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SUMMARY

A parallel algorithm is proposed for the solution of narrow banded non-symmetric linear systems. The
linear system is partitioned into blocks of rows with a small number of unknowns common to multiple
blocks. Our technique yields a reduced system de=ned only on these common unknowns which can then
be solved by a direct or iterative method. A projection based extension to this approach is also proposed
for computing the reduced system implicitly, which gives rise to an inner–outer iteration method. In
addition, the product of a vector with the reduced system matrix can be computed e@ciently on a
multiprocessor by concurrent projections onto subspaces of block rows. Scalable implementations of the
algorithm can be devized for hierarchical parallel architectures by exploiting the two-level parallelism
inherent in the method. Our experiments indicate that the proposed algorithm is a robust and competitive
alternative to existing methods, particularly for di@cult problems with strong inde=nite symmetric part.
Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A number of applications in science and engineering give rise to non-symmetric systems
of linear equations. Such systems are extremely large and sparse, and require the use of
multiprocessors to compute the solution within reasonable time. A variety of iterative methods
have been proposed to solve such linear systems (see, e.g., References [1, 2]).
In this paper, we present a new approach to solve a non-symmetric banded linear system

that is sparse within the band by reducing it to a smaller system. The rows of the system
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Figure 1. Balance scheme applied to a matrix with two block rows.

matrix are partitioned into p blocks, and a reduced system is obtained which is de=ned on
a small set of unknowns common to multiple blocks. The reduced system may be solved
using either a direct or iterative method. An extension of the algorithm is also proposed,
in which the reduced system is available only implicitly in the form of a matrix–vector
product. Such computation requires projections onto null spaces of the block rows, and can
be computed concurrently. We exploit this feature to obtain an e@cient parallel formulation
of our algorithm.
Several parallel algorithms have been proposed over the years to solve general linear sys-

tems [1–6]. Our approach is similar to the one described in Reference [7].
The paper is organized as follows: Section 2 outlines the balance scheme for two blocks

followed by a generalization to p blocks. Section 3 provides an upper bound on the condition
number of the reduced system and estimates the storage requirements. In Section 4, we present
a projection-based extension of the balance scheme which does not require the QR factor-
ization step. Parallel implementation is discussed in Section 5. The experiments presented in
Section 6 highlight the advantages of the balance scheme for a wide variety of inde=nite
banded matrices that are sparse within the band. Conclusions are presented in Section 7 and
MATLAB code for the balance scheme is included in Appendix.

2. THE BALANCE SCHEME

We consider the solution of the sparse nonsingular linear system

Ax= b (1)

where A is an n×n banded matrix with bandwidth k. For simplicity, let us partition the rows
into two blocks, as shown in Figure 1.
The linear system can be represented as

(
A1 B1

C2 A2

)
x1�
x2


=

(
f1
f2

)
(2)
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where A1 ∈Rm1×n1 , B1 ∈Rm1×k , A2 ∈Rm2×n2 , and C2 ∈Rm2×k . Furthermore, � denotes the un-
knowns common to both block rows. These block rows give rise to the following set of
underdetermined system of equations

(A1 B1)
(
x1
�

)
= f1 (3)

(C2 A2)
(

�̃
x2

)
= f2 (4)

that can be solved independently. However, the solution of the global system is obtained only
when �= �̃.
Let us denote the submatrices for the block rows as follows:

E1 = (A1; B1)

E2 = (C2; A2)

The general form of the solution of the underdetermined systems (3)–(4) is given as

x= pi +Qiy; i=1; 2

where pi is a particular solution, Qi is a basis for N(Ei), and y is an arbitrary vector. Note
that pi ∈R(ni+k) and Qi ∈R(ni+k)×(ni+k−mi). Thus,

(
x1
�

)
=

(
p1;1
p1;2

)
+

(
Q1;1

Q1;2

)
y1 (5)

(
�̃
x2

)
=

(
p2;1
p2;2

)
+

(
Q2;1

Q2;2

)
y2 (6)

where y1 =Rn1+k−m1 and y2 =Rn2+k−m2 . Clearly, the underdetermined linear systems (3)–(4)
are consistent under the assumption that the submatrices E1 and E2 are full rank. Enforcing
the condition for the solution of the global system:

�(y1)= �̃(y2)

we get

p1;2 +Q1;2y1 = p2;1 +Q2;1y2

As a result, we now solve the reduced linear system

My= g

of order k where M =(Q1;2;−Q2;1); y=(yT1 ; y
T
2 )

T, and g= p2;1 − p1;2.
Balance scheme with two blocks for solving the global system (2) consists of the following

steps:

1. Solve the underdetermined systems (3)–(4) to obtain p1, Q1, p2, and Q2.

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:297–316
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2. Solve the reduced system My= g.
3. Back-substitute y to determine x1, x2, and �.

