
www.elsevier.com/locate/parco

Parallel Computing 29 (2003) 1219–1235
Parallel iterative methods for dense linear
systems in inductance extraction

Hemant Mahawar, Vivek Sarin *

Department of Computer Science, Texas A&M University, 410 B, H.R. Bright Building,

College Station, TX 77843-3112, USA

Received 15 January 2003; received in revised form 1 June 2003; accepted 7 June 2003
Abstract

Accurate estimation of the inductive coupling between interconnect segments of a VLSI cir-

cuit is critical to the design of high-end microprocessors. This paper presents a class of parallel

iterative methods for solving the linear systems of equations that arise in the inductance ex-

traction process. The coefficient matrices are made up of dense and sparse submatrices where

the dense structure is due to the inductive coupling between current filaments and the sparse

structure is due to Kirchoff�s constraints on current. By using a solenoidal basis technique to

represent current, the problem is transformed to an unconstrained one that is subsequently

solved by an iterative method. A dense preconditioner resembling the inductive coupling

matrix is used to increase the rate of convergence of the iterative method. Multipole-based

hierarchical approximations are used to compute products with the dense coefficient matrix

as well as the preconditioner. A parallel formulation of the preconditoned iterative solver is

outlined along with parallelization schemes for the hierarchical approximations. A variety

of experiments is presented to show the parallel efficiency of the algorithms on shared-memory

multiprocessors.

� 2003 Published by Elsevier B.V.

Keywords: Parallel computing; Preconditioning; Iterative methods; Parasitic extraction
1. Introduction

A key component in the design of high-end microprocessors is the estimation of

signal delay of the VLSI circuit. The signal delay depends on several factors including
*Corresponding author.

E-mail address: sarin@cs.tamu.edu (V. Sarin).

0167-8191/$ - see front matter � 2003 Published by Elsevier B.V.

doi:10.1016/S0167-8191(03)00100-5

mail to: sarin@cs.tamu.edu


1220 H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235
parasitic resistance, capacitance, and inductance due to the on-chip interconnect. At

higher frequencies, it is critical to estimate the effect of the inductive coupling

between the interconnect segments quickly and accurately.

This paper presents a class of parallel algorithms for solving the linear systems of

equations that arise in inductance extraction of VLSI circuits. To obtain the parasitic
impedance at a particular frequency, the interconnect segments are discretized by a

uniform mesh of filaments. Each filament carries an unknown amount of current

which depends on the potential difference between the end nodes of the filament.

The net flow of current into any node must be zero. These conditions give rise to linear

systems with large coefficient matrices that have both sparse and dense submatrices.

The sparse submatrices represent the constraints on current flow at each node. The

dense submatrices represent the potential drop across each filament due to the induc-

tive effect of current in all other filaments as well as due to its own resistance.
For accurate impedance estimation, discretizations with millions of filaments may

be necessary. Since the computation and storage of the associated dense submatrix

is not feasible, one must use iterative methods that rely on the ability to compute

matrix–vector products with the coefficient matrix. The nature of the inductive cou-

pling between filaments permits use of hierarchical multipole-based techniques such

as the fast multipole method (FMM) [3,8] to compute approximations to the matrix–

vector products. The non-availability of the coefficient matrix makes it difficult to

construct preconditioners that can be used to increase the rate of convergence of
the iterative methods. The constraints imposed on the flow of current leads to an

indefinite coefficient matrix, further complicating efforts to design robust precondi-

tioners.

The approach presented in the paper uses a solenoidal basis method to restrict the

current to the subspace where Kirchoff�s current law is satisfied, and solves the result-

ing reduced system by a preconditioned iterative method. The preconditioners are

constructed from the inductive coupling of solenoidal functions of the basis, and

the preconditioning step is implemented using hierarchical multipole-based approxi-
mations. The description of the inductance problem and the solution methodology in

Sections 2 and 3 follows the presentation in [7]. Section 4 describes a parallelization

scheme for the hierarchical approximation algorithms used to compute matrix–

vector products with the dense coefficient submatrix as well as the preconditioner.

