
Parallel algorithms for indefinite linear systems

Ahmed H. Sameh a,1, Vivek Sarin b,*,2

a Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
b Department of Computer Science, Texas A&M University, College Station, TX 77843, USA

Abstract

Saddle-point problems give rise to indefinite linear systems that are challenging to solve via

iterative methods. This paper surveys two recent techniques for solving such problems arising

in computational fluid dynamics. The systems are indefinite due to linear constraints imposed

on the fluid velocity. The first approach, known as the multilevel algorithm, employs a hier-

archical technique to compute the constrained linear space for the unknowns, followed by

the iterative solution of a positive definite reduced problem. The second approach exploits

the banded structure of sparse matrices to obtain a different reduced system which is deter-

mined by the unknowns common to adjacent block rows. Although the reduced system in this

approach may still be indefinite, the algorithm converges to the solution at an accelerated rate.

These methods have two desirable characteristics, namely, robust numerical convergence and

efficient parallelizability. The paper presents the performance of these methods for incom-

pressible particulate flow problems on a shared-memory parallel architecture. � 2002 Else-

vier Science B.V. All rights reserved.

Keywords: Parallel computing; Saddle-point problems; Preconditioning; Iterative methods; Computa-

tional fluid dynamics

www.elsevier.com/locate/parco

Parallel Computing 28 (2002) 285–299

*Corresponding author.

E-mail addresses: sameh@cs.purdue.edu (A.H. Sameh), sarin@cs.tamu.edu (V. Sarin).
1 This work has been supported in part by NSF under the grants NSF-CTS 9873236 and NSF-CCR

9972533.
2 This work has been supported in part by NSF under the grants NSF-CCR 9984400, NSF-CCR

9972533, and NSF-CTS 9873236.

0167-8191/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-8191 (01 )00140-5



1. Introduction

Efficient solution of linear systems of equations is a critical component of most
scientific simulations. Linear systems that arise from the discretization of partial dif-
ferential equations are typically large and sparse. The most effective solution strategy
involves an iterative algorithm with a preconditioning step that ensures rapid conver-
gence to the solution. Preconditioning may be viewed as a way to provide a cheap
approximation to the solution to assist in convergence of the iterations. It has been
observed that the performance of iterative methods and preconditioners is highly
sensitive to the eigenvalues of the linear system. For instance, well-conditioned
systems such as diagonally dominant systems can be solved quickly by many iterative
methods. Indefinite linear systems are among the most challenging systems of equa-
tions. These systems are characterized by eigenvalues that lie on both sides of the
imaginary axis. Well-known iterative methods can have arbitrarily slow convergence,
and commonly used preconditioners may not be useful either. The reader is referred
to [1,9] for a detailed description of preconditioned iterative methods.

In this paper, we focus on indefinite linear systems of equations that arise from
incompressible fluid simulations. The Navier–Stokes equations consist of the mo-
mentum equation which conserves fluid momentum and the continuity equation
which enforces incompressibility. The incompressibility condition is satisfied via a
set of linear constraints, ensuring that the fluid velocity is divergence-free. The result-
ing linear system is a saddle-point system which is indefinite due to the constraints.
Exploiting the block structure of these systems, one can devise effective iterative al-
gorithms that circumvent the problem of indefiniteness by solving the positive defi-
nite Schur-complement of the saddle-point system. These techniques are known as
Uzawa methods. Several researchers have proposed variants of this basic iterative
scheme [2,8] and preconditioners that exploit the block structure in a similar way
[13,14].

Our approach is based on the construction of an explicit basis that satisfies the
incompressibility constraints. A divergence-free velocity is computed by multiplying
an arbitrary vector with the matrix that represents the basis. This yields a reduced
system defined on the subspace of divergence-free velocity. The reduced system is
solved via an iterative method such as the method of conjugate gradients (CGs) or
generalized minimum residual method (GMRES). Appropriate choice of the diver-
gence-free basis accelerates the convergence of these methods by acting as a precon-
ditioner. We outline a hierarchical technique to compute this basis that allows
computation and application of the matrix to a vector in time proportional to the
size of the saddle-point linear system. We also describe the parallelization of the
computation of the hierarchical basis and matrix–vector products with it. Details
of the algorithm are available in [11,12].