The =rst step requires the solution of underdetermined systems of equations of the form

Bz= d

where B is an m×n matrix (m¡n) with full row rank. The unique solution of minimum norm
Pz, and the general solution z are given as

N= B+d
z= B+d+ PN(B)u

where B+ =BT(BBT)−1 is the generalized inverse of B, and PN(B) is the orthogonal projector
onto N(B). Furthermore, the projector PN(B) can be expressed using B+ as follows:

PN(B) = I − B+B

There are a number of techniques to obtain the general solution x (see, e.g., References [8, 9]).
Using the sparse QR decomposition approach [10],

BT = (Q1; Q2)
(
R
0

)

where R is an m×m matrix and Q2 is an n×(n − m) matrix. Since Q2 is a basis for N(B),
the general solution is given as

Pz =Q1R−Td

z= Pz +Q2y

The reduced system in the second step can be solved using direct or iterative methods.
A more detailed discussion is presented in the next section.

2.1. Balance scheme with p blocks

The generalization of the balance scheme for p block rows is quite straightforward. Con-
sider an n×n banded matrix A whose rows have been partitioned into p blocks (see, e.g.,
Figure 2). The linear system can be represented in the following block form:




A1 B1

C2 A2 B2

C3 A3 B3
. . . . . .

Cp−1 Ap−1 Bp−1

Cp Ap







x1
�1
x2
�2
...

�p−1

xp




=




f1
f2
f3
...
fp−1

fp




(7)
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Figure 2. Balance scheme applied to a matrix with p block rows.

With p block rows, the columns of A are divided into 2p − 1 blocks, and the unknowns
�i; i=1; : : : ; p − 1, are common to consecutive blocks of the matrix. Let us assume that
Ai ∈Rmi×ni ; Bi∈Rmi×ki , and Ci ∈Rmi×ki−1 . Since A∈Rn×n, we have

n=
p∑

i=1
mi = k +

p∑
i=1

ni

where k =
∑p−1

i=1 ki. The p block rows give rise to the following set of underdetermined system
of equations:

(A1 B1)
(
x1
�1

)
= f1 (8)

(Ci Ai Bi)


�̃ i−1
xi

�i


= fi ; i=2; : : : ; p− 1 (9)

(Cp Ap)
(
�̃p−1
xp

)
= fp (10)

Denoting the submatrices for the block rows by

E1 = (A1; B1)

Ei = (Ci; Ai; Bi); i=2; : : : ; p− 1

Ep = (Cp; Ap)

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:297–316
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the general solution of the ith system is given as

x= pi +Qiy

where pi is a particular solution, Qi is a basis for N(Ei), and y is an arbitrary vector. The
solution of the systems (8)–(10) is

(
x1
�1

)
=

(
p1;1
p1;2

)
+

(
Q1;1

Q1;2

)
y1 (11)


�̃i−1
xi

�i


=


pi;1pi;2
pi;3


+


Qi;1

Qi;2

Qi;3


yi ; i=2; : : : ; p− 1 (12)

(
�̃p−1
xp

)
=

(
pp;1

pp;2

)
+

(
Qp;1

Qp;2

)
yp (13)

where y1 =Rn1+k1−m1 ; yi =Rni+ki−1+ki−mi , and yp =Rnp+kp−1−mp . Since the underdetermined lin-
ear systems (8)–(10) are consistent when the submatrices Ei are full rank, we can enforce
the following conditions on the solution of the global system:

�i(yi)= �̃i−1(yi+1); i=1; : : : ; p− 1

This gives rise to the system of equations

p1;2 +Q1;2y1 = p2;1 +Q2;1y2

pi;3 +Qi;3yi = pi+1;1 +Qi+1;1yi+1; i=2; : : : ; p− 1

which yields the reduced linear system

My= g

Over here, M is a k×k matrix given by

M =




Q1;2 −Q2;1

Q2;3 −Q3;1

Q3;3 −Q4;1
. . . . . .

Qp−1;3 −Qp;1


 (14)

and the right-hand side is given by

g=




p2;1 − p1;2
p3;1 − p2;3

...
pp;1 − pp−1;3



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Thus, the banded linear system (7) may be solved by computing the solutions of the
underdetermined systems (8)–(10) followed by solving the reduced system shown above.
Next, we outline the balance scheme for p blocks.