Benchmark experiments presented in Section 5 demonstrate that the algorithm can

achieve high parallel efficiency on shared-memory multiprocessors. Concluding re-

marks are presented in Section 6.
2. Inductance extraction problem

Given a set of s conductors, the inductance extraction problem consists of finding

an s� s matrix that summarizes the impedance among the conductors. The ðk; lÞ ele-
ment of this impedance matrix is equal to the potential difference generated across

the kth conductor in response to a unit current source applied to the lth conductor.

An entire column of the matrix can be computed by solving a linear system of equa-



H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235 1221
tions. The impedance matrix is determined by solving s instances of the same linear

system with different right-hand sides.

Each conductor is discretized by a two-dimensional uniform mesh of filaments

that carry unknown current (see, e.g., Fig. 1). For a problem with n filaments,

f1; f2; . . . ; fn, one obtains the following linear system:
Fig. 1

The bo
½Rþ jxL�If ¼ Vf ; ð1Þ

where R is an n� n diagonal matrix of filament resistances, If is the vector of un-

known filament currents, Vf is the vector of potential differences between the ends of

each filament, x is the frequency, and j ¼
ffiffiffiffiffiffiffi
�1

p
. The kth diagonal element of R is

assigned the value qlk=ak, where q is the resistivity, lk is the length of the kth filament,

and ak is the cross-sectional area of the kth filament. The elements of the inductance
matrix L are given by
Lkl ¼
l
4p

1

akal

Z
rk2Vk

Z
rl2Vl

uk � ul
krk � rlk2

dVk dVl; ð2Þ
where uk denotes the unit vector along the kth filament, r denotes a three-dimen-

sional position vector, and l is the magnetic permeability. The linear system (1)

results from the discretization of the equation for current density J at a point r:
qJðrÞ þ jx
Z
V

l
4p

Jðr0Þ
kr� r0k2

dV 0 ¼ �$/ðrÞ; ð3Þ
Node

Filament

Current
Source

. Discretization of a ground plane conductor with a two-dimensional uniform mesh of filaments.

ld line indicates a path for current that satisfies boundary conditions.



1222 H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235
where /ðrÞ is the potential at r. The volume of conductors is denoted by V and

incremental volume with respect to r0 is denoted by dV 0. The expression for Lkl in (2)

is obtained by assuming: (a) current density is constant within each filament, and (b)

current flows along the length of a filament. The reader is referred to [5] for further

details.
The constraints imposed on current by Kirchoff�s law can be expressed as
BTIf ¼ Is; ð4Þ
where BT is the branch index matrix and Is is the external source current. The branch

index matrix for a mesh of m nodes and n filaments is an m� n matrix whose ðk; lÞ
element has the value )1 if the lth filament originates at node k, 1 if it terminates at k,
and zero otherwise. It turns out that the potential difference across the filaments can

be expressed in terms of the node potential as follows:
Vf ¼ BVn; ð5Þ
where Vn is a vector of node potentials defined with respect to the ground.

To compute the unknown filament currents and node potentials, Eqs. (1), (4) and

(5) are solved simultaneously in the form of the following linear system:
Rþ jxL �B

BT 0

� �
If
Vn

� �
¼ 0

Is

� �
: ð6Þ
A particular current flow, say Ip, that satisfies the boundary conditions can be found

by assigning fixed current to filaments along an arbitrary path between the input and

output nodes (see, e.g., Fig. 1). By subtracting Ip from the unknown current, one

arrives at an equivalent system with a modified right-hand side:
Rþ jxL �B

BT 0

� �
I

Vn

� �
¼ F

0

� �
; ð7Þ
where I has been used to represent the difference between the unknown current If in

(6) and Ip. The main difference between (6) and (7) is that the boundary conditions

are specified for current in the first system whereas they are specified for potential

in the second system. This paper is concerned with the solution of the linear system

in (7).

