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Particulate Flows
The paper presents an algebraic scheme to construct hierarchical divergence-free
for velocity in incompressible fluids. A reduced system of equations is solved in
corresponding subspace by an appropriate iterative method. The basis is constructed
the matrix representing the incompressibility constraints by computing algebraic de
positions of local constraint matrices. A recursive strategy leads to a hierarchical b
with desirable properties such as fast matrix-vector products, a well-conditioned red
system, and efficient parallelization of the computation. The scheme has been exten
particulate flow problems in which the Navier-Stokes equations for fluid are coupled
equations of motion for rigid particles suspended in the fluid. Experimental resul
particulate flow simulations have been reported for the SGI Origin 2000.
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1 Introduction
The simulation of incompressible fluid flow is a computatio

ally intensive application that has challenged high-performa
computing technology for several decades. The ability to so
large, sparse linear systems arising from Navier-Stokes equa
is critical to the success of such simulations. Linear system
equations are typically solved by iterative methods that have
advantage of requiring storage proportional to the number of
knowns only. One can use the conjugate gradients method~CG!,
@1#, for symmetric positive definite systems and the generali
minimum residual method~GMRES!, @2#, for nonsymmetric sys-
tems. Although these methods are memory-efficient in compar
to direct methods such as Gaussian elimination, the rate of
vergence to the solution can be unacceptably slow. Often
needs to accelerate convergence by using some preconditio
strategy that computes an approximate solution at each step o
iterative method. It is well known that commonly used precon
tioning schemes such as those based on incomplete factoriz
~see, e.g.,@3#! may not be effective for indefinite linear system
with eigenvalues on both sides of the imaginary axis. Since
eigenvalue distribution of linear systems arising from the Nav
Stokes equations could produce such systems, it is a challen
devise robust and effective preconditioners for incompress
flows.

The Navier-Stokes equations governing incompressible fl
are given as follows:

r
]u

]t
1ru•¹u5rg2¹p1¹•t, (1)

¹•u50, (2)

whereu denotes fluid velocity,p denotes pressure,r denotes fluid
density,g represents gravity, andt represents the extra-stress te
sor. For Newtonian flows,t takes the form

t5m~¹u1¹uT!. (3)

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July
2001; final revision, Apr. 9, 2002. Associate Editor: T. E. Tezduyar. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
44 Õ Vol. 70, JANUARY 2003 Copyright ©
n-
ce

lve
ions
of

the
un-

ed

son
on-
one
ning
f the
i-
tion
s
the
er-
e to
ble

uid

n-

After appropriate linearization and discretization, the followin
system must be solved:

F A B

BT 0G FupG5F f
0G , (4)

whereu is the velocity vector,p is the pressure vector,BT andB
are discrete operators for divergence and gradient, respecti
The matrixA denotes the discrete operator on velocity in~1!. This
linear system is indefinite due to the incompressibility constra
on velocity which is enforced byBTu50 in ~4!.

A convenient way to circumvent the indefiniteness of the line
system due to these constraints is to restrict the fluid velocity
divergence-free subspace. There are a number of technique
construct divergence-free velocity functions. These include d
cretely divergence-free functions obtained from specially c
structed finite element spaces,@4,5#, as well as continuous func
tions derived from solenoidal functions such as those used
vortex methods. The problem is reduced to solving the momen
equation for divergence-free velocity functions without the ne
to include continuity constraints. In many cases, the resulting
duced linear systems are no longer indefinite. Furthermore, th
reduced systems can be preconditioned to accelerate the co
gence of iterative solvers.