The use of divergence-free basis has been proposed by several researchers (see, e.g.
[4,15]). There are two features that distinguish our approach. First, the basis is com-
puted using linear algebraic techniques which allows our scheme to be applied to a
variety of discretization schemes including finite difference and finite element meth-
ods. Secondly, the hierarchical technique is designed to produce well-conditioned

286 A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299



basis that accelerate the convergence of the iterative methods in particular instances
of the problem.

The hierarchical divergence-free basis approach has been applied to particulate
flows [5] in which one needs to solve a coupled system of equations consisting of
Navier–Stokes equations for the incompressible fluid and Newton’s equation of mo-
tion for the rigid particles suspended in the fluid. We also discuss an alternate ap-
proach that solves the Schur-complement system defined either on the pressure
unknowns or on the particle variables. In this scheme, the matrix is reordered into
a narrow banded sparse matrix and partitioned into several block rows. A reduced
system is solved for the unknowns common to consecutive blocks via an iterative
method. Each iteration requires concurrent projections onto subspaces defined by
the block rows of the matrix. Parallelism at the block level as well as within each pro-
jection step can be exploited to obtain an efficient parallel algorithm for these saddle-
point systems. The algorithm is described in greater detail in [3] and its application to
particulate flows is outlined in [10].

The paper is organized as follows. Section 2 describes a class of indefinite linear
systems known as saddle-point problems. The multilevel algorithm for saddle-point
systems arising in incompressible fluid simulations is outlined in Section 3. In Section
4, we present the extension of the multilevel algorithm to particulate flows. This is
accompanied by an alternate scheme to solve the narrow banded systems arising
in such problems. We also present experimental results for the numerical and parallel
performance of both these schemes. Conclusions are presented in Section 5.

2. Saddle-point problems

Saddle-point problems are a class of linear systems that have indefinite matrices.
We consider systems of the form

A B
BT 0

� �
u
p

� �
¼ f

g

� �
; ð1Þ

where A is an n� n symmetric positive definite or real positive matrix, and BT is a
k � n matrix of constraints imposed on u. Both A and B are large and sparse.

Saddle-point systems occur in a number of different problems including fluid
problems, interior point methods, electrostatics, elasticity, etc. The common feature
in all these problems is the set of linear constraints on the unknown u that introduces
negative eigenvalues in the system.

In this paper, we focus on the solution of saddle-point systems arising from
Navier–Stokes equations applied to incompressible fluid flows. The Navier–Stokes
equations for incompressible, viscous flow in region X with boundary oX are

ou

ot
þ u � ru ¼ �rp þ 1

R
Du; r � u ¼ 0 in X; ð2Þ

where p ¼ pðx; tÞ is the pressure, R is the Reynolds number, u ¼ uðx; tÞ is the three-
dimensional velocity vector at x 2 R3. The velocity u is assumed to be zero on the
domain boundary. The first equation is an expression of the law of conservation of

A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299 287



momentum, while the second enforces incompressibility of the fluid. This is a non-
linear system of equations with linear constraints.

Discretization and linearization of (2) gives the saddle-point system (1), where BT

is the discrete divergence operator, and A is the discrete counterpart of the terms
with u: A ¼ M=Dt þ N þ L=R. Over here, M is the mass matrix, L is the Laplace ma-
trix, and N is the nonsymmetric matrix arising from the convection term. The time
step Dt and the Reynolds number R are scalar quantities. When operator-splitting is
used to separate the linear and nonlinear terms, we obtain a generalized Stokes prob-
lem with a symmetric positive definite A: A ¼ M=Dt þ L=R. For more details, the
reader is referred to a standard text on computational fluid dynamics, e.g. [7].

3. A multilevel algorithm

The saddle-point system (1) can be solved by computing the following decompo-
sition of B

PTBZ ¼ D
0

� �
; ð3Þ

where P is a nonsingular n� n matrix, D is a k � k diagonal matrix, and Z is a k � k
orthogonal matrix. When P is orthogonal, this decomposition is identical to the
singular value decomposition (SVD) of B. Since an orthogonal P is prohibitively
expensive to compute and store, the decomposition only requires P to be nonsin-
gular.