Removal of the current unknowns from (7) by a single block-step of Gaussian

elimination process leads to a smaller system:
BT½Rþ jxL��1
BVn ¼ �BT½Rþ jxL��1

F:
To solve the above system, one must use an iterative solver in which the product with

the coefficient matrix, y ¼ BT½Rþ jxL��1
Bx, is computed as a sequence of three

steps: (i) the product u ¼ Bx, (ii) solution of the system ½Rþ jxL�v ¼ u, and (iii) the

product y ¼ BTv. Since the second step requires an inner iterative solver, the outer

iterations tend to be very expensive. Moreover, the structure of the coefficient matrix

makes it very difficult to precondition the linear system.



H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235 1223
3. A preconditioned iterative solver

An alternate approach to solving the linear system in (7) uses a basis for the sub-

space of current vectors that satisfy the constraint BTI ¼ 0. For instance, given a

basis P for the null space of BT, the current vector I ¼ Px satisfies the constraint
for arbitrary x. By restricting the current to the null space of BT, the linear system

in (7) is transformed to the following system:
½Rþ jxL�Px� BVn ¼ F:
The unknown vector Vn can be eliminated by multiplying the above equation with

PT, resulting in the reduced system
PT½Rþ jxL�Px ¼ PTF ð8Þ
which is of order ðn� mþ 1Þ. This reduced system can be solved for x by an iterative
method such as GMRES [9]. Current is given as I ¼ Px, and potential difference

across each filament is computed as follows
Vf ¼ ½Rþ jxL�Px� F:
The potential difference between two nodes is computed by adding the potential

difference across filaments on any path connecting the nodes. This allows compu-

tation of impedance between the end points of a conductor.
There are several ways to compute a basis for the null space of a matrix. An

algebraic approach such as the QR factorization of B cannot be used to compute

P due to the prohibitive cost of computation and storage of a large dense matrix.

To construct a sparse basis, observe that a current flow of fixed magnitude along

any closed path in the mesh satisfies the constraints. We define a local solenoidal flow

in the kth mesh cell to be a unit current flow in the counterclockwise direction in the

four filaments that form the boundary of the cell (see, e.g., Fig. 2). Each such flow

can be represented as a current vector with four non-zero elements that correspond
to the directional flow of current in the four filaments. Each of the ðn� mþ 1Þ cells
of the mesh contribute a column vector to the null space basis P. The local nature of

these mesh currents leads to efficient computation and storage schemes for P. Details

of this scheme are presented in [7].

The reduced system (8) can be preconditioned effectively by the following matrix

[7]:
M�1 ¼ eLL½eRR þ jxeLL��1eLL; ð9Þ
where eRR is a diagonal matrix of resistance as seen by the local mesh currents. The

elements of the matrix eLL are given as
eLLkl ¼
l
4p

1

akal

Z
rk2Vk

Z
rl2Vl

1

krk � rlk2
dVk dVl: ð10Þ
The value of the element eLLkl equals the mutual inductance between parallel filaments

placed at the centers of loop k and l. At each iteration, the preconditioning step



Fig. 2. Local solenoidal flows in a section of a uniform mesh.

1224 H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235
consists of the matrix–vector product z ¼ M�1r which can be computed in three
steps:
u ¼ eLLr; v ¼ ½eRR þ jxeLL��1u; z ¼ eLLv:

The matrix–vector product in the first and third steps uses approximate hierarchical

techniques identical to those used for L. The second step is implemented via an inner

iterative method which is used to solve the system ½eRR þ jxeLL�v ¼ u. At low and high

frequencies, one can use the following approximations to the preconditioner without

any significant change in the rate of convergence:
M�1
low ¼ eLL eRR�1eLL; M�1

high ¼ �jx�1eLL:

In each case, the preconditioning step is relatively cheap since it does not involve an

inner solve. For intermediate frequencies, however, one must use the preconditioner
in (9).

