvector products directly from the
projections 
see� e�g�� ����� The normal form of the reduced system� i�e�� MMTz 	 g� must
now be solved by an iterative algorithm� If the projections are also computed iteratively� one
obtains an innerouter iteration method�

The product of a vector with the reduced system matrix can be computed e�ciently on
a multiprocessor by concurrent projections onto subspaces of block rows� Our experiments
in Section ����� indicate that the balance scheme is a robust and competitive alternative to
existing Krylov subspace schemes� particularly for problems with strong inde�nite symmetric
part�

The balance scheme is a typical example of hybrid parallel solvers� The structure of the
algorithm does not restrict the use of direct or iterative methods to any particular aspect
of the solution process� When it is relatively inexpensive expensive to compute the matrix
Qi which is an orthogonal basis for N 
Ei�� the reduced system can be computed explicitly
and solved by a direct method� Alternatively� an iterative method may be used to solve the
reduced system that is implicitly available through matrixvector products� One may also
obtain the reduced system 
or its approximation� through a series of matrixvector operations�
and solve it using a direct method� Finally� it is worth mentioning that a similar scheme may
be developed for systems that are not banded�

����� Balance Scheme for Particulate Flows

The balance scheme was used to solve several instances of the linear systems 
!� and 
�� for
simulations with a single particle� Since these systems were quite large� it was not feasible

!



to compute QR factorizations of each block� Therefore� we used the variant of the reduced
system in which matrixvector products with the reduced system are computed directly
without explicitly generating the reduced system�

Table � illustrates the performance of restarted GMRES with Krylov subspace size of
�� and the balance scheme for the system Ax 	 b� where A is nonsymmetric inde�nite on
account of large time step coupled with large �uid velocity� The two problems instances

GMRES
��� Balance Scheme

Time Step Newton Iter� Iter� Time 
sec� Iter� Time 
sec�

t	���� sec� � �!� � �� ��
#t	���! sec � ��� �� �� �!

� failure � �� �!
� failure � �� ��

t	���!�� sec� � ��� �� �! ��
#t	��� sec � failure � �� ��

� failure � �� ��
� failure � �� ��

Table �� Comparison of the balance scheme with restarted GMRES 
failure indicates non
convergence in !�� iterations��

were obtained at time ���� seconds and ���!�� seconds� respectively� from the start of the
simulation� The �rst system had ������ unknowns� ������� nonzeros� a bandwidth of ����
and yielded a reduced system of size �!��� The second system had ������ unknowns� �������
nonzeros� a bandwidth of ���� and yielded a reduced system of size ����� In each case� the
rows were partitioned into ! blocks�

As the nonlinear iterations progress� these systems becomes increasingly di�cult to solve�
and �nally result in failure of GMRES� The breakdown of GMRES is particularly severe
for the system with larger time step #t� In contrast� the balance scheme demonstrates
consistent convergence behavior that is relatively independent of the inde�niteness of the
coe�cient matrix� In these experiments� GMRES was preconditioned with the diagonal of
A� 
Preconditioners based on block ILUT with suitable reordering to increase parallelism in
the triangular system solves have been largely unsuccessful for such systems��

The next set of experiments highlight the parallel performance of the balance scheme�
The saddlepoint problem 
��� was solved in which A was symmetric positive de�nite� and
C 	 B� The system was preconditioned with incomplete Cholesky factorization of BD��BT �
where D 	 diag
A�� and solved using the CG algorithm� At each iteration� the balance
scheme was used to solve linear systems of the form Ax 	 b� The projections were computed
in parallel using preconditioned CG algorithm as well�

Table � illustrates the performance of the balance scheme for the solution of the inner sys
tem as well as the saddlepoint problem 
���� The matrix A is of size ������ with bandwidth
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System P 	 � P 	 � P 	 � P 	 ! P 	��

Ax 	 b Time 
sec� ��� ��� ��� ��� ���
Speed Improv� ��� ��� ��� ��� ����
E�ciency ��� ��� ��� ��� ���

BTA��Bp 	 g Time 
sec� ����� ���� �!�� ���� ����
Speed Improv� ��� ��� ��! ��� !��
E�ciency ��� ��� ��� ��� ���

Table �� Performance of the balance scheme on SGI Origin �����

����� and ������� nonzeros whereas the matrix BTA��B is of size ����� For experiments
utilizing up to ! processors� the rows of A were partitioned into ! blocks resulting in a reduced
system of size ��!�� These experiments show almost linear speed improvement� with isolated
superlinear performance due to cache e�ects� A straightforward extension of the algorithm
to �� processors requires partitioning of rows into �� blocks resulting in a larger reduced
system 
m 	 ���!�� and hence� decreased performance� Since additional parallelism is avail
able in computing individual projections� parallel speedup can be improved substantially by
assigning multiple processors to each block row� In other words� one may use �� processors
for a matrix partitioned into ! block rows by assigning two processors to each block� This is
clearly more advantageous for clusterbased multiprocessors�

The balance scheme can be used for threedimensional simulations as well� The linear
systems in particulate �ow problems are much larger in size and the bandwidth can also be
considerable� In such a situation� the balance scheme can be used to precondition an iterative
method� One may choose a submatrix of the linear system as a preconditioner� such that it
has a much smaller bandwidth� and can be solved e�ciently using the balance scheme� Such
a matrix can be obtained by carefully dropping relatively small o�diagonal values in order to
reduce the bandwidth of the original matrix� This must be accompanied by a compensation
to the matrix such that the modi�cation resembles an update of the matrix by appropriate
element sti�ness matrices� It must be noted� however� that the ratio of bandwidth to the
order of the linear system is still favorable� since it generally depends upon the aspect ratio of
the simulation domain� Therefore� the balance scheme is applicable to such systems without
much change�

��� An Implicit Block Jacobi Preconditioner

The particulate �ow problem often yields a real positive matrix A in which each diagonal
submatrix is nonsingular� Such a situation arises when using a relatively small timestep
for slow moving �uids� In this section� we present a preconditioning approach for GMRES
that is ideally suited for e�cient parallel solution of these problems� The experiments in
Section ����� demonstrate the strengths of our technique over other preconditioners�

Consider a banded sparse linear system with rows partitioned into p blocks� The right
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Figure �� Almost�block diagonal structure of a banded matrix with p 	 � block rows�

hand side and the solution vector have been partitioned in the same manner 
see� e�g�� Fig� ���
where each diagonal block Ai� i 	 �� � � � � p is nonsingular with ni rows� Since the Ai�s are
nonsingular� we can �nd Bi and Ci� both of size ni �m� such that

AiBi 	

�
Wi

�

�
� AiCi 	

�
�
Vi

�
�

respectively� Also� let hi 	 A��i fi� Considering the block diagonal matrix

D 	 diag
A�� A�� � � � � Ap��

as an outer preconditioner� we get the preconditioned system

D��Ax 	 h�

where h 	 D��f � This preconditioned system is of the form

�
BBBBBBBBB�

I  C�

 B� I  C�

 B� I  C�

��� ��� ���
 Cp��

 Bp I

�
CCCCCCCCCA

�
BBBBBBBB�

x�
x�
x�
���
xp��
xp

�
CCCCCCCCA

	

�
BBBBBBBB�

h�
h�
h�
���
hp��
hp

�
CCCCCCCCA
�

where I is the identity matrix of dimension ni� and

 Bi 	 
�� Bi��  Ci 	 
Ci� ��

with the Bi and Ci�s being� generally� dense ni�m matrices� In order to obtain the reduced
system� we need to partition the �spikes� Bi and Ci� as well as xi and hi� Let B

�i�
t and B

�i�
b

��
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Figure �� Forming the reduced system from D��Ax 	 h�

be the top and bottom m rows of Bi� respectively� Similarly� we can de�ne C
�i�
t and C

�i�
b � x

�i�
t

and x
�i�
b � and h

�i�
t and h

�i�
b �

In Fig� �� we illustrate how these partitions are formed� It can be observed that those
small portions� described above 
shaded areas in the �gure�� actually form an independent

subsystem of equations which involves only the x
�i�
t and x

�i�
b �s� It can be shown that there

exists a permutation matrix P � such that
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where
 Arxr 	 hr� 
���

is called the reduced system� The reduced system has the following structure�
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In general� the reduced system is of order nr 	 �m
p� ���
Solving the reduced system yields xr� and the solution x of the original system may be

retrieved by�

x� 	 g� � C�x
���
t �

xi 	 gi �Bix
�i���
b � Cix

�i���
t � for i 	 �� � � � � p� ��

xp 	 gp � Bpx
�p���
b �

In practice� if ni is still large� it is not advisable to form the matrix Ar explicitly� Rather�
the reduced system can be solved by an iterative scheme such as GMRES� for example�
where the matrixvector multiplication involves solving independent linear systems of the
form Aiui 	 bi� These systems may be solved by an iterative scheme again� or by a direct
algorithm such as the sequential block Gaussian elimination scheme� parallel variants of block
cyclic reduction 
����� or the SPIKE algorithm 
��� ��� ����� The choice of the algorithms used
in this case depends upon the degree of parallelism available� If direct solvers are adopted
in this inner matrixvector multiplication� and if the reduced system is diagonally dominant�
the reduced system 
��� may be preconditioned by its blockdiagonal part 
i�e�� by dropping

the submatrices C
�i�
t �s and B

�i�
b �s�� In the experiments presented in Section ������ we solve

the linear systems Aiui 	 bi using a direct linear solver� In addition� in order to compute
w 	 C