Suppose P ¼ ½P1; P2�, where P1 consists of the first k columns and P2 consists of the
last n� k columns of P. The linear system (1) is rewritten as

after multiplication of first block with PT and the second block with ZT, and re-
placing the unknowns u with ûu, where u ¼ P ûu. With this transformation, the solution
is written as

ûu1 ¼ D�1ZTg; ûu2 ¼ ½PT
2 AP2��1PT

2 ½f � AP1ûu1�; p ¼ ZD�1PT
1 ½f � APûu�:

Since D is a diagonal matrix, the only time-consuming step is the solution of the
reduced system

PT
2 AP2ûu2 ¼ PT

2 ½f � AP1ûu1�: ð4Þ
We have to use an iterative method since the matrix PT

2 AP2 is expensive to compute
and store explicitly. The matrix–vector product with PT

2 AP2 is computed as a series of
products with the individual matrices P2, A, and PT

2 in that order.
The success of this method depends upon the choice of P. Ideally, Pmust have the

following characteristics: (i) P must be computed in OðnÞ operations; (ii) P must re-
quire only OðnÞ memory for storage; (iii) matrix–vector products with P must be

288 A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299



computed in OðnÞ operations; (iv) these matrix–vector products must be paralleliz-
able. In addition, the reduced system matrix PT

2 AP2 must be well conditioned so that
the iterative method converges rapidly. Such a P is said to implicitly precondition the
reduced system.

3.1. A hierarchical scheme for computing the decomposition

In this section, we describe a hierarchical technique to compute the matrix P with
the desirable properties listed above. For brevity, we provide only an outline of the
multilevel algorithm in the context of a simple 4� 4 mesh. More details are available
in [11,12].

The structure of the discrete gradient operator matrix B is exploited to obtain a
representation of B on a hierarchy of meshes. Linear transformations are used to
convert B to a sequence of gradient operators on each of the coarser meshes. The
submatrix P2 turns out to be a well-conditioned basis for NðBTÞ, and preconditions
the reduced system for the case when A is well conditioned as well. Although P is a
dense matrix, we can represent it as a sequence of k sparse matrices, where k is the
number of levels in the hierarchy of coarse meshes. This representation allows stor-
age of P in OðnÞ space and computation of matrix–vector products with P in OðnÞ
steps.

The rows and columns of the discrete gradient operator matrix B correspond to
the edges and nodes, respectively, of the underlying mesh. A coarse level mesh can
be obtained by combining adjacent nodes into a single node and coalescing edges be-
tween the same pair of coarse level nodes. This coarsening step is represented as a
linear transformation on B using matrices P ð1Þ and Zð1Þ such that

P ð1ÞTBZð1Þ ¼
Dð1Þ 0

0 Bð1Þ

0 0

2
64

3
75; ð5Þ

where Bð1Þ is analogous to the discrete gradient operator on a coarser mesh. Part of
P ð1Þ as well as the matrices Zð1Þ and Dð1Þ are obtained from the SVD of individual
subdomain matrices, where each subdomain corresponds to a group of nodes that
combine to form a coarse level node. Subsequent transformations to obtain coarser
meshes do not affect any row or column other than those in the second block row
and second block column containing Bð1Þ.

As an example, let us consider the Poisson equation with Neumann boundary
conditions on a two-dimensional unit square X

�r � ru ¼ f in X;
ou
on

¼ 0 on oX:

To derive a saddle-point problem, we introduce the gradient as an unknown func-
tion,

vþru ¼ 0; r � v ¼ f :

A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299 289



For simplicity, we use a uniform grid to discretize the domain. The unknowns for u
are computed at the nodes of the mesh. The unknowns for v are computed at the
midpoint of the edges, and are oriented along the edges. The resulting linear system
is a saddle-point problem with the following form

I B

BT 0

" #
x

y

" #
¼

0

b

" #
:

Fig. 1 shows the coarsening of a 4� 4 uniform mesh. The nodes are clustered into
four groups: G1 ¼ f1; 2; 5; 6g, G2 ¼ f3; 4; 7; 8g, G3 ¼ f9; 10; 13; 14g, and G4 ¼ f11;
12; 15; 16g. These groups define partitions or subdomains. Solid edges lie in the in-
terior of these partitions, while dashed edges go across partitions. Each partition is
coarsened into a single node at the next level. The nodes colored grey in the fine mesh
are retained in the coarse mesh. The edges between two groups Gi and Gj are col-
lected into a single edge between nodes i and j in the coarse mesh.