The existing schemes for divergence-free functions are com
cated and difficult to generalize to arbitrary discretizations. In t
paper, we present an algebraic scheme to compute a basi
discretely divergence-free velocity. Our scheme constructs a b
for the null space of the matrix representing the linear constra
imposed on fluid velocity by~2!. The algebraic nature of the
scheme ensures applicability to a wide variety of methods incl
ing finite difference, finite volume, and finite elements metho
Since the choice of the basis preconditions the reduced lin
system implicitly, it is possible to compute an optimal basis th
leads to rapid convergence of the iterative solver. A more mod
target is to compute a well-conditioned basis that preconditi
the reduced system to some degree. The paper presents an
rithm to construct a hierarchical basis of divergence-free functi
that is well conditioned too.

The paper is organized as follows: Section 2 presents the a
rithm for hierarchical divergence-free basis and discusses com
tational aspects. Section 3 outlines the extension of the schem
particulate flow problems. In Section 4, we describe the beha
of our scheme on benchmark problems in particulate flows. C
clusions are presented in Section 5.
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Fig. 1 The coarsening of a 4 Ã4 mesh to a 2 Ã2 mesh
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2 Hierarchical Divergence-Free Basis
A straightforward way to construct discretely divergence-fr

bases is to compute the null space of the discrete divergence
erator matrixBT. This null space can be computed via full Q
factorization or singular value decomposition~SVD! of BT, @6#.
For anm by n matrix (m,n), the computation is proportional to
m2n while storage is proportional tomn. For the matrixBT, the
number of rowsm corresponds to the number of pressure ba
functions and the number of columnsn corresponds to the numbe
of velocity basis functions. SinceBT is large and sparse with
nonzeros proportional tom, both QR factorization and SVD ar
unsuitable due to the prohibitive requirements of computation
storage.

The nonzero structure ofBT can be exploited to construct
null-space basis efficiently. The following outline of the algorith
to construct a hierarchical divergence-free basis follows the
scription in@7#. Suppose one can reorder the columns ofBT such
that

BT5@Bin
T Bout

T #, (5)

whereBin
T is a block diagonal matrix with ‘‘small’’ nonzero block

on the diagonal. Given the following singular value decompo
tion of Bin :

Bin5USVT5@U1 U2#FS1

0G @V1 V2#T, (6)

whereS1 is a nonzero diagonal matrix,BT can be represented a
follows:

BT5VVT@Bin
T Bout

T #FUUT

I
G5@V1 V2#FS1 0

0 0
UV1

TBout
T

V2
TBout

T G
3FUT

I
G . (7)

Since

FS1 0

0 0
UV1

TBout
T

V2
TBout

T GF 0 2S1
21V1

TBout
T

I 0

0 I
G5F0 0

0 V2
TBout

T G , (8)

the null-space basis ofBT is given by
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P5FU

I
GF 0 2S1

21V1
TBout

T

I 0

0 I
G F I 0

0 P~1!G , (9)

whereP(1) is a null-space basis of the matrixB(1)T
5V2

TBout
T . With

this transformation, the problem of computing the null-space
the original matrixBT is reduced to a problem of smaller size. B

applying the same technique to compute the null-space ofB(1)T
,

one gets a recursive strategy for constructing the null-space ofBT.
The preceding approach is viable only if the transformation

inexpensive and the reduced matrixB(1)T
is easy to compute and

process subsequently. These criteria are met simultaneousl
exploiting the relation of the nonzero structure ofBT with the
discretization mesh. The pressure nodes in the mesh are clus
into groups of a few nodes each, and the velocity basis functi
with support within a cluster are placed inBin whereas those with
support across clusters are placed inBout . The resulting matrixBin
is block diagonal with small block sizes. Each diagonal blo
represents the divergence operator for the corresponding clust
nodes. Due to the small size of the diagonal blocks, the SVD
be computed very efficiently.

