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Abstract

The convergence of iterative methods used to solve the
linear systems arising in incompressible flow problems is
sensitive to flow parameters such as the Reynolds num-
ber, time step and the mesh width. This paper presents a
class of algorithms to solve these linear systems using lo-
cal solenoidal functions. An optimal preconditioner is de-
scribed via an iterative method to solve the resulting re-
duced system. This paper also suggests inexpensive paral-
lel matrix-vector products using bounded buffers for inter-
processor communication. Experimental results for a three
dimensional problem show that the preconditioning step
need not be solved accurately at each iteration, thereby de-
creasing the time spent in the potentially expensive routine.
These experiments also show that the proposed algorithm
assures a constant rate of convergence across the range of
flow parameter variation. Scalability of the algorithm is
suggested by the experiments on the SGI Origin 2000.

Keywords. linear system, iterative methods, precondition-
ers, divergence-free, computational fluid dynamics, parallel
performance.

1. Introduction

The physical phenomenon of fluid flow is one of the old-
est and highly researched topics. Advances in computing
provided a new dimension to the research by enabling the
numerical simulation of flow problems. Realistic simula-
tion of flow requires considerable amount of computational
power such as that offered by parallel processors. This re-�
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inforces the need for parallel algorithms that can be imple-
mented efficiently on these parallel architectures. The prin-
ciples of classical mechanics, thermodynamics, and laws of
conservation of mass, momentum, and energy govern the
motion of fluid. Law of conservation of momentum for in-
compressible, viscous flow in a region

�
with boundary� �

is captured by Navier-Stokes equation given by������ � �	��
���
���
�� ������ ��� (1)

where��
���� �!�"�$# is the pressure,
�

is the Reynolds num-
ber, and%&
'%(� �!�"�$# is the velocity vector at� . The law of
conservation of mass for incompressible fluids gives rise to
��)��
+*-,/. �10

(2)

Viscosity of the fluid imposes a boundary condition at the
walls given by ��
�*324.5� �10

(3)

Suitable discretization and linearization of the equations (1-
3) result in a linear system given by687 995: *<; 6 %�=; 
 6?> *+; 0

(4)

where
9�:

is the discrete divergence operator and A is the
discrete counterpart of terms with� in (1):7 
 �� �A@ �-BC� ��EDF�
in which @ is the mass matrix,D is the Laplace matrix, andB

is the matrix arising from the convection term. When op-
erator splitting is used to separate the linear and non-linear
terms, we obtain the generalized Stokes problem (GSP)
with a symmetric positive definite

7
given by7 
 �� � @ ���� D 0
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The linear system (4) obtained for a given flow problem was
typically solved by direct methods. Solving any practical
flow problem involves a large sparse linear system of equa-
tions with many unknowns, which requires a large amount
of memory. As a result, direct methods are prohibitive in
a single processor environment. These shortcomings have
paved a way for iterative methods. Although iterative meth-
ods are well suited for parallel processing, they may not
be as reliable as direct methods. In order to make iterative
methods more effective, the system of linear equations is
modified to a system that is easier to solve. Preconditioning
is a technique to transform the original system into one that
is solved faster by iterative methods.
In general, the linear system (4) is large, sparse, and indefi-
nite due to the incompressibility constraints

9G: %E
�* . The
indefiniteness of the matrix is the main cause of difficulty
in developing preconditioned iterative solvers. The degree
of difficulty also depends upon the nature of

7
which is af-

fected by the Reynolds number
�

and the choice of time
step � � . Developing effective preconditioners and iterative
methods for such systems is a challenging task.
In this paper, we present a scheme to restrict the velocity
to divergence-free subspace and outline preconditioners for
the reduced system that must be solved iteratively. The pre-
conditioners are optimal in that convergence is assured in
fixed number of iterations. We also outline a parallel com-
putational scheme for the solution methodology. Experi-
ments on SGI Origin 2000 suggest that proposed scheme is
efficient for solving 3D problems.