To compute the transformation from the 4� 4 mesh to the 2� 2 mesh, we reorder
the nodes according to the groups assigning a natural ordering within a group. The
edges are ordered as follows: interior edges are ordered first, according to the groups,
followed by edges between partitions. All edges between a particular pair of parti-
tions are numbered consecutively. With this new ordering, the gradient matrix B
has the following form:

B ¼ Binterior

Bexterior

� �
;

where

Fig. 1. The coarsening of a 4� 4 mesh to a 2� 2 mesh.

290 A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299



Binterior ¼

B1

B2

B3

B4

2
664

3
775; Bexterior ¼

�C1 C2

�C1 C2

�C3 C4

�C3 C4

2
664

3
775;

in which

Bi ¼

�1 1 0 0
0 0 �1 1

�1 0 1 0
0 �1 0 1

2
664

3
775; i ¼ 1; . . . ; 4

and

C1 ¼
0 1 0 0

0 0 0 1

� �
; C2 ¼

1 0 0 0

0 0 1 0

� �
; C3 ¼

0 0 1 0

0 0 0 1

� �
;

C4 ¼
1 0 0 0

0 1 0 0

� �
:

Since Binterior is a block diagonal matrix with four identical blocks, the SVD matrices
in the decomposition Binterior ¼ USV T are also block diagonal, with the ith block
having the form

Ui ¼
1

2

�1 1 �1 1

1 1 �1 �1

�1 1 1 �1

1 1 1 1

2
6664

3
7775; Si ¼

2 ffiffiffi
2

p ffiffiffi
2

p

0

2
6664

3
7775;

Vi ¼
1

2

1 �
ffiffiffi
2

p
0 1

�1 0 �
ffiffiffi
2

p
1

�1 0
ffiffiffi
2

p
1

1
ffiffiffi
2

p
0 1

2
6664

3
7775:

The transformation of B into Bð1Þ is accomplished by multiplying B with appropriate
matrices as shown below:

I
�BexteriorVSyI

� �
UT

I

� �
Binterior

Bexterior

� �
V ¼ S

BexteriorV ðI � SySÞ

� �
:

The matrix I � SyS is a zero matrix except for ones on the diagonal in those positions
that are zero in S. Therefore, BexteriorV ðI � SySÞ is a matrix with nonzeros in ex-
actly those four columns that have a zero singular value in S. The structure of
BexteriorV ðI � SySÞ is given as

BexteriorV ðI � SySÞ ¼ 1

2

�F F 0 0
0 0 �F F

�F 0 F 0
0 �F 0 F

2
664

3
775; F ¼ 0 0 0 1

0 0 0 1

� �
:

A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299 291



Multiplying the above matrix with the orthogonal matrix

QT ¼

Q1

Q2

Q3

Q4

2
664

3
775; Qi ¼

1ffiffiffi
2

p 1 1
1 �1

� �
; i ¼ 1; . . . ; 4;

we get a matrix whose nonzero rows and columns are the coarse grid gradient op-
erator for the 2� 2 mesh

Bð1Þ ¼ 1ffiffiffi
2

p
�1 1 0 0
0 0 �1 1

�1 0 1 0
0 �1 0 1

2
664

3
775:

Reordering of rows to move the zero rows to the bottom gives the required trans-
formation (5) in which

P ð1ÞT ¼ I
QT

� �
I

�BexteriorVSyI

� �
UT

I

� �
; Zð1Þ ¼ V ;

and Dð1Þ is identical to S with the zero columns removed.
A larger mesh is coarsened by repeated application of this process. Recursive

coarsening of the mesh to a single node gives a sequence of transformations that col-
lectively represent the hierarchical decomposition of B. Thus, after k levels of coars-
ening, where k ¼ Oðlog nÞ for typical meshes, we have

P ¼ P ð1ÞP ð2Þ � � � P ðkÞ; Z ¼ Zð1ÞZð2Þ � � � ZðkÞ; ð6Þ

such that the transformation at the jth level is given by

~PP ðjÞTBðj�1Þ ~ZZðjÞ ¼
DðjÞ 0
0 BðjÞ

0 0

2
4

3
5; j ¼ 1; . . . ; k:

The matrices P ðjÞ and ZðjÞ equal the identity except for diagonal blocks with ~PP ðjÞ and
~ZZðjÞ, respectively, that act on Bðj�1Þ.