These preconditioners have shown near-optimal performance on several bench-

mark problems [7]. The rate of convergence of the preconditioned GMRES method

is weakly dependent on the frequency x and the discretization mesh width h. For ex-
ample, Table 1 shows that the number of iterations required by right preconditioned

GMRES changes only slightly with x and h. The growth in iterations is more pro-

nounced for 1 GHz due to the use of the high frequency preconditioner M�1
high which

is significantly cheaper than the one given in (9). In contrast, the number of iterations
grows linearly with the mesh size when no preconditioning is used with a 129 · 129
mesh requiring 566 iterations. A tolerance of 10�3 was used for the relative residual

norm. The FMM algorithm with multipole degree 1 was used to compute matrix–

vector products with L and eLL.



Table 1

The number of preconditioned GMRES iterations to compute the self-impedance of the ground plane con-

ductor problem

Mesh size Filament

length (cm)

Frequency

1 GHz 10 GHz 100 GHz 1 THz

65 · 65 2�6 6 6 5 5

129· 129 2�7 7 6 6 6

257· 257 2�8 9 7 7 6

513· 513 2�9 12 8 7 7

H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235 1225
A related mesh current based approach called FastHenry has been proposed in [5]

where the preconditioners were derived from incomplete factorization of a sparse

approximation to the dense reduced system. The advantages of our preconditioned

iterative solver over FastHenry are discussed in [7].

3.1. Computing dense matrix–vector products

The most computationally intensive steps in the algorithm are the matrix–vector

products with the reduced system matrix PT½Rþ jxL�P and the preconditioner

matrix M�1. A matrix–vector product with the reduced system is computed as a

sequence of three products:
u ¼ Px; v ¼ ½Rþ jxL�u; y ¼ PTv:
The cost of multiplying a vector with the dense matrix L is significantly greater than

multiplication with P or PT. Since the matrix eLL used in the preconditioning step is
similar to L, it is worthwhile to use fast methods to compute the matrix–vector

products with L.

The cost of computing an accurate matrix–vector product with an n� n dense

matrix is Oðn2Þ operations. The nature of the elements in L allows use of fast hier-

archical algorithms in which reduction in computational complexity is obtained at

the expense of accuracy. In particular, one can exploit the rapid decay of the kernel

in (2) with distance to compute approximate matrix–vector products in Oðn log nÞ or
OðnÞ operations. A number of such techniques have been developed including the
well known FMM [3,8], the Barnes–Hut [2] method, and Appel�s algorithm [1].

For the inductance extraction problem, these algorithms may use a truncated series

to approximate the effect of a cluster of filament currents on other clusters that are

well-separated. The method of Barnes and Hut relies only on filament–cluster inter-

actions to achieve an Oðn log nÞ computational bound whereas the FMM uses both

filament–cluster and cluster–cluster interactions to achieve an OðnÞ bound for uni-

form filament distributions. In each case, reduction in computational complexity is

associated with decrease in accuracy of the matrix–vector product.
The accuracy of FMM can be improved by increasing the multipole degree d

which determines the number of terms used in the approximation. Even though

the growth in computational complexity is proportional to d4 [3], it is worthwhile



1226 H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235
to choose a larger value of d to offset the error introduced by the presence of differ-

encing operators P and PT in the reduced system. In this paper, we use the FMM

algorithm to compute approximate matrix–vector products with both L and eLL.

4. Parallelism

To develop efficient parallel formulations of the iterative solver, it is necessary to

understand the structure of the dense matrix–vector products. The product with L

is viewed as the calculation of the potential difference across each filament due to

the inductive effect of current in all other filaments. The integral in (2) is approx-

imated by a weighted sum over a set of discrete points within each filament. The

mid-point of a filament is sufficient for calculating the mutual inductance between
all pairs of filaments except those in close proximity. Additional points may be

used for filaments that are close to each other. Self-inductance needs to be com-

puted using special formulas [4]. The primary goal of FMM is to reduce the com-

plexity of computing the mutual inductance between filaments that are not in close

proximity.

An oct-tree is used to compute a hierarchical spatial decomposition of the mid-

points of the filaments. The root of the tree represents a cubical domain containing

all the points. Eight children nodes are created by partitioning the domain into eight
equal subcubes. The points are also partitioned among the subdomains. A recursive

strategy yields an oct-tree with a hierarchical spatial ordering of the points. Since the

oct-tree stores non-empty cubes only, this scheme yields non-uniform oct-trees for

unstructured point distributions.