2 An Algorithm Using Solenoidal Basis
Functions

2.1 A Discrete Divergence-free Approach

In order to simplify the linear system (4), velocity is ex-
pressed in terms of divergence-free velocity functions. A
solenoidal basis is a basis for divergence-free velocity. A
method to construct hierarchical solenoidal basis is given
in [10], and its application to 2D particulate flow problems
in which matrix

7
is diagonally dominant is described in

[4, 6, 11]. The local divergence-free basis introduced in
[9] allows construction of very effective preconditioners for
more general instances of

7
.

A discrete divergence-free basis for fluid velocity has the
advantage of automatically satisfying the continuity con-
straint in the Navier-Stokes equations for incompressible
fluids. Hence, flow expressed in terms of divergence-free
velocity functions is incompressible by definition. In ma-
trix terms, this conversion of velocities into divergence-free
velocity functions is called a projection, and is achieved by
a projection matrixH . A matrix H that satisfies the con-
dition

9�: HI
J* can be used to represent divergence-free

space. Velocity defined as%+
KHML satisfies
9N: HML+
K* ,

which implies
9�: %G
+* , and the linear system (4) becomes7 HML � 9 �G
 > 0

(5)

Since,
9�: HK
8* , this system is simplified by multiplying

with H :
to eliminate pressure:H : 7 HMLG
+H : > 0

(6)

This reduced system can be solved using any suitable it-
erative scheme like Conjugate Gradients (CG) or GMRES.
An appropriate choice of the projection matrixH implic-
itly preconditions the reduced system and accelerates the
convergence of the iterative method. OnceL has been cal-
culated, velocity can be computed as%E
�HMLO� (7)

and pressure is recovered by solving the least squares prob-
lem 9 �GP > � 7 HML (8)

2.2 Local Solenoidal Functions

A number of issues must be resolved before this approach
can be viable. In particular, given that

9
is large and sparse,

(a) the null space basisH must be computed and stored ef-
ficiently, (b) the structure ofH must allow fast computation
of matrix-vector products with the reduced systemH :O7 H ,
(c) the algorithms for computing and applyingH must be
efficiently parallelized, and (d) the choice ofH must allow
effective preconditioning of the reduced systemH :�7 H so
that the iterative method converges rapidly.
A purely algebraic approach such as QR factorization of

9
cannot be used to computeH due to the prohibitive cost of
computation and storage. One can exploit the nature of the
problem to develop techniques to computeH with desirable
properties. In the continuum space, one can define local
solenoidal functions that are circulating flows or vortices at
each point in the domain. In the discrete setting, edges and
elements of a mesh can be used to define similar circulating
flows that are discreetly solenoidal.
We proposed the use of local solenoidal functions for 2D
flows in [9], where we presented a scheme to construct a
solenoidal basis derived from circulating flows or vortices,
and outlined an optimal preconditioning technique for the
generalized Stokes problem in [8]. This paper gives an ef-
fective parallelization scheme for solving the linear system
using preconditioned solenoidal basis methods.
Each such flow is represented as a vector, and the set
of these vectors forms the columns ofH . The matrixH is sparse due to the localized structure of the discrete
solenoidal functions. In fact,H is never actually computed
in solving the reduced system, but its localized nature is
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used to calculate the matrix-vector products involvingH di-
rectly. This results in a matrix-free implementation of the
algorithm which is memory efficient.

2.3 Preconditioning the Reduced System

Effective preconditioning of the reduced system is critical
to the overall success of the solenoidal basis method. Since
the matrix H :�7 H is not computed explicitly, the design of
a preconditioner is challenging. Observing that the productHML and H :OQ

compute the discrete curl of the functions rep-
resented by� and R , respectively, it can be inferred that the
product

Q 
+H : HMS represents
�T&
UT w in a discrete set-
ting. Thus, the matrixH : H can be shown to be equivalent
to the Laplace operator on the solenoidal function space.
Based on this insight, the preconditioner for the generalized
Stokes problem is defined as follows:V 
 6 �� � @ ���� DXW ; DXW)�
where DYW is the Laplace operator for the local solenoidal
functions. Experiments presented in section 4 show that
the preconditioner is very effective over a large range of� �
and

�
values. Since the preconditioned system is spectrally

equivalent to a symmetric positive definite matrix, one can
use preconditioned CG to solve the reduced system (6).