Algorithm Balance Scheme
1. Solve the underdetermined systems (8)–(10) to obtain pi and Qi; i=1; : : : ; p.
2. Solve the reduced system My = g.
3. Back-substitute y to determine all xi and �i.

The general solution of the underdetermined systems in Step 1 has been discussed previously.
The reduced system in Step 2 can be solved in a number of ways. The matrix M can be
computed explicitly, and the linear system solved using either direct or iterative algorithms.
When using a direct method, it is advantageous to exploit the block bidiagonal structure of
the reduced system. Iterative methods may be used when storage is at a premium. Instead of
explicitly computing M , matrix–vector products with M can be computed at each iteration by
obtaining the residual

r(y)= g−My= �̃(y)− �(y)

and computing My= r(0)−r(y), where r(0)= g. In this case, however, one needs to solve the
underdetermined systems at each iteration. An alternate projection based approach for solving
the reduced system implicitly via an iterative method is outlined in Section 4.

3. ANALYSIS OF BALANCE SCHEME

3.1. Conditioning of the reduced system

The conditioning of the reduced system is critical to the rapid convergence of the iterative
method. Even though experimental evidence in Section 6 suggests that the reduced system
M is favourably conditioned in comparison to the original system A, it is useful to obtain an
estimate of the condition number of M . The following theorem provides such an estimate of
�(M).

Theorem 1. The reduced system M has a condition number which is at most equal to that
of the original system A; i.e.;

�(M)6�(A)

Proof
Consider the QR decomposition ET

i =ZiRi, where Ei is the ith block row of A (Zi has been
chosen to represent the orthogonal factor for consistency with the rest of the paper). The
proof consists of two parts: =rst we show that

�(M)6�(R−TA)

where R=diag(R1; R2; : : : ; Rp); and then we prove that �(R−TA)6�(A).

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:297–316
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For simplicity, we prove the theorem for the case when p=4; generalization of the proof
to arbitrary p is straightforward. Clearly,

Ã=R−TA=




ZT
11 ZT

12

ZT
21 ZT

22 ZT
23

ZT
31 ZT

32 ZT
33

ZT
41 ZT

42




and

ÃÃT =




I ZT
12Z21

ZT
21Z12 I ZT

23Z32

ZT
32Z23 I ZT

33Z41

ZT
41Z33 I




Substituting H1 =ZT
12Z21; H2 =ZT

23Z32, and H3 =ZT
33Z41 in the above matrix, we get

ÃÃT =




I H1

HT
1 I H2

HT
2 I H3

HT
3 I




Symmetric odd-even permutation of the blocks yields

PÃÃTPT =
(

I H
HT I

)

in which

H =
(

H1

HT
2 H3

)

It is easy to show that the eigenvalues of ÃÃT are given by

� = 1± � (15)

where �2 are the eigenvalues of HTH .
In order to relate this to the reduced system, we consider the matrix

Ã TÃ=

Z1ZT
1

Z2ZT
2

Z3ZT
3

Z4ZT
4

=

I − PZ1 PZT
1

I − PZ2 PZT
2

I − PZ3 PZT
3

I − PZ4 PZT
4

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:297–316
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where PZi =N(ZT
i ) such that ZiZT

i = I − PZi PZT
i . The submatrix of block rows and columns of

Ã TÃ that corresponds to the overlapped diagonal blocks is given by

G = 2I −




PZ12 PZT
12 + PZ21 PZ21 PZ21 PZT

23

PZ23 PZT
21

PZ23 PZT
23 + PZ31 PZT

31
PZ31 PZT

33

PZ33 PZT
31

PZ33 PZT
33 + PZ41 PZT

41




= 2I −MMT

The reader should recall that PZi corresponds to Qi in Equations (8)–(10).
Since the eigenvalues of ÃÃ T and Ã TÃ are identical, and the eigenvalues of G are contained

within the spectrum of Ã TÃ, it can be inferred from Equation (15) that

1− �162− �(MMT)61 + �1

where �21 is the largest eigenvalue of HTH . Therefore, the eigenvalues of MMT lie within the
following bounds:

1− �16�(MMT)61 + �1

and the condition number of MMT,

�(MMT)6�(ÃÃ T) (16)

This completes the =rst part of the proof.
Next, we show that �(R−TA)6�(A). Using the singular value decomposition R=USV T,

and the relation AAT =RÃÃ TRT, we have

AAT =USV TÃÃ
T
VSU T =USÂÂ TSU T

implying �(AAT)= �(SÂÂ TS) and �(ÃÃ T)= �(ÂÂ T). Thus,

�(AAT) = max
x;y

[
xTSÂÂ TSx
xTx

· yTy
yTSÂÂ TSy

]