We mention that the above technique extends easily to gradient matrices obtained
from finite element method on unstructured meshes. The details are available in
[11,12].

3.2. Parallelism in the multilevel algorithm

The hierarchical representation of P generated by the multilevel algorithm allows
an efficient parallel formulation. The matrix P is never explicitly computed or stored;
it is available as a product of a sequence of sparse matrices associated with each level

292 A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299



in the hierarchy. At each iteration, a matrix–vector product is computed by multiply-
ing the given vector with the set of matrices P ðjÞ, j ¼ 1; . . . ; k, that represent P. The
structure of this computation is similar to the product of a sequence of Laplace
matrices defined on a hierarchy of meshes.

The parallelization of a matrix–vector product is quite straightforward. For a
multiprocessor with p processors, the domain is partitioned into p subdomains.
The unknown variables associated with the ith subdomain are allocated to the ith
processor. A processor is responsible for computing the product with the local sub-
matrix that resides with the processor. A matrix–vector product is computed in three
phases: the first phase consists of local matrix–vector products. In the second phase,
data are communicated between processors owning adjacent subdomains. Finally,
the communicated data are processed by the receiving processor. (See, e.g. [9] for
a description of parallel matrix–vector products.)

Overhead in the form of communication during the second phase causes loss of
parallel efficiency. However, there is no way to avoid it since the connectivity of
the mesh across subdomains forces communication of data between processors. For-
tunately, high parallel efficiency can be obtained if the communication to computa-
tion ratio is relatively small. This is indeed the case when using moderate number of
processors to solve a large problem.

Since the matrices P ðjÞ are defined on a hierarchy of meshes of exponentially re-
ducing size, parallel efficiency diminishes for coarse level matrix–vector products.
Fortunately, the communication overhead for the finest mesh is comparable to the
total communication overhead for the remaining levels in the hierarchy. Therefore,
the overall parallel efficiency is only a slight reduction from that of a single matrix–
vector product with the finest level matrix. The efficiency can be restored further by
‘‘coarsening’’ the processor grid along with coarsening the mesh (for details, see [11]).

The execution time for a matrix–vector product with an n� n matrix P on a par-
allel computer with p processors is given by

T ðn; pÞ ¼ tc
n
p

�
þ log p

�
þ ts log nþ tb

ffiffiffi
n
p

r
þ th

ffiffiffi
p

p
;

where tc is the unit computation time, ts is communication startup time, tb is byte
transfer time, and th is the per-hop time. The speed improvement over a uniprocessor
matrix–vector product can be written as

Sðn; pÞ ¼ T ðn; 1Þ
T ðn; pÞ ¼ p 1

�
þ p log n

n
� ts
tc
þ

ffiffiffi
p
n

r
� tb
tc
þ
p

ffiffiffi
p

p

n
� th
tc

��1

:

The above analysis uses a linear cost model to estimate parallel performance (see,
e.g. [6]). For a fixed number of processors, increase in the problem size yields pro-
portionally higher speedup. Moreover, for fixed efficiency or speedup, the problem
size needs to be increased proportionally with the number of processors, suggesting
good scalability. The algorithm also has a favorable ratio of computation to data
transfer that leads to good efficiency.

A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299 293



4. Particulate flow simulations

4.1. Multilevel algorithm for particulate flows

The multilevel algorithm has been applied successfully to the simulation of rigid
particles in viscous incompressible flows [5]. Along with Navier–Stokes equations for
fluid, we need to solve equations for Newton’s laws for the particles

M
dU

dt
¼ F; dX

dt
¼ U; u ¼ Uþ r� X; ð7Þ

where X and U are the generalized position and velocity vectors of the particles,
respectively, that include both translational and angular components, M is the
generalized mass matrix, and F is the vector of forces and torques acting on the
particles. The last equation couples the fluid velocity at the surface of a particle with
the particle velocity by imposing a no-slip condition. In this equation, r denotes the
vector from the center of the particle to a point on its surface, and X denotes the
angular velocity of the particle.