���
t v� where w and v are vectors of size m� we solve the system

A�w 	

�
�
V�

�
v�

In this manner� the matrixvector product yr 	  Arxr is carried out in parallel via solving
several independent linear systems�

Once the reduced system 
��� is solved by an iterative method� the righthand side is
updated and the remaining components of x are obtained again by solving independent
linear systems involving the diagonal blocks Ai� The following is an outline of the algorithm�

��



Algorithm Implicit Block Jacobi

�� Factor diagonal blocks Ai�s�

�� Update the righthand side� hi 	 A��i fi�

�� Solve the reduced system� iteratively� by solving systems
involving the Ai�s�

�� Update the righthand side�

�� Solve Aixi 	 $fi�

����� Performance of Implicit Block Jacobi Preconditioner

The experiments in this section were conducted to illustrate the robustness of the implicit
block Jacobi preconditioner for inde�nite problems� In order to precisely control the spectral
properties of the linear system A� we restrict our attention to the threedimensional model
convectiondi�usion equation�

�#u � a � ru� cu 	 f in ��

u 	 � on ���

where c � � is a constant� A standard �vepoint �nite di�erence scheme is used for dis
cretization� and the rows of the resulting matrix are partitioned such that that each Ai has
order ni 	 ����� In addition� the o�diagonal blocks Vi�s and Wi�s are each of size m 	 ���
The linear systems with Ai are solved in parallel using GMRES with ILUT preconditioner�

Tables � and � compare the performance of the implicit block Jacobi with block Jacobi
parallel preconditioner on two distinct linear systems� In each case� the linear systems with
diagonal blocks were solved in parallel using GMRES with an ILUT preconditioner� We use
GMRES
k� to denote restarted GMRES with Krylov subspace of size k� It is clear from these
experiments that block Jacobi is ine�ective as a parallel preconditioner for these problems�

Block Jacobi Implicit Block Jacobi

Algorithm Iter� Time 
sec� Iter� Time 
sec�

GMRES
�� failure � �� �
GMRES
��� failure � �� �
Gaussian Elim� ��

Table �� Comparison of implicit block Jacobi with block Jacobi parallel preconditioner for a
problem with ������ unknowns on SGI Challenge with �� processors�

��



Block Jacobi Implicit Block Jacobi

Algorithm Iter� Time 
sec� Iter� Time 
sec�

GMRES
�� failure � �! ���
GMRES
��� failure � �! ���
Gaussian Elim� ���

Table �� Comparison of implicit block Jacobi with block Jacobi parallel preconditioner for a
problem with ������� unknowns on Cray C�� with ! processors�

Table � illustrates the behavior of GMRES preconditioned with ILUT on a single proces
sor� These experiments were performed on the same matrix as the one reported in Table ��

Algorithm Preconditioner Iter� Time 
sec�

GMRES
��� ILUT
�� �� ��
GMRES
��� ILUT
�� �� ��
GMRES
��� ILUT
!� � �!
GMRES
�� ILUT
��� failure �

Table �� Convergence of incomplete factorization based preconditioners for the problem in
Table ��

These experiments clearly demonstrate that the implicit block Jacobi preconditioner is a
robust and parallel preconditioning alternative to the commonly used ILUT preconditioners�
In contrast� GMRES preconditioned with the ILUT preconditioner is not a robust iterative
algorithm� in fact� its e�ectiveness depends on fortunate choices of the size of Krylov subspace�
the number of �llin elements used in the approximate factorization� and the threshold used to
determine the numerical dropping of elements� Attempts to improve the ILUT preconditioner
with additional �ll often result in failure as well� In addition to this� ILUT is not suitable as
a parallel preconditioner�

� Conclusions

In this paper� we have presented hybrid techniques for the solution of general sparse linear sys
tems� A reduced system is obtained from the original linear system by the use of orthogonal
projections onto subspaces derived from the block rows of the matrix� This reduced system is
often favorably preconditioned and may be solved by either direct or iterative methods� Our
experiments with linear systems arising from simulations of particles in �uids demonstrate
the superiority of these algorithms over Krylov subspace methods on two important issues�

��



namely� robustness� and e�cient implementation on parallel computers�
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