A node in the tree represents a subdomain and its associated oct-tree. For each

node, FMM computes a set of multipole coefficients that can be used to calculate

the inductive effect of the points within the subdomain at an observation point out-

side the subdomain. The observation point must be outside a neighborhood that
contains the sphere enclosing the subdomain. For simplicity, a larger cube can be

chosen as the neighborhood of a subdomain. The computational complexity of this

step is Oðd4nÞ for a problem with n points (see, e.g., [3] for additional details). At any

point, the net inductive effect due to far-off points can be determined from the mul-

tipole coefficients of only Oðlog nÞ nodes. To reduce the complexity further down to

OðnÞ, FMM computes a set of local coefficients for each node that can be used to

calculate the inductive effect of all the points outside its neighborhood. These coeffi-

cients are computed from the multipole coefficients of nodes that are adjacent to the
leaf�s neighborhood as well as from local coefficients of the leaf�s parent.

The inductive effect at any point in the leaf node is calculated as a sum of two val-

ues: a far-field due to the points outside the leaf�s neighborhood and a near-field due

to the points that lie within the neighborhood. The far-field is computed using the

local coefficients at the leaf node whereas the near-field is found by direct computa-

tion.

The domain is partitioned into non-overlapping subdomains by pruning the oct-

tree at a particular level k (see, e.g., Fig. 3). Each leaf node in the modified tree T 0 is



T’

Fig. 3. Partitioning the oct-tree among processors: subtrees at a selected level represent subdomains that

are allocated to different processors.

H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235 1227
assigned to a different processor. The leaf nodes of T 0 are the roots of the oct-trees of

their respective subdomains. A processor is required to compute the multipole and

local coefficients for the oct-tree assigned to it. The computations involving coeffi-

cients of parent and child nodes within a processor�s oct-tree do not require commu-

nication between processors. To compute local coefficients from multipole

coefficents, a node requires data from its neighboring nodes which may be resident

on different processors. The resulting communication is proportional to the bound-

ary of a subdomain, and may be much less than the useful computation. The coeffi-
cients for internal nodes of T 0 can be computed by a single processor without

significant loss in parallel performance of the overall algorithm. To improve the par-

allel efficiency further, the coefficients for T 0 can be computed by a smaller set of pro-

cessors. While load balance can be improved by assigning multiple subdomains to

each processor, care must be taken to assign contiguous subdomains to a processor

to reduce communication requirements. Other schemes for parallelizing FMM have

been presented in [6,10].
5. Experiments

The preconditioned iterative solver outlined earlier can be implemented efficiently

on a shared-memory multiprocessor machine. This section presents the results of ex-

periments to study the parallel performance of a multiprocessor implementation of

the algorithm. The experiments are organized into three sets. The first set of experi-

ments presents the parallel efficiency of the code on three benchmark problems. The
second set of experiments provides an insight into the scalability of the implementa-

tion. The third set demonstrates the effect of multipole degree on the parallel perfor-

mance of the code. These experiments were conducted on a 128-processor SGI

Origin2000 with 250 MHz clock speed at the National Center for Supercomputer

Applications (NCSA) at the University of Illinois. OpenMP directives were used

to parallelize the code and the operating system was allowed to schedule and manage

the resulting threads. We report the time spent in the solver (in seconds) as well

as the speedup which is defined as the speed improvement obtained over a single
processor.



1228 H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235
5.1. Examples

The benchmark problems presented in this section are intended to show the par-

allel performance of the code for realistic problems. The ground plane problem mod-

els the ground plane in VLSI circuits that is used to provide a uniform ground to all
the interconnects in any of the chips. The spiral inductor problem is a complicated

example consisting of a coil shaped conductor which is used in electromagnetic cir-

cuitry such as that seen in magnetic access cards. The three-dimensional problem

with overlapping two-dimensional panels represents a cross-over of interconnects

in typical VLSI circuits.