To understand the structure of the linear system in particulate flows, let us con-
sider two matrices: the first, denoted by J, represents the fluid and particle systems
decoupled from each other, and the second, denoted by Q̂Q, provides the coupling be-
tween the fluid and particles at the particle surface

J ¼

AI AIC BI 0
ACI AC BC 0
BT
I BT

C 0 0
0 0 0 Ap

2
664

3
775; Q̂Q ¼

I 0 0
0 Q 0
0 0 I
0 I 0

2
664

3
775:

Here, the subscripts I and C represent the submatrices for the fluid interior and the
particle surface, respectively, and Ap represents the particle matrix. The fully coupled
system matrix is

and the corresponding linear system has the form

ð8Þ
This is also a saddle-point problem with a structure identical to (1). Since the matrix
½BT

I ;B
T
CQ� is similar to the discrete divergence matrix BT, the decomposition (3) can be

computed as discussed earlier. Thus, the solution process remains unchanged in the
presence of particles.

294 A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299



We conducted simulations to mimic the sedimentation of particles in water in a
vertical channel. The simulations were conducted for a two-dimensional channel
with particles that were two-dimensional circular disks with diameter 0.25 in. and
specific gravity 1.14. All the particles were arranged in an array at the top of the
channel before being released.

Table 1 shows the performance of the multilevel algorithm for 1920 sedimenting
particles on 16 processors of the SGI Origin 2000. We have reported the average time
taken for critical steps in the simulation process, namely, assembly of the linear sys-
tem using the finite element method, preconditioning via the hierarchical basis for di-
vergence-free velocity including computation of P and matrix–vector products with
P, matrix–vector product with A, and orthogonalization with respect to the Krylov
subspace in GMRES. The size of a typical linear system was 250,472 with
4,784,928 nonzeros. The 16-processor performance is compared to that on 4 proces-
sors.

Table 2 shows the performance of the multilevel algorithm for 3840 sedimenting
particles on 32 processors of the SGI Origin 2000. The size of a typical linear system
was 501,120 with 9,566,808 nonzeros. In this case, the 32-processor performance is
compared to that on 4 processors.

The experiments indicate that the important steps in the simulation are scalable
and efficient even on a moderate sized problem. The most time-consuming step is

Table 2

Performance of the multilevel algorithm for 3840 sedimenting particles

Linear system solver stage p ¼ 4 p ¼ 32

Time Time T4=T32

Assembly 105 15 7.0

Preconditioning 3842 362 10.6

Matvec 98 14 7.0

Orthog. (GMRES) 50 13 3.8

Total 4095 404 10.1

Table 1

Performance of the multilevel algorithm for 1920 sedimenting particles

Linear system solver stage p ¼ 4 p ¼ 16

Time Time T4=T16

Assembly 65 17 3.8

Preconditioning 903 234 3.9

Matvec 186 49 3.8

Orthog. (GMRES) 23 8 2.9

Total 1177 308 3.8

A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299 295



the preconditioning step which demonstrates superlinear speedup. Precondition-
ing time is mainly spent in computing SVD of small matrices and computing dense
matrix–vector products with small matrices. These are inherently cache-friendly
operations that improve the performance dramatically as the processors are in-
creased. This superlinear speedup is seen despite the fact that the effectiveness of
the preconditioner used in the present code degrades as the number of processors
are increased. In principle, one can use the same preconditioner on multiple proces-
sors without any increase in iterations, but with marginal decrease in efficiency (see,
e.g. [11] for a scalable implementation of the preconditioner). The decrease in paral-
lel performance is also an artifact of the partitioning strategy which aims at good
load balance at the expense of preconditioning. The performance of the orthogonal-
ization step in GMRES may be further improved by using a more efficient scheme.

It should be noted that these experiments define speedup as the improvement in
speed over the best implementation of the algorithm on 4 processors. This implies
that although the parallel algorithm demonstrates good speed improvement on mul-
tiple processors, the speedup may be modest because of a less effective preconditioner
that slows down the convergence. We believe that this is the most realistic metric for
any parallel algorithm.