3 Parallel Formulation

3.1 Mesh Partitioning

The main components of the algorithm that must be paral-
lelized are (a) computation of the solenoidal basis matrixH ,
(b) matrix-vector products withH and H :

, (c) vector addi-
tion, inner-products and matrix-vector products with

7
, and

(d) the preconditioning step. Parallelization of these oper-
ations require the underlying mesh to be distributed across
processors. Since, the computation involved in the main
components of the algorithm is a function of sub-mesh size
on each processor, a load balancing scheme should parti-
tion the underlying mesh equally across the processors. On
a � processor machine, the mesh is divided into� partitions
and theZ th partition is given to processorZ . The unknowns
for velocity, vorticity, and velocity potential defined on the
nodes, edges or elements within a partitionZ reside on pro-
cessorZ that owns the partition. Parallel matrix-vector prod-
ucts require inter-processor communication between pro-
cessors with neighboring sub-meshes which degrades par-
allel efficiency.
One can partition the physical mesh equally across proces-
sors in several ways. But, the amount of inter-processor
communication needed in computing the matrix-vector

products varies largely on the mesh partitioning scheme.
For uniform grids, partitioning the grid across any one di-
mension is the simplest scheme. One can achieve this by a
simple loop parallelization scheme by distributing the loop
control index which corresponds to the dimension along
which the grid is partitioned. The resulting communication
is [N� \�]_^`]"acb�# for a d-dimensional uniform grid with\F]"adb
nodes along each dimension.For a 3D uniform grid with\�]$ace nodes along each dimension, the inter-processor com-
munication is [N�f\�gda"e�# . Hence, the scheme is prohibitive
for realistic problems. An optimal scheme for such a grid is
obtained by partitioning the grid across all the dimensions
equally.
For unstructured grids, one can use a heuristic to parti-
tion the mesh to minimize communication and balance the
workload. Partitioning of irregular meshes is described
in [2, 3]. Several such techniques and software are avail-
able. On the other hand, one can partition the problem do-
main into� partitions, and generate sub-meshes in each par-
tition in parallel. Care must be taken while generating sub-
meshes to minimize communication and balance the work
on each processor.

3.2 Parallel Matrix-Vector Products

Since the reduced system (6) is never computed explic-
itly, the product

Q 
hH :O7 HML is computed as a sequence
of three matrix-vector products:

Q 
iHML , jk
 7�Q
andSJ
8H : j . The choice of local solenoidal functions leads

to a sparseH with non-zero pattern similar to the adjacency
matrix of the mesh. The matrix-vector productsHML andH : j can be computed concurrently in a manner similar to
that of a matrix-vector product with a Laplace matrix (D W ).
Products with

7
are equally straightforward to parallelize.

The preconditioning step consists of two systems that need
to be solved in succession. The system matrices are the
Laplace matrix and a convection-diffusion matrix. These
linear systems can be solved via direct or iterative meth-
ods with the possible use of fast Poisson solvers, domain
decomposition [1], multigrid, and multilevel methods. Par-
allelism in such algorithms is well understood [7]. In this
paper the preconditioning step is computed using two suc-
cessive calls to CG routines.

3.3 Inter-Processor Communication

Several techniques can be used for computing matrix-vector
products of sparse matrices arising from the Laplace op-
erator in [7, 5]. Assuming the mesh is partitioned as de-
scribed previously, a processor is responsible for computing
the product with the local sub- matrix that resides with the
processor. Matrix-vector product computation for a given
node needs values from its neighboring nodes and a pro-
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cessor computes matrix-vector product for all nodes which
lie in its local partition. For a boundary node the processor
needs nodal values which do not reside in its local memory.
To reduce communication overhead, all the values needed
by a neighboring processorZ are communicated in blocks.
This communication precedes the actual computation of the
matrix-vector product.