5.1.1. Ground plane

The first benchmark problem requires computing the inductance of a 1 cm · 1 cm
ground plane. A unit inflow current from the left bottom corner and a unit outflow

current from right bottom corner is considered (see Fig. 1). A uniform two-dimen-

sional mesh of size 256 · 256 is used to discretize the plane. Each filament has length

2�8 cm. The width of each filament is one-third of its length, and thickness is 2�13 cm.

A tolerance of 10�3 was specified on the relative residual norm of the preconditioned

GMRES method.

Table 2 shows that the speedup increases as the multipole degree is increased. The

increase in speedup with multipole degree is due to the increase in computation with-
out corresponding growth in the communication. Even for a relatively small prob-

lem, the code achieves 83% efficiency on 64 processors.

5.1.2. Spiral inductor

The spiral conductor problem consists of a coil enclosed in a 1 cm · 1 cm square

region. The conductor is discretized with a uniform two-dimensional mesh similar to

the ground plane (see Fig. 4).

Table 3 shows the speedup obtained for a spiral inductor with filament length of
2�8 cm. Filament width and thickness are identical to the previous experiment. In

spite of the non-uniform point distribution of the problem, the code achieves high
Table 2

Parallel performance on the ground plane problem

No. of processors Multipole degree

1 2 4

Time (s) Speedup Time (s) Speedup Time (s) Speedup

2 171.57 1.94 641.87 1.93 4476.46 1.99

4 103.33 3.23 336.49 3.68 2251.45 3.96

8 54.34 6.14 174.85 7.08 1167.5 7.63

16 36.36 9.17 91.27 13.55 604.19 14.74

32 20.73 16.09 51.34 24.09 319.85 27.84

64 16.54 20.16 30.35 40.76 166.82 53.39



SOURCE
CURRENT

Fig. 4. Spiral inductor.

H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235 1229
parallel efficiency. The superlinear performance for higher multipole degree is attri-

buted to the cache-friendly computation for multipole and local coefficients.

5.1.3. Overlapping panels

We consider the problem of determining the impedance of four panels in a three-

dimensional configuration shown in Fig. 5. The panels are 1 cm long and 0.25 cm

wide. The horizontal separation of panels in a plane is 0.25 cm. The vertical distance

ðdÞ between the two panels is 0.25 cm. Each panel is discretized by a two-dimensional
mesh as shown in Fig. 5. The filament width and thickness are identical to the pre-

vious experiments.

Table 4 shows the speedup for overlapping panels problem with each panel dis-

cretized into a 256 · 64 mesh of filament length of 2�8 cm. The speedup obtained
Table 3

Parallel performance on the spiral conductor problem

No. of processors Multipole degree

1 2 4

Time (s) Speedup Time (s) Speedup Time (s) Speedup

2 223.72 1.84 791.24 1.93 6715.93 1.99

4 123.91 3.33 426.10 3.58 3365.33 3.97

8 63.07 6.53 211.38 7.21 1731.77 7.72

16 40.27 10.23 115.08 13.25 905.56 14.75

32 23.82 17.29 62.24 24.50 475.27 28.11

64 18.98 21.71 37.20 40.98 208.30 64.14



δ

δ

Fig. 5. Four panels in an overlapping 3D configuration.

Table 4

Parallel performance on the overlapping panels problem

No. of processors Multipole degree

1 2 4

Time (s) Speedup Time (s) Speedup Time (s) Speedup

2 220.02 1.78 840.00 1.55 5716.84 1.99

4 117.02 3.34 338.17 3.84 2870.12 3.95

8 62.45 6.26 183.28 7.09 1465.16 7.75

16 41.71 9.37 99.52 13.05 757.35 14.98

32 21.95 17.80 55.61 23.36 394.47 28.77

64 20.03 19.51 33.16 39.18 174.99 64.85

1230 H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235
by the code resembles the previous examples, showing that parallel performance of

the code does not diminish for three-dimensional problems.

