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Abstract

Simulations of particles in fluid flows are of great in-
terest to numerous industries using sedimentation, fluidiza-
tion, lubricated transport, and hydraulic fracturing of hy-
drocarbon reservoirs. Simulating incompressible viscoelas-
tic flows with millions of rigid particles is computationally
a very challenging problem. In addition to using sophisti-
cated modeling techniques and numerical algorithms, one
must develop a scalable parallel formulation of the simula-
tion. This task is further complicated by the dynamic nature
of the system resulting from unrestricted motion of the par-
ticles. In this paper, we present an efficient algorithm for
simulating particulate flows and discuss its parallel imple-
mentation. At each time step, a number of linear systems
are solved using preconditioned iterative methods in which
the matrix-vector product does not require explicit compu-
tation and storage of the matrix. The preconditioners de-
veloped for these systems are optimal so that convergence
is assured in a fixed number of iterations. Moreover, these
preconditioners do not require matrix inversion, and can be
applied efficiently in parallel using their matrix-free forms.
As a result, the algorithm is highly parallel and scalable,
and achieves good speed improvement on the SGI Origin
2000.

1 Introduction

A number of important industrial problems can be suc-
cessfully addressed with the ability to simulate particulate
flows. To be of practical use, these simulations must be car-
ried out for millions of particles in Newtonian as well as vis-
coelastic fluids. This will allow us to study the microstruc-
tural effects that produce clusters and anisotropic structures,
analyse statistical behaviour, and derive engineering corre-
lations for particulate flows.

Direct numerical simulation of particulate flows with
millions of rigid particles is a very difficult task. Large scale

simulations in a three dimensional domain are possible only
on parallel computers. In addition to the difficulty associ-
ated with solving Navier-Stokes equations for incompress-
ible fluids, we need to simulate motion of rigid bodies under
the action of hydrodynamic forces and gravity.

We use a distributed Lagrange multiplier based fictitious
domain approach (DLM) for these simulations (see, e.g.,
[7] for 2D particulate flows). DLM method is an alterna-
tive to Augmented Lagragian Eulerian (ALE) methods in-
vestigated in [4, 6, 8], and offers significant computational
advantages. The operators can be implemented in a matrix-
free form, and easily parallelized due to the use of uni-
form structured grids. An operator splitting method `a la
Marchuk-Yanenko is used for time discretization. This de-
couples each time step into three subproblems – the first
one is the time-dependent Stokes problem, the second is
a linearized advection-diffusion problem, and the third is
a linearly constrained quadratic minimization problem that
enforces rigid body motion on the particles. These subprob-
lems are solved by the preconditioned conjugate gradients
method.

The preconditioners developed for each of the subprob-
lems are optimal, i.e., convergence is assured in a fixed
number of iterations. In addition, these preconditioners pos-
sess the following desirable properties – they can be applied
in a matrix-free form, they do not need to be stored, and
they do not require matrix inversion. As a result, precondi-
tioning can be implemented efficiently on multiprocessors.
Some of these preconditioners are extensions of the ones
proposed in [10, 9].

In this paper, we describe these preconditioners and out-
line their parallel implementation. We also discuss the par-
allelization of the DLM method. The next section describes
the applications of particulate flow simulations. Section 3
presents the modeling techniques and Section 4 outlines the
preconditioners for intermediate linear systems along with
their parallel implementation. Experiments demonstrating
good speed improvement on the SGI Origin 2000 are pre-
sented in Section 5. Conclusions are presented in Section 6.



2 Applications

Applications that stand to benefit from particulate flow
simulations include sedimenting and fluidized suspensions,
lubricated transport and hydraulic fracturing of hydrocar-
bon reservoirs. We now give an outline of these applica-
tions.

Sedimentation Columns and Fluidized Beds. Sedimen-
tation columns and fluidized beds are used to suspend parti-
cles in a stream of fluid so that chemical reactions and heat
transport can be enhanced considerably. This finds appli-
cations in diverse areas such as combustion of coal, coat-
ing of particulates, drying grains, and catalyzed conversion
of light crudes to gasoline. The behavior of fluidized beds
can be modified to avoid bubbling by using spouts and draft
tubes provided one understands the dynamics of the partic-
ulate flow. Such studies are practical, and in some cases,
possible only from direct simulation.

Lubricated Transport. Lubricated flows have the prop-
erty that the low viscosity constituent migrates towards the
walls, in effect greatly reducing the cost of transport of the
high viscosity constituent. Coal slurries in water are exam-
ples of such a flow. Particulate flow simulations can provide
insight into the nature of forces which push particles away
from the wall. This information is necessary for exploiting
the tendency to lubricate.