To illustrate the technique, we reproduce an example of
34 mesh from@8# ~see Fig. 1!. Pressure unknowns are defined
the nodes. Thex-component of velocity is defined on the horizo
tal edges andy-component of velocity is defined on the vertic
edges. The nodes are clustered into four groups:G15$1,2,5,6%,
G25$3,4,7,8%, G35$9,10,13,14%, and G45$11,12,15,16%. The
solid edges indicate velocity unknowns forBin and the dashed
edges indicate velocity unknowns forBout . The associated matri
ces are

Bin5F B1

B2

B3

B4

G ,

Bout5F 2C1 C2

2C1 C2

2C3 C4

2C3 C4

G , (10)
JANUARY 2003, Vol. 70 Õ 45
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Bi5F 21 1 0 0

0 0 21 1

21 0 1 0

0 21 0 1

G , i 51, . . . ,4, (11)

and

C15F0 1 0 0

0 0 0 1G ,C25F1 0 0 0

0 0 1 0G ,
C35F0 0 1 0

0 0 0 1G ,C45F1 0 0 0

0 1 0 0G . (12)

The SVD of each block inBin is given as

Bi5UiSiVi
T5F 21/2 1/2 21/2 1/2

1/2 1/2 21/2 21/2

21/2 1/2 1/2 21/2

1/2 1/2 1/2 1/2

GF 2

&

&

0

G
3F 1/2 2& 0 1/2

21/2 0 2& 1/2

21/2 0 & 1/2

1/2 & 0 1/2

G T

, (13)

that yields

B~1!T
5V2

TBout
T

5
1

2 F 21 21 0 0 21 21 0 0

1 1 0 0 0 0 21 21

0 0 21 21 1 1 0 0

0 0 1 1 0 0 1 1

G .

(14)

Note that the rows ofB(1)T
correspond to the nodes 6, 8, 14, a

16 of the original mesh, and the columns correspond to the cr

cluster edges. It is easy to see thatB(1)T
is a divergence matrix for

the coarse mesh shown in Fig. 1. Since columns 2j -1 and 2j are

identical for j 51, . . . 4, thecolumns ofB(1)T
can be reduced to

four nonzero columns by multiplying with an orthogonal matr
from the right. The resulting matrix is the divergence matrix o
232 mesh which has been scaled by 1/&.

In general, the nonzero structure of the matrixB(1)T
retains the

structure of a coarse mesh obtained from grouping clusters

single nodes. Furthermore,B(1)T
may be considered equivalent t

a divergence operator matrix for the coarse mesh. Thus, the re
sive strategy can be applied in a straightforward manner. S

B(1)T
can also be computed efficiently from the SVD ofBin , each

step of the recursive algorithm is very efficient.
The recursive algorithm to construct the divergence-free b

gives rise to a hierarchical basis that consists of basis funct
defined on each level of the mesh hierarchy. In the actual im
mentation of the algorithm, the null-space matrix is never co
puted explicitly. It is available only in the form of product o
matrices constructed from the SVD matrices and the equiva

divergence operator matrixB(* )T
at each level of the mesh hier

archy.
The size of meshes in the hierarchy decreases geometri

from the finest mesh to the coarsest mesh. Since the size ofB(* )T

is proportional to the mesh size at each level, the cost of com
ing and storing SVDs is also proportional to the mesh size at
corresponding level. Thus, the overall computation and storag
46 Õ Vol. 70, JANUARY 2003
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proportional to the size ofBT. This is a significant improvemen
over the QR and SVD algorithms. However, it should be no
that this reduction in computational complexity is gained at
expense of generating a basis that is not orthonormal. The re
is referred to@7# for more details of this method.

Once the divergence-free basisP has been constructed, the lin
ear system in~4! is transformed to the following reduced system

PTAPx5PTf , u5Px, (15)

which is solved by GMRES to obtainx. WhenA is symmetric and
positive definite, one can use CG instead of GMRES. Pressure
be computed correctly by solving the least-squares problem

Bp' f 2Au, (16)

which is consistent sincePT( f 2Au)50. At each iteration, one
needs to compute matrix-vector products of the formy5Px and
z5PTw. The computation follows a recursive structure in whi
matrix-vector products are computed at each level of the m
hierarchy. The computation proceeds from the coarsest mes
the finest mesh for the producty5Px and in the reverse direction
for the productz5PTw. Since the computational complexity o
each product is proportional to the size ofBT, the cost of com-
puting the matrix-vector product for the reduced system in~15! is
proportional to the number of velocity unknowns. Furthermo
the concurrency in the hierarchical structure of this algorithm c
be exploited to develop high-performance software for inco
pressible flows. Details of an efficient parallel formulation a
presented in@9#.