5.2. Scalability

The performance of the code on the ground plane problem and the overlapping

panels problem is used to study the scalability of the algorithm. Larger problem in-
Table 5

Parallel performance for the ground plane problem on different mesh sizes

No. of processors Mesh size

128· 128 256· 256 512· 512

Time (s) Speedup Time (s) Speedup Time (s) Speedup

2 928.67 1.98 4476.46 1.99 25132.0 1.99

4 465.88 3.95 2251.45 3.96 10376.8 4.81

8 247.76 7.43 1167.5 7.63 5284.24 9.45

16 132.95 13.85 604.19 14.74 2717.67 18.37

32 76.79 23.97 319.85 27.84 1392.07 35.85

64 44.24 41.62 166.82 53.39 713.45 69.96



H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235 1231
stances are obtained by refining the mesh. These experiments used degree 4 multi-

poles. Tables 5 and 6 show speedup for the ground plane and overlapping panels,

respectively, for meshes as large as 512 · 512. For a fixed problem size, the speedup

grows almost linearly with the number of processors for larger problems. The slower

growth in speedup on smaller problems is partly due to the increase in size of T 0

which determines the serial component in this implementation. When increasing pro-

cessors, efficiency can be recovered by allowing the problem to increase as well. This
Table 6

Parallel performance for the overlapping panels problem on different mesh sizes

No. of processors Panel mesh size

128· 32 256· 64 512· 128

Time (s) Speedup Time (s) Speedup Time (s) Speedup

2 1127.7 1.98 5716.84 1.99 26687.2 1.99

4 565.58 3.96 2870.12 3.95 11286.5 4.70

8 292.64 7.64 1465.16 7.75 5525.52 9.59

6 151.31 14.78 757.35 14.98 2800.73 18.93

32 90.92 24.60 394.47 28.77 1440.41 36.81

64 54.48 41.06 174.99 64.85 734.11 72.21

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

No of processor

S
pe

ed
up

 w
.r

.t 
p 

=
4 

Linear (Ideal) speedup
Speedup for 128 × 128
Speed up for 256 × 256
Speed up for 512 × 512
Speed up for 1024 × 1024

Fig. 6. Speedup w.r.t four processors for the ground plane problem on different mesh sizes.



0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

No of processor

S
pe

ed
up

 w
.r

.t 
p 

=
4 

Linear (Ideal) speedup
Speedup for 128 × 32
Speed up for 256 × 64
Speed up for 512 × 128
Speed up for 1024 × 256

Fig. 7. Speedup w.r.t. four processors for the overlapping panels problem on different mesh sizes.

1232 H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235
is evident from Figs. 6 and 7 that show the parallel performance of the code on prob-

lem sizes as large as 1024 · 1024. Since it was not feasible to run the largest instance

on fewer than 4 processors, these figures show the speed improvement in time over 4

processors for all problem instances.
5.3. Effect of multipole degree

When using d degree multipoles, the number of multipole and local coefficients at

each node is d2 and the cost of computing these coefficients is proportional to d4.
Table 7

Parallel performance of the ground plane problem for different choices of multipole degree

Multipole degree No. of processors Error (%)

16 32 64

Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 36.36 9.17 20.73 16.09 16.54 20.16 2

2 91.27 13.55 51.34 24.09 30.35 40.76 9· 10�2

4 604.19 14.74 319.85 27.84 166.82 53.39 7· 10�3

6 2298.26 18.03 1194.71 34.69 642.39 64.51 9· 10�4



Table 8

Parallel performance of the overlapping panels problem for different choices of multipole degree

Multipole degree No. of processors Error %

16 32 64

Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 41.71 9.37 21.95 17.80 20.03 19.51 1

2 99.52 13.05 55.36 23.26 33.16 39.18 1 · 10�2

4 757.35 14.98 394.47 28.77 174.99 64.85 8 · 10�3

6 2325.14 18.67 1212.64 35.80 642.42 67.58 4 · 10�4

H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235 1233
Increase in multipole degree has dual benefits. In addition to the increase in accuracy

of the approximation, the parallel performance improves significantly due to a rapid

growth in the computation. The speedup often exhibits superlinear behavior due to

the cache-friendly nature of these computations. Tables 7 and 8 show the effect of

increasing multipole degree on the ground plane and overlapping panels problems,

respectively. The column marked error shows the error w.r.t. the solution obtained

with degree 8 multipoles which is considered to be accurate for these experiments.
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

Multipole degree

S
pe

ed
up

Speedup for p = 16
Speedup = 16
Speedup for p = 32
Speedup = 32
Speedup for p = 64
Speedup = 64

Fig. 8. Effect of multipole degree for ground plane conductor. The horizontal lines indicate the maximum

theoretical speedup.