Hydraulic Fracturing. To increase the productivity of a
hydrocarbon well, a slurry of sand in a highly viscoelastic
fluid is pumped into the well. The resulting fracture in the
pay zone is kept open by the sand, leading to increased pro-
ductivity due to a higher-conductivity path through the sand
for fluids to enter the well. Unfortunately, it is believed that
the fluid flow into the well resembles lubricated transport,
and interferes with a good vertical filling of the fractured
reservoir. This in turn reduces well productivity, and can
also interfere with the fracture growth process by blocking
downward extension. Successful simulations of particulate
flows can be used to develop efficient techniques for these
activities.

3 Modeling Particulate Flows

Consider an incompressible fluid flowing in a channel, in
which a pressure gradient is set against gravity (Fig. 1) and
a number of solid particles are moving freely. The Reynolds
number is large enough that inertia cannot be neglected. We
are interested in determining the motion of both fluid and in-
dividual particles. The continuity and momentum equations
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Figure 1. Particles moving in a channel.

for the fluid are given by:

r � u = 0; (1)

�
@u

@t
+ �u � ru = �g�rp+r � �; (2)

where� is the fluid density,g is gravity,p is the pressure,
andu is the fluid velocity. The tensor� represents the extra-
stress tensor; for a Newtonian fluid, it is given by

� = �
�
ru+ruT

�
: (3)

The particles obey Newton’s law:

M
dU

dt
= F; (4)

dX

dt
= U; (5)

whereX andU are the generalized position and velocity
vectors of the particles, respectively. The unknown vectors
X andU incorporate both translational and angular com-
ponents of the particle velocities. The matrixM denotes
the generalized mass matrix and the vectorF comprises of
the forces and torques acting on the particles by the fluid as
well as external fields such as gravity. Imposing a no-slip
condition for the fluid on the surface of each particle, we
obtain the following expression for fluid velocity at a point
on the particle:

u = U+ r�
: (6)

Here,r is the vector from the center of the particle to the
point on its surface, and
 is the angular velocity of the
particle.

3.1 A Fictitious Domain Approach

Fictitious domain methods are used to reduce problems
defined on complex domains to problems on simple shaped
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domains containing the actual domain. Typically, one can
use finite element discretization on uniform grids, and fast
solvers for elliptic problems. For particulate flows, this of-
fers the additional advantage of avoiding mesh generation
at each time step. In contrast, one needs to generate a new
mesh in ALE methods (see, e.g., [4, 6, 8]), whenever the
mesh gets too distorted due to the motion of the particles.
The fictitious domain method applied to particulate flows
can be described as follows:

� fill each particle with the surrounding fluid,

� impose a rigid body motion to the fluid inside each
particle, and

� relax the rigid body motion inside each particle by us-
ing a distributed Lagrange multiplier defined over the
space region occupied by the particles.

Taking these steps, one arrives at the following generalized
variational problem (see, e.g., [3] for details):
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g � vdx (7)
Z



qr � u = 0 (8)

< �;u�U� r > = 0 (9)

wherev,Y, andq are basis functions for fluid velocity, par-
ticle velocity, and pressure, respectively,� is the distributed
Lagrange multiplier forcing rigid body motion on the fluid
“filling” the particle, and� is the corresponding basis func-
tion. The particle is assumed to have density�s.

3.2 Operator Splitting for Time Discretization

Discretization in time is achieved via operator splitting
à la Marchuk-Yanenko discussed in [5]. This decouples the
three main difficulties in the equations, namely, incompress-
ibility, nonlinearity, and rigid body motion. Each time step
is subdivided into three parts, and a different subproblem
is solved at each fractional time step. The first one is a
time-dependent Stokes problem, the second is a linearized
advection-diffusion problem, and the third is a linearly con-
strained quadratic minimization problem to enforce rigid
body motion on the particles. These are described in more
detail below.

1. Assumingun,Un, andXn are known at timen, solve
the coupled equations

�

Z



un+1=3 � un

�t
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pn+1=3r � vdx = 0;

(10)Z



qr � un+1=3dx = 0: (11)

2. Next, computeun+2=3,Un+2=3, andXn+2=3 by solv-
ing

�

Z



un+2=3 � un+1=3
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g�vdx; (12)

and assigning

Un+2=3 = Un + g�t; (13)

Xn+2=3 = Xn +
�t

2
(Un +Un+2=3): (14)

3. Finally, computeun+1, Un+1, Xn+1, and�n+1 via
the solution of the coupled equations
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g � vdx; (15)

< �;un+1 �Un+1
� r >= 0; (16)

and

Xn+1 = Xn +
�t

2
(Un +Un+1):

4 Parallel Implementation

In order to solve the coupled equations (10)–(11) for the
time-dependent Stokes problem, we need to solve the fol-
lowing linear system:

�
�I B
BT 0

��
u
p

�
=

�
f
0

�
; (17)

where� = �=�t, andBT is the discrete divergence opera-
tor. This is an indefinite saddle-point problem with potential
to cause difficulty for iterative methods. The best approach
is to solve the reduced linear system defined only on the
pressure unknownsp, and then recoveru from p. Specifi-
cally, we solve

BTBp = BT f; (18)
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and then computeu = ��1(f�Bp). It is easy to show that
the matrixBTB is spectrally equivalent to the discrete oper-
ator formed from�� with homogeneous Neumann bound-
ary conditions (see also [1]). This implies that�� is an
optimal preconditioner for the conjugate gradients method
for solving (18), i.e., the iterations needed to converge to
the solution would be independent of the mesh discretiza-
tion. Since the preconditioner is also defined on a uniform
grid (without particles), one can use a fast elliptic solver as
a preconditioner. We use the iterative multilevel solver de-
veloped by Sarin and Sameh [9] that has been implemented
in a matrix-free form for uniform grids.

Figure 2. The first and second fractional time
steps solve a linear and nonlinear problem,
respectively, on a uniform grid. The particles
are assumed to be filled with fluid, and thus,
“invisible”.

In the second fractional time step an advection-diffusion
problem (12) is solved by a least squares/conjugate gradi-
ents algorithm [2] with two or three iterations. Each of these
iterations requires solving a diagonally dominant sparse lin-
ear system obtained from the sum of�� with Dirichlet
boundary conditions and a scaled identity matrix�I . In our
experiments, these systems are solved with a few iterations
of the Jacobi iterative method which can be implemented
efficiently on parallel computers.

The third fractional time step (15)–(16) enforces rigid
body motion on the particles by solving a linearly con-
strained quadratic minimization problem. Again, we need
to solve a saddle-point sparse linear system:0

@ �I C1

�M C2

CT
1 CT

2 0

1
A
0
@ u

U
�

1
A =

0
@ d1

d2
0

1
A ; (19)

where� =
�
1� �

�s

�
=�t. As before, we solve the follow-

ing reduced system for�,�
��1CT

1 C1 + ��1CT
2 M

�1C2

�
�

= ��1CT
1 d1 + CT

2 M
�1d2; (20)

and then obtainu andU . Finding an optimal preconditioner
for this system is not straightforward; here we give a brief
outline of how to construct the preconditioner. It is impor-
tant to note that the number of unknowns� for each particle
is identical to the total number of mesh nodes that are ei-
ther inside the particle or are connected to a node inside
the particle. On the other hand, for ad dimensional sim-
ulation, there are at most2d diagonal elements ofM for
each particle, i.e., the translational and angular velocities.
Clearly, the system (20) is a low rank perturbation of a diag-
onal matrix, and can easily be inverted. In reality, however,
��1CT

1 C1 is “almost” diagonal. Nevertheless, the diagonal
of ��1CT

1 C1 can be used along with the low rank pertur-
bation from��1CT

2 M
�1C2 to obtain an optimal precondi-

tioner for this system. Moreover, using Sherman-Morrison-
Woodbury formula for the inverse, the preconditioning step
can be made matrix-free and parallel.

Figure 3. The third fractional time step en-
forces rigid body motion on that volume of
fluid which is occupied by particles. Fluid
“outside” the particles is unaffected at this
step.

The fictitious domain approach has the advantage of us-
ing uniform grids. Fast parallel solution techniques for el-
liptic problems on uniform grids are well understood. Thus,
mesh partitioning and load balancing issues in the first two
fractional time steps are easily resolved. The third fractional
time step can be parallelized effectively as well. The com-
putation involves the unknown vector� which is defined on
a uniform grid that is restricted to each particle (see Fig. 3).
In addition, this step involves projecting� onto the fluid
velocity near the surface of the particle, followed by pro-
jection of the updated fluid velocity onto�. This is accom-
plished by product with the matrixCT

1 C1. The outcome is
that the fluid velocity array is referenced in the neighbor-
hood of the particles. Unfortunately, this can lead to po-
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tential load imbalance, especially when a disproportionate
number of particles move into the subdomain allocated to
a processor. Figure 4 illustrates this phenomenon for 240
sedimenting particles.

 0 sec. 10 sec. 20 sec. 30 sec. 37 sec.

Figure 4. Sedimentation of particles in a chan-
nel.

This problem is addressed in the following way: parti-
cles are “handed” over to the processor that owns the sub-
domain containing the majority of the particle. A processor
with disproportionately large number of particles can relin-
quish some particles to other lightly loaded processor. How-
ever, there is a tradeoff between load balance and the cost
associated with communicating fluid velocity values on the
particle boundary. The optimum solution may not be easy
to find, and in fact, unnecessary if the time consumed by the
third fractional step is much smaller than the first two.