Given any two neighboring processor gridsl and Z , nodal
values ofl are needed for matrix-vector product computa-
tion in processorZ and vice versa. A bounded bufferm�npo
is created in processorl ’s memory and all the nodal val-
ues residing inl which are adjacent to the boundary nodes
of Z are stored in it. Similarly,m o"n is constructed in pro-
cessorZ ’s memory. Another bounded buffer

� o"n is created
in processorZ ’s memory which has the same size asm nqo .
The communication step consists of copyingm nqo into

� o"n
as a single abstract block. After the communication, all the
values which reside in physical gridl and neighboring the
boundary nodes in gridZ are in local memory of processorZ . All the processors do the communication using bounded
buffers simultaneously before starting matrix-vector prod-
ucts on their local grid.

Figure 1. Inter-processor communication is
performed in two steps: (a) Every proces-
sor copies its local nodal values needed by
the neighboring processor into a communi-
cation buffer m (b) the nodal values from m
in a neighboring processor are copied into a
processor’s local buffer

�
.

Figure 1 illustrates the steps involved in the inter processor
communication. Thus, matrix-vector product is computed
in two stages: the first stage consists of communication us-
ing buffers and in the second stage, matrix-vector product is
computed by the processors for their local grids.
Overhead in the form of communication during the first
stage causes loss of parallel efficiency. There is no way
to avoid it since the connectivity of the mesh across sub-
domains forces communication of data between processors.
In spite of this, high parallel efficiency can be achieved
when the communication to computation ration is relatively
small. This is indeed the case when using moderate num-
ber of processors to solve a large problem as shown by the
experimental results in the next section.

4 Experiments

In order to validate the proposed algorithm and the effec-
tiveness of of the preconditioner, a driven-cavity problem
is solved on a three dimensional unit cube. The Marker
and Cell (MAC) scheme is used to discretize the domain.
The linear system arising from a generalized Stokes prob-
lem was solved under various physical conditions by chang-
ing the ratio rsg ��t � � . The nature of linear systems in in-
compressible flow problems depends on various parameters
such as mesh width (r ), Reynolds number (

�
) and time step

( � � ). Convergence of the iterative scheme is sensitive to the
variation in the condition number of the matrix A. For the
3D driven cavity problem, the condition number is approx-
imated by u � 7 #v
 rwg ��t � � � �)xr g ��t � � � r g 0
Hence,

u � 7 #�y x when rsg ��t � ��z ��x , and

u � 7 #{P|rO^�g
when r�g ��t � �(} �)x . ~��d���)���

Mesh Size 10��� 10��� 10� 10�s� 10���
With Preconditioning

8 � 8 � 8 8 8 6 5 5
16 � 16 � 16 12 10 8 6 6
32 � 32 � 32 17 13 10 7 7

Without Preconditioning
8 � 8 � 8 66 64 54 29 21

16 � 16 � 16 208 188 114 58 42
32 � 32 � 32 772 552 225 106 77

Table 1. Preconditioning is highly effective in
reducing the number of iterations. The itera-
tions for the preconditioned case are almost
invariant with respect to the flow parametersr ,

�
, and � � .
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Figure 2. The relative residual norm de-
creases by a constant factor at each iteration
of the preconditioned CG method. Experi-
ment shown is for ��� T ��� T ��� grid problem
with r�g ��t � ��
 � *�^�e .

Preconditioned CG is used to solve the reduced system (6)
with the stopping criteria of relative residual norm being
less than� *�^w� . The preconditioner step is also an inner CG
solve with a lower stopping criterion of� *O^sg . The first set
of experiments highlights the effectiveness of the precondi-
tioner in accelerating the convergence of the CG method.
Figure. 2 shows that the relative residual norm decreases by
a constant factor in each iteration of the preconditioned CG
method.
Table 1 presents the iterations required by the precondi-
tioned CG method for several instances ofr(g ��t � � . The
preconditioner ensures a stable convergence rate indepen-
dent of the values ofr ,

�
and � � . This suggests that the

preconditioning is optimal. At each iteration, the precon-
ditioning system was solved by CG as well, resulting in
an inner-outer scheme. The lower accuracy of the inner
solve had no adverse effect on the outer iterations which
reduces the computational cost of the expensive precondi-
tioning step. Table 2 shows that a tolerance of� *�^�g for
the inner iterations is sufficient for convergence of the outer
iterations.