3 Particulate Flows
Divergence-free velocity basis can be used to solve linear

tems arising in solid-fluid mixtures that consist of rigid particl
suspended in incompressible fluids. The solution of these lin
systems is extremely computationally intensive and accounts
majority of the simulation time. The motion of particles is go
erned by Newton’s equations whereas the fluid obeys Nav
Stokes equations. Assuming no-slip on the surface of the part
the fluid velocity at any point on the particle surface is a functi
of the particle velocity. For the sake of simplicity, this discussi
assumes spherical particles. For thei th particle, the positionXi
and velocityUi is obtained by solving the following equations:

Mi

dUi

dt
5Fi , (17)

dXi

dt
5Ui , (18)

whereUi includes both translation and angular components of
particle,Mi represents the generalized mass matrix, andFi repre-
sents the force and torque acting on the particles by the fluid
well as gravity. Fluid velocity at the surface of the particle
related to the particle velocity as follows:

uj5Ut,i1r j3Ur ,i (19)

whereUt,i andUr ,i are the translation and angular velocity com
ponents, respectively, andr j is the position vector of thej th point
relative to the center of the particle.

A simple way to represent the linear system arising in parti
late flows is as follows. The systems for fluid and particles
written independently along with the constraint in~19! that forces
fluid velocity on a particle surface to be dependent on the part
velocity. Thus,

F A B 0

BT 0 0

0 0 C
G F u

p
U
G5F b

0
g
G , where u5F uf

up
G5F I

W
G Fuf

U G ,
(20)
Transactions of the ASME
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in which uf is the fluid velocity in the interior of the fluid andW
is the linear transformation from particle velocityU to fluid ve-
locity up on particle surface given by~19!. Using subscriptsf and
p to denote fluid interior and particle surface, respectively,
preceding system can be transformed to the following system

F I 0 0 0

0 WT 0 I

0 0 I 0
GF Af f Ap f Bf 0

Af p App Bf p 0

Bf
T Bf p

T 0 0

0 0 0 C

GF I 0 0

0 W 0

0 0 I

0 I 0

G F uf

U
p
G

5F bf

g1WTbp

0
G , (21)

which can be simplified further to obtain the following system

F Af f Ap fW Bf

WTAf p WTAppW1C WTBf p

Bf
T Bf p

T W 0
G F uf

U
p
G5F bf

g1WTbp

0
G .

(22)

Note that this system has a form similar to the linear system in~4!.
A hierarchical divergence-free basis can be computed for~22!

without any difficulty. In this case, the null-space is computed
the constraint matrix@Bf

T Bf p
T W#. The basic algorithm remain

unchanged although care has to be taken when coarsenin

Fig. 2 Particles moving in a periodic channel
Journal of Applied Mechanics
he
:

or
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mesh with particles. The fluid nodes on the particle surface
absent from the mesh in this system. The presence of part
introduces a single node that is connected to all the fluid no
that are adjacent to the particle surface. The algebraic schem
computing the divergence-free basis ensures that the algor
applies without any change to particulate flows as well.

4 Experiments
The hierarchical divergence-free basis method has been us

solve the linear systems arising in particulate flow simulatio
The simulations involved incompressible fluid in a tw
dimensional channel with a number of rigid particles movi
freely under the action of gravitational force as well as force fro
the surrounding fluid~see Fig. 2!.