5 Experiments

The parallel code for the algorithm described in the pre-
ceding sections has been used to simulate sedimentation and
fluidization of particles in both two and three dimensions.
We must point out that the parallelization effort for 3D code
has not been completed; in fact, we anticipate much im-
proved performance in the near future.

The 2D simulation consists of 240 circular particles of
diameter 0.635 in a channel of height 40.64 and width
8.182. We assume the density of fluid,� = 1:0, density of
particles,�s = 1:14, and viscosity,� = 0:01. For sedimen-
tation, the fluid velocity along the channel walls isu = 0.
For fluidization,u = 0 along the the vertical walls, and
along the horizontal walls, it is given by

u = umax(1� e�50t);

whereumax = 0:25. Initially, the particles are arranged
so that their centers form a uniform12� 20 grid at the top
of the channel for sedimentation experiments. This array
is placed at the bottom in the case of fluidization. The time
step is fixed at�t = 0:001. The parallel performance of the
code is shown in Table 1. Clearly, for a medium sized prob-

Processors Time (sec.) Speedup Efficiency

2 35.7 1.0 1.00
4 17.8 2.0 1.00
8 10.0 3.6 0.89
16 6.2 5.7 0.71

Table 1. Two dimensional simulation of 240
sedimenting particles. The time denotes av-
erage time taken per time step of the simula-
tion on SGI Origin2000 with h = 1=256.

lem, our algorithm shows impressive speed improvement on
a moderate number of processors.

The 3D simulation consists of 21 spherical particles of
diameter 0.635 in a channel of height 24.384, width 8.182,
and depth 0.8128. The remaining parameters are identical
to the 2D simulations. Table 2 presents the result of prelim-
inary experiments on SGI Origin2000. Here, “Original” is
used to denote the unpreconditioned serial code,S andS�

represents speed improvements in the overall code and the
parallelized component, respectively, andSorig denotes the
net improvement in speed over the unpreconditioned serial
code.

It is clear from the table that the parallel component
of code shows impressive speed improvement. Even on a
small problem, it shows a speed improvement of 10.4 on
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Processors Time (s) S S� Sorig

Original 179.0 — — —
1 93.8 1.0 1.0 1.9
2 55.2 1.7 1.8 3.2
4 30.7 3.1 3.5 5.8
8 19.2 4.9 6.3 9.3
16 13.6 6.9 10.4 13.2

Table 2. Three dimensional simulation of flu-
idization of 21 particles. The time denotes the
time taken by 10 time steps on SGI Origin2000
with h = 1=50.

16 processors. We anticipate even better performance on
larger problems. The only sequential component remaining
is the solver for��with homogeneous Neumann boundary
conditions in the first fractional time step. This consumes
approximately 10% of the sequential execution time, and is
the main cause for speedup saturating to a constant value as
the processors are increased. This is being remedied by re-
placing the solver with the parallel multilevel solver. Once
parallelization is complete, we anticipate higherS for 3D
simulations.

It is important to note that the overall parallel perfor-
mance is affected by the preconditioners used at each frac-
tional time step. The simulation proceeds fastest when
using optimal preconditioners that may be somewhat re-
stricted in parallelism. In this case, reasonable parallel
speed improvement translates to enormous gains in the real
time spent in these simulations. Clearly, this is much more
favorable than achieving larger speed improvement at the
cost of overall slowdown due to ineffective preconditioning.

6 Conclusions and Ongoing Work

We have developed an efficient parallel algorithm for
simulating millions of particles in fluids. Our approach
decouples the fluid equations from the particle equations
by using distributed Lagrange multipliers to enforce rigid
body motion for particles. This allows us to use fast par-
allel solvers for problems on uniform grids. We have also
developed optimal preconditioners for various linear sys-
tems arising at each time step. These preconditioners do
not need matrix inversion and have been implemented in
matrix-free form. Our algorithm shows impressive speed
improvement on the SGI Origin2000 for 2D as well as 3D
simulations of sedimentation and fluidization benchmarks.
In addition, we have improved upon the serial time by a
large factor, mainly due to the use of optimal precondition-
ers and their matrix-free parallel implementation. Our ap-

proach also demonstrates that the choice of optimal algo-
rithms with somewhat restricted parallelism is often prefer-
able to highly parallel suboptimal algorithms. We anticipate
that, after parallelizing remainder of the 3D code, our sim-
ulations will achieve very good parallel performance. This
will enable us to tackle the Grand Challenge problems in
particulate flows.
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