A second set of experiments focused on the parallelization
of the proposed algorithm. All the elementary matrix-vector
products and vector dot products were parallelized by dis-
tributing the grid equally among the processors by partition-
ing in all the physical dimensions. Communication buffers
are used to reduce the inter-processor communication over-
head. Experiments were performed on SGI Origin 2000 us-
ing OpenMP. An MPI based distributed memory implemen-

Mesh size = 16� 16 � 16
Inner tolerance Outer iterations Inner iterations�d� ��� 10 34�d� ��� 10 28�d� � �

10 20���E�_� � �
12 12�d� �w� 16 8

Table 2. Lower accuracy suffices for the pre-
conditioning step.

Number of Processor Time Speed-up Efficiency
processors grid (secs)

1 1 � 1 � 1 1760 – 1.0
2 2 � 1 � 1 946 1.86 0.93
4 2 � 2 � 1 496 3.54 0.86
8 2 � 2 � 2 259 6.79 0.85
16 4 � 2 � 2 136 12.94 0.81
32 4 � 4 � 2 73 24.11 0.75
64 4 � 4 � 4 49 35.92 0.56

Table 3. Parallel results for ��� T �A� T �A� grid.

tation can be developed with minimal changes as the under-
lying communication is performed using buffers. Problem
sizes of�A� T ��� T ��� and �)xA� T �)xA� T ��x�� were solved forr�g ��t � ��
 � *A�Oe with stopping criteria of� *s^�� . Precondi-
tioner step is solved with a low accuracy of� *O^�g .

Figure 3. Experiments performed on SGI Ori-
gin 2000 show that the parallelization scheme
is highly efficient on a multi processor plat-
form.

Figure 3 shows that the parallelization scheme is highly
efficient on a multi processor platform.
As seen from Table 3, high efficiency is obtained on the��� T �A� T ��� sized problem on� x processors. The degrada-
tion in performance on��� processors is due to the commu-
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Number of Processor Time Speed-up Efficiency
processors grid (secs)

1 1 � 1 � 1 27754 – 1.0
2 2 � 1 � 1 14946 1.86 0.93
4 2 � 2 � 1 8064 3.44 0.86
8 2 � 2 � 2 4295 6.46 0.81
16 4 � 2 � 2 2212 12.54 0.78
32 4 � 4 � 2 1164 23.84 0.74
64 4 � 4 � 4 620 44.77 0.70

Table 4. Parallel results for ��x�� T ��x�� T ��x�� grid.

nication over-head dominating the computation per proces-
sor. Increasing the problem size to�)xA� T �)x�� T ��x�� ensures
higher efficiency on�A� processors. This can be observed in
Table 4 and Figure 3. Thus, efficiency can be maintained
on larger number of processors by increasing the problem
size.

5 Conclusions and Ongoing Work

This paper presents a high performance algorithm for solv-
ing the linear systems arising from incompressible flow
problems. An algebraic scheme is outlined to compute
discrete local solenoidal functions that are used to repre-
sent divergence-free velocity. A reduced system is solved
in the divergence-free subspace via a preconditioned itera-
tive scheme. An optimal preconditioner has been suggested
which assures stable convergence regardless of parameters
such as the mesh width, Reynolds number, and the time
step. An inexpensive low accuracy iterative solve for the
preconditioner appears to be sufficient for optimal conver-
gence. An efficient parallel computation of matrix-vector
products is given. Mesh partitioning and the ratio of com-
putation to communication affect the speed-up on multi-
processor runs. Algorithm is shown to be scalable even for
a smaller sized problem of��� T �A� T ��� mesh. Research
is under way in extending the algorithm to finite element
unstructured grids.
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