= max
u; v

[
uTÂÂ Tu
uTS−2u

· v
TS−2v
vTÂÂTv

]

¿ �(ÂÂ T)
[
vnS−2vn
v1S−2v1

]

where v1 and vn are the eigenvectors for the largest and smallest eigenvalues of ÂÂ T, respec-
tively. Note that ÂÂ T has a block tridiagonal structure identical to that of ÃÃ T. Furthermore,
a symmetric odd-even permutation of its blocks yields

PÂÂ TPT =
(

I Ĥ
ĤT I

)

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:297–316
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It can be veri=ed that eigenvectors of this matrix take the form (Ĥz; ± �z)T where (�; z) is
an eigenpair of ĤTĤ . Therefore,

v1 =
(
Ĥz1
�1z1

)
; vn =

(
Ĥz1
−�1z1

)

and

vnS−2vn
v1S−2v1

= 1

Therefore, �(AAT)¿�(ÂÂ T), which further implies that

�(ÃÃ T)6�(AAT) (17)

Combining Equations (16) and (17), we have

�(MMT)6�(ÃÃ T)6�(AAT)

which proves the theorem. �

3.2. Storage requirements

The storage requirements of the balance scheme can be computed for a banded system of
size n× n with a lower bandwidth bl and upper bandwidth bu, such that the total bandwidth
b= bl + bu +1. For simplicity, let us assume that the rows are divided into p blocks of equal
size s= n=p. The size of the overlap between consecutive blocks is b− 1= bl + bu.
The matrix ET

i ; i=2; : : : ; p− 1, is a lower triangular banded matrix of size (s+ b− 1)× s
with a lower bandwidth b− 1. The amount of memory needed to store Qi is s(b− 1) and Ri

is sb − (b − 1)2=2, respectively. The storage needed for E1 and Ep is less than this amount.
Therefore, the memory requirement for the QR factorization of ET

i ; i=1; : : : ; p is bounded
by sp(b− 1) + spb ≈ 2nb.

Next, we estimate the storage needed for the reduced system M: M is a block matrix
with p − 1 block rows of size b − 1 each, and p block columns of size b − 1 each except
for the =rst and last block columns that are of sizes bu and bl, respectively. Since M is
a block bidiagonal matrix, the memory required for storing the nonzero elements is given
by 2(p − 2)(b − 1)2 + (bl + bu)(b − 1)= (2p − 3)(b − 1)2, which can be bounded by 2pb2.
Thus, the total storage needed for balance scheme is 2b(n+pb). When Qi are not computed
explicitly, the storage requirements can be reduced drastically. The next section outlines an
alternate approach that computes the reduced system implicitly without the QR factorization
of the block rows.

4. A PROJECTION BASED APPROACH

In general, it is expensive to compute the QR decomposition of the submatrix Ei. In this
section, we propose an extension of the balance scheme that does not require QR decom-
positions. In this approach, the matrix M is never computed explicitly; in fact, the reduced
system is available only implicitly in the form of a matrix–vector product with MMT. As a

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:297–316
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result, an iterative method such as the conjugate gradients method (CG) can be used to solve
the system

MMTŷ= g (18)

where y=MTŷ, instead of the reduced system in Step 2 of Algorithm Balance Scheme.
Consider the block column form of the matrix M in Equation (14)

M =(M1; M2; : : : ; Mp)

where

M1 =
(
Q1;2

0

)
(19)

Mi =




0
−Qi;1

Qi;3

0


 ; i=2; : : : ; p− 1 (20)

Mp =
(

0
−Qp;1

)
(21)

Therefore,

MMT =
p∑

i=1
MiMT

i (22)

In order to compute a matrix–vector product with MMT, we need to show that the matrix
MiMT

i is actually a section of the projector

Pi =QiQT
i = I − E+

i Ei (23)

in which

Qi =


Qi;1

Qi;2

Qi;3


 (24)

is an orthogonal basis for N(Ei): From Equations (19)–(21) and (24) it is clear that the
non-zero blocks of MiMT

i , denoted by M̃iM̃T
i , may be obtained from Qi in the following way

M̃iM̃T
i =

(−Qi;1

Qi;3

)
(−QT

i;1 QT
i;3)

=
(−I 0 0

0 0 I

)
QiQT

i


−I 0

0 0
0 I




In combination with Equation (23), it can be seen that a matrix–vector product with MMT

can be computed as the sum of sections of the projectors Pi; i=1; : : : ; p.