4.2. A Schur-complement algorithm

An alternate approach for (8) solves the Schur-complement via an iterative
method. The matrix is reordered to get the following system

ð9Þ

Next, we reorder the velocity unknowns uI and pressure unknowns p such that ve-
locity and pressure unknowns for each node are ordered consecutively. The reor-
dered matrix is expressed in a block form

C E
F T G

� �
x
y

� �
¼ a

b

� �
;

where C corresponds to the saddle-point matrix in the upper left corner of the system
(9). When a bandwidth reducing ordering is used, C takes the form of a narrow
banded matrix. The bandwidth depends on a number of factors including the di-
mension of the problem, number of particles, etc. In the particulate flow experi-
ments, C is a narrow banded matrix, giving the appearance of an arrow matrix to the
above system.

From this point onwards, we can follow two strategies depending upon the num-
ber of unknowns for the particles, i.e., the size of G. When G is small compared to C,
we solve the Schur-complement system for y

½G� F TC�1E�y ¼ ½b� F TC�1a�:

296 A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299



Since E has small number of columns as well, we solve the system CZ ¼ E with
multiple right-hand sides to obtain Z. The Schur-complement system is formed
explicitly by computing G� F TZ, and solved via a direct or iterative method. Once y
is known, we solve the following system for x

Cx ¼ ½a� Ey�:
The situation is reversed if the number of particle unknowns is large. In this case,

we solve the Schur-complement system

½C � EG�1F T�x ¼ ½a� EG�1a�
to get x, and then solve

Gy ¼ ½b� F Tx�
to recover y.

The Schur-complement systems are solved via an iterative method such as
GMRES. The most expensive step is the solution of a saddle-point problem of the
form Cw ¼ b at each iteration. This approach is feasible only if one has a fast parallel
method to solve these saddle-point problems.

We can use a simple scheme to partition the rows of an n� n narrow banded ma-
trix into two blocks. These two blocks represent two underdetermined systems of
equations that can be solved concurrently. To obtain the overall solution, however,
the unknowns common to these blocks must be evaluated to the same value by both
underdetermined systems. This gives rise to a reduced system that must be solved to
obtain a consistent solution to the two systems. Such a solution is also the solution of
the overall system. Details of this approach are available in [3].

In general, one can partition the matrix into p blocks, and solve the corresponding
underdetermined systems. A reduced system is generated implicitly, defined only on
unknowns common to consecutive block rows, and is solved by an iterative method
in which matrix–vector products are computed directly from appropriate projec-
tions. The p-way parallelism at the block level can be exploited to get high efficiency
on a parallel architecture. Although p is limited by the bandwidth of the system, one
can use multiple processors for each underdetermined system and the associated pro-
jection to further increase parallelism. The resulting algorithm is a scalable parallel
solver for the saddle-point problems.

Table 3 illustrates the performance of this approach for the solution of the saddle-
point problem (1). The matrix A is symmetric positive definite. The saddle-point sys-
tem is symmetric because C ¼ B. The Schur-complement system

BTA�1Bp ¼ g � BTA�1f

was solved by the CG method which was preconditioned with incomplete Cholesky
factorization of BD�1BT, where D ¼ diagðAÞ. At each iteration, our scheme was used
to solve linear systems of the form Ax ¼ b. The projections were computed in parallel
using preconditioned CG algorithm as well. The first part of Table 3 shows the
performance of our scheme on a typical instance of the system Ax ¼ b. In the second
part, we present results for the solution of the Schur-complement system.

A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299 297



The matrix A is of size 17,025 with bandwidth 1450 and 362,641 nonzeros whereas
the matrix BTA�1B is of size 2199. The rows of A were partitioned into 8 blocks re-
sulting in a reduced system of size 3680. These experiments show almost linear speed
improvement, with isolated superlinear performance due to cache effects. The 16-
processor case partitioned the rows into 16 blocks resulting in a reduced system of
size 5508. The performance degradation is explained by the fact that increase in pro-
cessors without proportional increase in the problem size causes decrease in parallel
performance. Since additional parallelism is available in computing individual pro-
jections, parallel speedup can be improved substantially by assigning multiple pro-
cessors to each block row. In other words, one may use 16 processors for a matrix
partitioned into 8 block rows by assigning two processors to each block. This is
clearly more advantageous for cluster-based multiprocessors.