The physical system is evolved from an initial state by t
implicit backward Euler method. The first-order accuracy of th
scheme was adequate because the time step was severely
strained by particle dynamics. At each time-step, a nonlinear
tem of equations was solved by an inexact Newton’s method,@10#.
At each iteration, a linear system of the form~22! was solved for
the Jacobian of the nonlinear equations. In general, this Jaco
matrix is a saddle-point system with a nonsymmetric matrixA
which tends to be real positive for a sufficiently small Reyno
number. The hierarchical divergence-free basis approach is
to transform the system in~22! to the reduced form shown in~15!.
The reduced system is solved by the GMRES method. The a
tive tolerance proposed in@11# was used as a stopping criteria.

The differential equations are approximated by the mixed fin
elements method in which fluid velocity and pressure are rep
sented by the P2/P1 pair of elements. The choice of quadr
velocity elements is necessary to capture the behavior of clo
spaced particles. A nonuniform mesh is used to discretize the fl
domain resulting in a linear system that is large and sparse.
scheme proposed in@12# is used in an arbitrary Lagrange-Eule
~ALE! framework to accommodate moving particles.

The parallel simulation code was developed using Petsc,@13#.
Communication between processes was done by MPI,@14#. The
mesh is generated using Triangle,@15# and partitioned using Par
allel METIS, @16#. Further implementation details are available
@17#.

Simulations were conducted for rigid particles falling in a 3
in. wide and 30 in. long two-dimensional vertical channel with
solid impenetrable bottom. The particles were assumed to be
cular disks of diameter 0.25 in. and specific gravity 1.14. T
initial position of particles was specified.

4.1 Single Particle Sedimentation. This benchmark simu-
lates the sedimentation of a single particle from rest whose ce
is at a distance of 0.8 in. from the left wall and 30 in. from th
bottom of the channel. At the first time-step, the computatio
mesh had 2461 elements and 1347 nodes. The number of
knowns in the unconstrained problem was 9418. Figure 3 sh
Fig. 3 Sedimentation of a single particle: „a… mesh with 2461 elements and 1347 nodes, „b… parti-
tioning into eight domains. The gravitational force pulls the particles towards the right.
JANUARY 2003, Vol. 70 Õ 47
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the initial mesh and the associated partitioning into eight sub
mains.

To illustrate the numerical and parallel performance of the
gorithm, the experiment was restricted to the first five time-ste
starting with the particle and fluid at rest. Each time-step was 0
sec. Table 1 presents the performance of the algorithm on e
processors of the SGI Origin 2000 multiprocessor. The para
efficiency is expected to be much higher for a larger problem.
this experiment, superlinear speedup is observed due to effec
cache utilization when data on individual processors is sm
enough to fit within the cache.

4.2 Multiple Particle Sedimentation. The next benchmark
simulates the sedimentation of 240 particles arranged in a sta
ary crystal. The crystal consists of an array of 240 particles in
rows and 12 columns. The centers of the particles coincide w
the nodes of a uniform mesh with 20 rows and 12 columns. T
centers of the particles are approximately 0.06154 in. apart in e
direction. The distance between the walls and the nearest part
is also 0.06154 in. The top of the crystal is 30 in. above t
channel bottom. Figure 4 shows the initial mesh and the ass
ated partitioning into eight subdomains.

At the first time-step, the computational mesh had 8689 e
ments and 6849 nodes, giving rise to 43,408 unknowns in
unconstrained problem. The simulation was run for five time-st
starting with the particles and fluid at rest. Each time step w
0.01 sec. Table 2 presents the performance of the algorithm
eight processors of the SGI Origin 2000.

It is instructive to see the breakdown of the computational ti
into important steps. Table 3 presents the computational cos
critical steps. The nonlinear system solution time consists of
following main steps: calculation of the Jacobian matrix, applic
tion of the nonlinear operator, formation of the hierarchic
divergence-free basis, and the solution of the linear system.

Table 1 Single particle sedimentation on the SGI origin 2000.