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:297–316
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Due to the unavailability of M; y cannot be computed explicitly. Instead, xi is updated
using the projector Pi and ŷ directly. In particular, Equation (12) requires computation of
Qi;2yi and Qi;3yi in order to update xi and �, respectively. As shown below, this can also be
accomplished using the projectors Pi:

(
Qi;2

Qi;3

)
yi =

(
Qi;2

Qi;3

)
(−QT

i;1 QT
i;3)ŷ

=
(
0 I 0
0 0 I

)
QiQT

i


−I 0

0 0
0 I


ŷ

The projection based approach has the advantage of replacing the QR factorization of block
rows Ei with projections onto the null spaces of Ei. This can lead to signi=cant savings in
storage and computation. The projections can be computed with an inner iterative method,
giving rise to an inner–outer iterative scheme. Furthermore, the convergence of outer iterative
solver can be improved with suitable preconditioners, especially since the matrix MMT is not
as well conditioned as the original reduced system. The experiments in Section 6 are based
on this projection based extension of the balance scheme.

5. PARALLELISM

Parallelism in the balance scheme is available at two levels of the computation. At the coarse
level, p blocks of the linear system give rise to independent problems that can be solved
concurrently. Fine-grain parallelism within each problem allows use of multiple processors as
well. This form of hierarchical parallelism removes the implicit limit of p on the number of
processors. On hierarchical parallel architectures that support two-level parallelism, the balance
scheme can be implemented in a scalable manner.
In Step 1 of the balance scheme, p independent underdetermined systems (8)–(10) are

solved in parallel. Once block rows Ei have been allocated to individual processors, computa-
tion proceeds in parallel without any communication overhead. The particular solution pi and
the null space basis Qi are computed via sparse QR factorization of Ei. Care must be taken to
balance the load on each processor by appropriate choice of row blocks. The reduced system
in Step 2 may be solved in a number of ways. When the size of M is relatively small, a fast
direct algorithm is suitable. Parallel versions of direct solvers for banded systems can also be
used. Alternately, an iterative method can be used in which matrix–vector products with the
reduced system are computed in parallel. This is particularly useful for the projection-based
extension of the balance scheme. Step 3 of the algorithm requires back substitution of yi to
determine xi and �i. The computation consists of matrix–vector products between Qi and yi.
This is also a perfectly parallel stage that has linear speedup.
The projection based extension discussed in the previous section consists of the following

three steps. In Step 1, we solve p underdetermined linear least-squares problems corrrespond-
ing to the p blocks. These least-square problems may be solved either via a direct scheme
such as orthogonal factorization, or iteratively using the CG algorithm on normal equations
with incomplete Cholesky factorization as a preconditioner. In Step 2, we solve the reduced

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:297–316
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system via an iterative scheme such as CG on Equation (18). Note that at each iteration of
the CG method, we need to compute the product of MMT with a vector. This consists of p
projections of the form:

ci =(I − Pi)b; i=1; : : : ; p

This projection–vector product is nothing but the residual of the least-squares problems

min
ci

‖b− ET
i ci‖2

which can be obtained by using the CG scheme. In other words, solving the reduced system
requires solving p independent least-squares problems in each CG iteration. Note that if
we store the incomplete Cholesky factorizations as preconditioners we can achieve greater
e@ciency. In the third step, we again solve p independent least-squares problems to retrieve
the solution of the system Ax=f.
The projection based approach uses the CG scheme to solve the reduced symmetric positive

de=nite system. It is well known that the parallelism available at each iteration is limited only
by the matrix–vector product and a constant number of vector dot products. In contrast, how-
ever, iterative methods for non-symmetric systems such as the generalized minimum residual
method (GMRES) are less favourable to parallelism. This is due to linear growth in the num-
ber of dot products as the number of iterations increases, and often proves to be a bottleneck
in the parallel computation.

6. EXPERIMENTS

In this section, we present results of experiments to solve banded linear systems that are sparse
within the band. The main purpose of these experiments is to highlight the robustness of the
balance scheme. It is also our intention to illustrate the favourable convergence properties
of our approach. With this in view, we have chosen non-symmetric linear systems with
strong inde=nite symmetric components. Such systems prove to be extremely di@cult for
the commonly used Krylov subspace methods. Furthermore, attempts at preconditioning these
systems with conventional incomplete factorizations frequently result in failures.
In each of these experiments, we used the projection-based extension of the balance scheme

described in Section 4. The unpreconditioned CG method was used to solve the normal form
of the reduced system (18). The projections needed for matrix–vector products at each iteration
were computed via an inner iterative method. We used the preconditioned CG method for
normal equations at the inner level, with a preconditioner based on incomplete Cholesky
factors. The amount of =ll allowed is indicated separately in each experiment. The outer
iterations were terminated when the relative residual norm was reduced below a speci=ed
tolerance which has been indicated in the experiments as well. The inner iterations were
terminated when the relative residual norm fell below a tenth of the outer iteration tolerance.