5. Concluding remarks

In this paper, we have discussed two algorithms for the solution of indefinite sad-
dle-point problems arising in incompressible fluid simulations. These techniques
have been successfully applied to the simulation of particulate flows in which a
coupled system of equations is solved for the fluid and particle system. The first al-
gorithm uses a hierarchical basis for divergence-free velocity to satisfy the incom-
pressibility constraints that are the cause of indefiniteness. The resulting reduced
system is solved by suitable iterative methods such as CG or GMRES. Appropriate
selection of the basis can act as a preconditioner that accelerates the convergence of
the iterative scheme. The preconditioning action of the well-conditioned hierarchical
basis is very effective for simulations with small time-steps in which the saddle-point
systems have a diagonally dominant nonzero diagonal block. The second algorithm
circumvents the indefiniteness of the saddle-point system by solving the reduced sys-
tem known as the Schur-complement system that is defined either on pressure un-
knowns or the particle unknowns. Both these algorithms have been parallelized
for shared-memory architectures, and have demonstrated good parallel efficiency
on modest number of processors. Analysis of the parallel formulation indicates that
the performance of these algorithms will scale for larger number of processors when
the problem size is increased proportionally.

Table 3

Performance of the Schur-complement approach for solving the particulate flow linear systems [10]

Linear system p ¼ 1 p ¼ 2 p ¼ 4 p ¼ 8 p ¼ 16

Ax ¼ b Time 9.1 4.0 2.0 1.2 0.9

Speed improv. 2.3 4.6 7.6 10.1

Efficiency 1.1 1.1 0.9 0.6

BTA�1Bp ¼ g Time 109.4 55.4 28.9 15.1 12.3

Speed improv. 1.9 3.8 7.3 8.9

Efficiency 1.0 0.9 0.9 0.6

298 A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299



References

[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.

[2] R. Bank, B. Welfert, H. Yserentant, A class of iterative methods for solving saddle point problems,

Numer. Math. 56 (1990) 645–666.

[3] G.H. Golub, A.H. Sameh, V. Sarin, A parallel balance method for sparse linear systems, Numer.

Linear Algebra Appl. 8 (2001) 297–316.

[4] K. Gustafson, R. Hartman, Divergence-free bases for finite element schemes in hydrodynamics,

SIAM J. Numer. Anal. 20 (4) (1983) 697–721.

[5] M.G. Knepley, V. Sarin, A.H. Sameh, Parallel simulation of particulate flows, in: Lecture Notes in

Computer Science, vol. 1457, Springer, Berlin, 1998, pp. 226–237.

[6] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing: Design and

Analysis of Algorithms, Benjamin Cummings, Menlo Park, CA, 1993.

[7] R. Peyret, T. Taylor, Computational Methods for Fluid Flows, Springer Series in Comp. Physics,

Springer, Berlin, 1983.

[8] T. Rusten, R. Winther, A preconditioned iterative method for saddle-point problems, SIAM J.

Matrix Anal. Appl. 13 (3) (1992) 887–904.

[9] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.

[10] A.H. Sameh, V. Sarin, Hybrid parallel linear system solvers, Int. J. Comp. Fluid Dyn. 12 (1999)

213–223.

[11] V. Sarin, Efficient iterative methods for saddle point problems, Ph.D. Thesis, University of Illinois,

Urbana-Champaign, 1997.

[12] V. Sarin, A.H. Sameh, An efficient iterative method for the generalized Stokes problem, SIAM J. Sci.

Comput. 19 (1) (1998) 206–226.

[13] D. Silvester, A. Wathen, Fast iterative solution of stabilised Stokes systems. Part 2: Using general

block preconditioners, SIAM J. Numer. Anal. 31 (5) (1994) 1352–1367.

[14] A. Wathen, D. Silvester, Fast iterative solution of stabilised Stokes systems. Part 1: Using simple

diagonal preconditioners, SIAM J. Numer. Anal. 30 (3) (1993) 630–649.

[15] X. Ye, C.A. Hall, A discrete divergence-free basis for finite element methods, Numer. Algorithms 16

(1997) 365–380.

A.H. Sameh, V. Sarin / Parallel Computing 28 (2002) 285–299 299