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

Multipole degree

S
pe

ed
up

Speedup for p = 16
Speedup = 16
Speedup for p = 32
Speedup = 32
Speedup for p = 64
Speedup = 64

Fig. 9. Effect of multipole degree for overlapping panels. The horizontal lines indicate the maximum

theoretical speedup.

1234 H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235
Figs. 8 and 9 show that for a fixed problem size, the speedup grows with multipole

degree to attain the maximum speedup.
6. Conclusions

In this paper, we presented a preconditioned iterative method for solving the

dense linear systems that arise in the inductance extraction problem in VLSI circuit

design. The approach uses discrete solenoidal basis functions to obtain an equivalent

reduced system which is solved by the preconditioned GMRES method. Matrix–

vector products with the dense coefficient matrices as well as preconditioners are
computed via hierarchical approximations. We outlined parallelization schemes

for the iterative solver with particular emphasis on the hierarchical approximations.

Benchmark experiments were presented to show that the implementation achieves

high parallel efficiency on the SGI Origin2000 shared-memory multiprocessor. These

experiments exhibit almost linear speedups on up to 64 processors for several in-

stances of two- and three-dimensional problems with over a one million unknowns.

The results also indicate that higher parallel efficiency can be achieved by increasing

the multipole degree d of the FMM. Since the computational cost is proportional to
d4, a larger value of d is recommended only when higher accuracy is desired.



H. Mahawar, V. Sarin / Parallel Computing 29 (2003) 1219–1235 1235
Acknowledgements

This work has been supported in part by NSF under the grants NSF-CCR

9984400 and NSF-CCR 0113668, and by the Texas Advanced Technology Program

grant 000512-0266-2001.
References

[1] A. Appel, An efficient program for many-body simulation, SIAM Journal on Scientific and Statistical

Computing 6 (1985) 85–103.

[2] J. Barnes, P. Hut, A hierarchical Oðn log nÞ force calculation algorithm, Nature 324 (1986) 446–449.

[3] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, The MIT Press,

Cambridge, MA, 1988.

[4] F. Grover, Inductance Calculations, Working Formulas and Tables, Dover, New York, 1962.

[5] M. Kamon, M.J. Tsuk, J. White, FASTHENRY: A multipole-accelerated 3D inductance extraction

program, IEEE Transactions on Microwave Theory and Techniques 42 (1994) 1750–1758.

[6] J. Leathrum Jr., J. Board Jr., The parallel fast multipole algorithm in three dimensions, Technical

Report, Department of Electrical Engineering, Duke University, April 1992.

[7] H. Mahawar, V. Sarin, W. Shi, A solenoidal basis method for efficient inductance extraction, in:

Proceedings of the IEEE Design Automation Conference, New Orleans, LA, 2002.

[8] V. Rokhlin, Rapid solution of integral equations of classical potential theory, Journal of

Computational Physics 60 (1985) 187–207.

[9] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric

linear systems, SIAM Journal on Scientific and Statistical Computing 7 (1986) 856–869.

[10] J.P. Singh, C. Holt, T. Totsuka, A. Gupta, J.L. Hennessy, Load balancing and data locality in

hierarchical N -body methods, Journal of Parallel and Distributed Computing 27 (1995) 118–141.


	Parallel iterative methods for dense linear systems in inductance extraction
	Introduction
	Inductance extraction problem
	A preconditioned iterative solver
	Computing dense matrix-vector products

	Parallelism
	Experiments
	Examples
	Ground plane
	Spiral inductor
	Overlapping panels

	Scalability
	Effect of multipole degree

	Conclusions
	Acknowledgements
	References