6.1. Partial di6erential equations

The =rst experiment was designed to highlight the advantages of balance scheme over pre-
conditioned Krylov subspace based methods. We consider the following partial diRerential
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Figure 3. Eigenvalues of sample problem of size 516 with #= − 4000 and $=100.

equation:

Su+ $ · ∇u+ #u= f ; in T (25)

u= 0; on U (26)

which is solved on a two-dimensional unit square domain. An unstructured mesh is used to
discretize the domain, and the linear system is obtained by the =nite-element approximation.
The parameters # and $ can be selected to obtain linear systems with desired spectrum. In

fact, the degree of di@culty inherent in these problems can be gauged by the spectrum of the
linear system shown in Figure 3 for a problem with 516 unknowns in which #= − 4000 and
$=100.
Table I presents a comparison of the balance scheme with preconditioned GMRES. We used

a restarted version of GMRES with a Krylov subspace of size 20. GMRES was preconditioned
with ILUT, with a =ll-in of 15 per row and a drop tolerance threshold of 10−4. The matrix was
reordered with reverse Cuthill–McKee algorithm to reduce the bandwidth. The balance scheme
partitions the reordered matrix into four equal sized blocks. To provide a fair comparison,
a =ll-in of 20 was allowed for the incomplete Cholesky factors used by the inner iterative
solver, thereby allowing equal amount of storage for both methods. The iterations for both
the methods were terminated when the relative residual norm reduced below 10−4. The right-
hand side was generated from a known solution. As shown in the table, the balance scheme
converges to acceptable tolerance in each of the cases, demonstrating the robustness of our
approach. On the other hand, GMRES is able to solve only one instance of the problem which
corresponds to a positive de=nite system.
Since the coarse-grained parallelism available in our approach depends on the number of

block rows which can be processed concurrently, it is imperative that the balance scheme
performs adequately on large problems with more blocks. Table II presents the results for
a linear system of order 3101 for which we are able to use eight equal sized blocks. The
rate of convergence of CG for the balance scheme is aRected adversely by the increase
in the number of blocks as well as the increase in the size of the problem. In spite of that,
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Table I. Comparison of balance scheme with four equal sized blocks and preconditioned
GMRES for the sample problem with 516 unknowns.

Order # $ Balance scheme GMRES

Iter Rnorm Iter Rnorm

516 0.0 0.0 25 0.95E-04 3 0.38E-07
516 −800:0 25.0 78 0.67E-04 — —
516 −2000:0 50.0 47 0.18E-04 — —
516 −4000:0 100.0 77 0.57E-05 — —

Table II. Comparison of balance scheme with eight equal sized blocks and preconditioned
GMRES for the sample problem with 3101 unknowns.

Order # $ Balance scheme GMRES

Iter Rnorm Iter Rnorm

3101 0.0 100.0 79 0.91E-04 3 0.49E-06
3101 −1500:0 50.0 180 0.22E-03 — —
3101 −5000:0 100.0 158 0.60E-04 — —
3101 −10000:0 200.0 129 0.28E-04 — —

convergence is achieved within acceptable number of iterations, thus demonstrating robustness
of the approach.

6.2. Examples from Harwell–Boeing matrices

In general, our technique is applicable to banded systems with a small bandwidth relative
to the size of the system. Such systems often arise in two-dimensional problems from thin
domains. In addition, the bandwidth of a matrix can sometimes be reduced by reordering the
rows and columns. The balance scheme is applicable to these reordered matrices as well.
For the sake of illustration, we consider the matrices from the GRENOBLE set in the