Processors Time Speedup Efficiency

1 1819 s 1.0 1.00
2 822 s 2.2 1.11
4 502 s 3.6 0.91
8 334 s 5.3 0.66

Fig. 4 Sedimentation of multiple particles: „a… mesh with 8689
elements and 6849 nodes, and „b… partitioning into eight do-
mains. Only the region of interest is shown.
48 Õ Vol. 70, JANUARY 2003
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time to solve the linear system is dominated by matrix-vec
multiplication with the Jacobian, application of the hierarchic
basis, and orthogonalization of the Krylov subspace vectors
GMRES. The nonlinear solver takes most of the time, and
parallelization is critical to the overall performance.

4.3 Additional Remarks. The parallel implementation o
the algorithm demonstrates good parallel efficiency even
small-sized problems. The overall speedup of 5.3 on eight pro
sors shown in Table 2 includes nonparallelizable component
the code as well as preconditioning effects that slowed the c
vergence of iterative solver on larger number of processors.
detailed view in Table 3 shows that the speedup in critical step
5.9 on eight processors. The computation of divergence-free
locity in the hierarchical basis is very efficient even on the sm
problem considered here. The relatively modest speedup
matrix-vector products is due to the structure of computation
volving multiplication with the matrices of the hierarchical bas
As discussed in Section 2, this requires matrix-vector produ
with matrices defined on meshes whose size decreases geom
cally from the finest to the coarsest level. In addition, it may
noted that parallel efficiency can be increased by replacing
orthogonalization step in GMRES with a variant that has a sma
serial component.

The preceding benchmark experiments definespeedupas the
improvement in speed over thebest implementation of the algo-
rithm on a uniprocessor. This implies that although the para
algorithm demonstrates goodspeed improvementon multiple pro-
cessors, the speedup may be modest. The code attempts to ac
high parallel performance by adopting an aggressive partition
strategy which is aimed at good load balance in the overall co
putation. This particular implementation of the hierachic
divergence-free basis algorithm computes a basis that cha
with the number of processors. This has resulted in weaker
conditioning which has caused a growth in the number of ite
tions when the number of processors is increased. The deter
tion in numerical efficiency of the algorithm can be eliminated
using thesamebasis on multiple processors. In this case, howev
there is a marginal decrease in parallel efficiency which is off
by superior numerical convergence. The reader is referred to@9#
for a scalable parallel implementation of this approach.

5 Conclusions
This paper describes an algorithm to compute discr

divergence-free velocity functions for incompressible fluid flo
problems. The proposed scheme computes a basis for the
space of the constraint matrix used to enforce incompressibilit
the linearized Navier-Stokes equations. A multilevel recursive
gebraic transformation of this constraint matrix yields a hierarc
cal basis for the required divergence-free functions. The algeb
nature of the scheme allows easy extension to particulate
problems in which rigid particles are coupled with the surroun
ing fluid by no-slip condition on the particle surface. The pap
outlines the extension of the hierarchical basis method for part
late flow problems. The effectiveness of the proposed schem
demonstrated by a set of benchmark experiments with single
multiple sedimenting particles. The algorithm is designed to
parallelizable. The resulting implementation on the SGI Orig
2000 parallel computer demonstrates good parallel performa

Table 2 Multiple particle sedimentation on the SGI origin 2000

Processors Time Speedup Efficiency

1 3066 s 1.0 1.00
2 1767 s 1.7 0.85
4 990 s 3.0 0.75
8 570 s 5.3 0.66
Transactions of the ASME



Table 3 Parallel performance of important steps in the nonlinear solver for multiple particle sedimentation

Simulation Step

PÄ1 PÄ8

Time Percent Time Percent Speedup

Matrix assembly 224 11 33 10 6.8
Hierarchical Basis 1010 49 143 41 7.1
Matrix-vector multiplication 452 22 86 25 5.3
GMRES orthogonalization 360 18 83 24 4.3
Total 2046 100 345 100 5.9
t
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of
even on small sized problems. For larger problems, the algori
is expected to have significantly better parallel performance.
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