Harwell–Boeing collection. The matrix GRE1107, which arises from simulation studies in
computer systems, serves as a typical example of systems that can be reordered to minimize
bandwidth. The sparsity structure of GRE1107 is shown in Figure 4(a). Reordering with
reverse Cuthill–McKee algorithm results in the structure shown in Figure 4(b). The rows are
partitioned into four equal sized blocks. The common unknowns � which are used to de=ne
the reduced system are shown in Figure 4(c).
The spectrum of GRE1107 is shown in Figure 5. Table III presents a comparison of balance

scheme with GMRES preconditioned with ILUT. A Krylov subspace of size 20 was used for
GMRES, a =ll-in of 15 per row was allowed for ILUT, and the drop tolerance was set
to 10−4. For the balance scheme, we allowed a =ll-in of 20 for the incomplete Cholesky
factors used by the inner iterative solver, thereby allowing equal amount of storage for both
methods. Convergence was assumed when the relative residual norm reduced below 10−4.
The right-hand side was generated from a known solution.
Table III presents the iterations needed by the solvers. These results indicate quite clearly

that the balance scheme is a robust algorithm. Furthermore, the iteration count also suggests
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Figure 4. (a) Original sparsity structure of GRE1107, (b) Equal sized block rows
of GRE1107 after reordering to minimize the bandwidth, and (c) Reduced system

de=ned over the unknowns common to consecutive block rows.

Figure 5. Eigenvalues of GRE1107.

that our approach is impervious to the inde=niteness of the system. In contrast, the strong
inde=nite symmetric component of the matrices was mainly responsible for the failure of the
preconditioned GMRES method.

6.3. Comparison with ScaLAPACK

The last experiment demonstrates the parallel performance of the balance scheme. The linear
systems were chosen to be banded Toeplitz matrices with nonzero elements restricted to
the diagonals at a distance −bl;−1; 1, and bu from the main diagonal, where a negative
value indicates subdiagonals. The values assigned to these diagonals were −1; 1; 1, and 1,
respectively. The main diagonal was set to zero to assure inde=niteness of the system.
The spectrum of such a matrix of size 512 with lower and upper bandwidths of 16 each is

shown in Figure 6. The eigenvalues are always con=ned to a square of side 4 units centred at
the origin even when the size or bandwidth of the matrix is varied. For larger bandwidth, the

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:297–316



PARALLEL BALANCE SCHEME FOR BANDED LINEAR SYSTEMS 313

Table III. Convergence of balance scheme with four equal sized blocks for the GRENO-
BLE set of matrices in the Harwell–Boeing collection. Preconditioned GMRES failed to

converge for any of these problems.

Problem Order Iter Rnorm

GRE216A 216 57 0.14E-04
GRE216B 216 61 0.39E-06
GRE343 343 66 0.88E-05
GRE512 512 80 0.56E-05
GRE1107 1107 200 0.72E-04

Figure 6. Eigenvalues of sparse, banded Toeplitz matrix of order 512
with lower and upper bandwidths of 16.

number of horizontal chains increases while the distance between them decreases, eRectively
increasing the condition number of the system. For larger systems with constant bandwidth,
the density of the eigenvalues in the chains increases without altering the layout of the chains.
Table IV illustrates the parallel performance of the balance scheme with sixteen equal sized

blocks on two instances of the above banded Toeplitz matrices. In each case, the bandwidth
is restricted to be approximately 0.8 per cent of the size of the matrix. The last column gives
the ratio of computation time for balance scheme on p processors and ScaLAPACK on 2
processors (in these experiments, the best performance of ScaLAPACK was observed on two
processors).
The balance scheme required 38 iterations to converge to the solution of the system of order

16,384, and 49 iterations to solve the system of order 32,768. The iterations were stopped
when the relative residual was reduced below 10−4 which corresponded to 3-digit accuracy
in each element of the solution vector. The number of iterations would increase for a stricter
tolerance. It should be emphasized, however, that the balance scheme has the ability to exploit
sparsity within the band, making it a competitive alternative to dense banded solvers.
These experiments were performed on the SGI Origin 2000 at the National Computational

Science Alliance at the University of Illinois. Only the projections at each iteration of the
balance scheme were computed concurrently. These projections were computed via an inner
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Table IV. Comparison of parallel balance scheme with ScaLAPACK on banded Toeplitz
matrices that are sparse within the band.

Problem p Balance scheme Speed improvement∗over
ScaLAPACK on 2 processors

N =16 384 2 3:23 s 0.90
bl = 64 4 1:68 s 1.73
bu = 64 8 0:94 s 3.09

16 0:55 s 5.27
N =32 768 2 8:69 s 2.33

b l = 128 4 4:67 s 4.33
bu = 128 8 2:67 s 7.57

16 1:74 s 11.62

∗Speed improvement of the balance scheme was computed over the best parallel perfor-
mance of ScaLAPACK.

preconditioned CG method. We allowed a =ll-in of 4 for the incomplete Cholesky factors used
as preconditioners at the inner level. As expected, the storage requirements of the balance
scheme were much less than that of the ScaLAPACK banded solver.
The balance scheme was parallelized via compiler directives, whereas the ScaLAPACK

banded solver routine used MPI [4]. Although ScaLAPACK can be very eRective in solving
dense matrices with extremely narrow bandwidth, the advantage is quickly lost when solving
sparse matrices with larger bandwidth. Over here, a bandwidth fraction of 1=128 was su@cient
to illustrate this feature of ScaLAPACK.

7. CONCLUDING REMARKS

A new approach has been proposed for the solution of banded linear systems that are sparse
within the band. The balance scheme is a competitive alternative to preconditioned Krylov
subspace methods, especially for matrices with strongly inde=nite symmetric part. It is well
known that the convergence of Krylov subspace methods for such systems is quite unsatisfac-
tory. In contrast, our approach leads to a robust algorithm with convergence properties that
are relatively impervious to the inde=niteness of the linear system.
The proposed algorithm solves a reduced system using direct or iterative methods. Direct

methods are fast but memory intensive since they require explicit computation as well as fac-
torization of the reduced system. On the other hand, iterative methods overcome the problem
of storage at the cost of possible increase in solution time. A projection-based extension to
the balance scheme has also been proposed in which the reduced system is never computed
explicitly. Instead, matrix–vector products with the normal form of the reduced system are
computed using projectors onto the null spaces of blocks of rows of the matrix.
The balance scheme is a scalable parallel algorithm on hierarchical parallel architectures.

The main computation consists of projections using block rows of the matrix which can be
e@ciently parallelized. This feature extends easily to the projection based variant proposed
for problems where the reduced system is available only implicitly. Comparison with parallel
dense banded solvers have also shown the favorable characteristics of the proposed scheme.
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APPENDIX

In this section, we present a simple MATLAB program for the balance scheme. Although
the code is computationally ine@cient, we believe that it can provide a starting point for
developing e@cient code. We have not included the code for the projection-based extension
of the balance scheme since it is substantially more complicated.

function x = balance scheme (A,f)
n = size (A,l); % Order of system
[I,J] = find(A); % Compute upper, lower,
bl = max(I-J); bu=max(J-I); % total bandwidths
bw=bl+bu+1;
ptr=1+ceil(linspace(0,n,p+1))’; % Block row pointer
k=(bw-1) * (p-1); M=zeros(k); % Initialize reduced
g=zeros (k,1); % system: M,g
for i=1:p,
r=ptr(i):ptr(i+1)-1; % Block row, column indices
c=max(ptr(i)-bl,1):min(ptr(i+1)-1+bu,n);
Ei=A(r,c); fi=f(r);
[mi,ni]=size(Ei);
[Q,R]=qr(Ei’); % QR factorization
Q1=Q(:,1:mi); Q2=Q(:,mi+1:ni); R=R(1:mi,1:mi);
pi=Q1 * (R’\fi);
rr=(bw-1) * (i-1)+1:(bw-1) * i; % Block row index
rr2=rr-(bw-1); % Previous block row index
if (i==1), % Compute M-blocks
cc=1:bu; % and g-blocks
M(rr,cc)=Q2(ni-bw+2:ni,:);
g(rr)=g(rr)-pi(ni-bw+2:ni);

elseif (i<p),
cc=bu+(bw-1) * (i-2)+1:bu+(bw-1) * (i-1);
M(rr,cc)=Q2(ni-bw+2:ni,:);
M(rr2,cc)=-Q2(1:bw-1,:);
g(rr)=g(rr)-pi(ni-bw+2:ni);
g(rr2)=g(rr2)+pi(1:bw-1);

else
cc=k-bl+1:k;
M(rr2,cc)=-Q2(1:bw-1,:);
g(rr2)=g(rr2)+pi(1:bw-1);

end;
end;

Y=M\g; % Solved reduced system
x=zeros(n,1); % Initialize solution x
for i=1:p, % Compute x-blocks

r=ptr(i):ptr(i+1)-1; % Block row, col indices
c=max(ptr(i)-bl,1):min(ptr(i+1)-1+bu,n);
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Ei=A(r,c); fi=f(r); % Block row, block rhs
[mi,ni]=size(Ei);
[Q,R]=qr(Ei’); % QR factorization
Q1=Q(:,1:mi); Q2=Q(:,mi+1:ni); R=R(1:mi,1:mi);
pi=Q1 * (R’\fi); % Particular solution
if (i==1), cc=1:bu; % y-index
elseif (i<p),
cc=bu+(bw-1) * (i-2)+1:bu+(bw- 1) * (i-1);

else cc=k-bl+1:k; end;
x(c)=pi+Q2 * y(cc); % Update x-block

end;
return;
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