
www.elsevier.com/locate/parco

Parallel Computing 29 (2003) 1261–1273
Multipole-based preconditioners for large
sparse linear systems

Sreekanth R. Sambavaram a,1, Vivek Sarin a,1, Ahmed Sameh b,
Ananth Grama b,*,2

a Department of Computer Science, Texas A&M University, 410 B, H.R. Bright Building,

College Station, TX 77843-3112, USA
b Department of Computer Science, Purdue University, 250 N. University Street,

West Lafayette, IN 47907-2066, USA

Received 20 January 2003; received in revised form 16 June 2003; accepted 1 July 2003
Abstract

Dense operators for preconditioning sparse linear systems have traditionally been consid-

ered infeasible due to their excessive computational and memory requirements. With the emer-

gence of techniques such as block low-rank approximations and hierarchical multipole

approximations, the cost of computing and storing these preconditioners has reduced drama-

tically. This paper describes the use of multipole operators as parallel preconditioners for

sparse linear systems. Hierarchical multipole approximations of explicit Green�s functions

are effective preconditioners due to their bounded-error properties. By enumerating nodes

in proximity preserving order, one can achieve high parallel efficiency in computing matrix–

vector products with these dense preconditioners. The benefits of the approach are illustrated

on the Poisson problem and the generalized Stokes problem arising in incompressible fluid

flow simulations. Numerical experiments show that the multipole-based techniques are effec-

tive preconditioners that can be parallelized efficiently on multiprocessing platforms.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Multipole methods; Preconditioning; Iterative methods; Stokes problem
*Corresponding author.

E-mail address: ayg@cs.purdue.edu (A. Grama).
1 The authors� work has been supported by the grants NSF-CCR 9984400 and NSF-CCR 9972533.
2 The author�s work has been supported by the grant NSF-CCR 9972533. Sameh�s work has also been

supported by NSF-CCR-9912388.

0167-8191/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0167-8191(03)00102-9

mail to: ayg@cs.purdue.edu


1262 S.R. Sambavaram et al. / Parallel Computing 29 (2003) 1261–1273
1. Introduction

Conventional preconditioners for sparse linear systems have focused on represen-

tations with limited fill that have sparse non-zero structure. This is critical for

restricting the storage and computational complexity of the preconditioning step.
In general, it is not necessary to have a sparse non-zero structure to restrict the cost

associated with the preconditioner. Examples of such matrices include low-rank

matrices, Toeplitz matrices, and, more interestingly, hierarchical operators based

on analytical approximations such as multipole representations.

Multipole methods were first proposed in the context of particle dynamics meth-

ods and boundary element solvers. The intuition behind hierarchical multipole meth-

ods is that the influence of a set of entities coupled by the underlying Green�s
functions can be approximated by a bounded degree multipole series. For example,
the gravitational potential due to a set of objects can be represented by their center of

mass, provided the evaluation point is sufficiently far away. The coupling Green�s
function in this case is determined by the Laplace operator, and is 1=r in three

dimensions, where r is the distance between source and observation points. With this

simple intuition, the entire domain can be hierarchically decomposed and potentials

computed at all n source/observation points in OðnÞ time. This family of hierarch-

ical multipole methods includes the fast multipole method [10] and the method of

Barnes and Hut [1].
Hierarchical multipole methods can be adapted to solve integral equations for

which a closed-form Green�s operator and the associated multipole expansions are

known. This has been used to solve scattering problems and problems in electrostat-

ics with considerable success [2–6]. Since the multipole expansions satisfy boundary

conditions implicitly, these methods have an added advantage over finite element

and finite difference methods for problems where boundary conditions are specified

at infinity. One such example is the Sommerfield radiation condition for scattering

problems.
In many problems, however, a closed-form Green�s function is not available. Ex-

amples of this include scattering from a dielectric and scattering from a dielectric em-

bedded in a conductor. Even in these cases, the functions� decaying nature can be

exploited to construct a block low-rank approximation to the matrix of coupling

Green�s functions. This allows computation and storage of the matrix as well as its

application to a vector in OðnÞ or Oðn log nÞ time (depending on the specific method

used). This principle forms the basis for dense solvers such as CDENSE [14].

The underlying premise of this paper is the simple observation that a multipole
operator is the ideal preconditioner for the corresponding differential operator.

For instance, a multipole operator with the Green�s function 1=r may be used as a

preconditioner for the Laplace operator to improve the rate of convergence of the

iterative solver. The preconditioning step in each iteration requires OðnÞ operations
only since the cost of applying the multipole operator is OðnÞ. Indeed, this method

competes against such effective preconditioners as multigrid and multilevel methods.

However, since multipole operators are analytic in nature, they can be considered ex-

tensions of multigrid methods in which restriction and interpolation operators have



S.R. Sambavaram et al. / Parallel Computing 29 (2003) 1261–1273 1263
been analytically computed to yield bounded-error results (where a closed-form

Green�s function is available).

In this paper, we describe the application of a multipole-based preconditioner to

the solution of the Poisson problem on a three-dimensional domain. To further illus-

trate the use of the preconditioner for more challenging problems, we consider the
solution of the generalized Stokes problem which arises in the simulation of incom-

pressible fluid flows. By using discrete divergence-free basis for velocity, the system is

transformed into one that can be preconditioned effectively by a multipole-based

preconditioner for the Laplace operator. The experiments presented in the paper in-

dicate that (i) multipole-based preconditioners are very effective in improving the

rate of convergence of iterative solvers for a variety of problems, (ii) the parallel

implementation is very efficient and scalable, and (iii) the implementation of the

solver–preconditioner is extremely simple since the preconditioner is geometric,
but meshless. The code has demonstrated high efficiency on several platforms

including the SGI Origin, IBM p690, and x86-based SMPs.

The rest of the paper is organized as follows: Section 2 presents a brief overview of

multipole methods; Section 3 describes the multipole-based preconditioners and their

application to the Poisson problem and the generalized Stokes problem; Section 4

discusses parallel formulations of the preconditioned solver and presents the experi-

mental results; conclusions are drawn in Section 5.
2. Hierarchical multipole-based methods

We start with a brief overview of hierarchical multipole methods and their use in

computing dense matrix–vector products in OðnÞ time (or Oðn log nÞ time) for an

n� n matrix. Consider the problem of determining the charge on the surface of a

conductor under given boundary conditions. The charge distribution is related to

the potential by the following integral equation:
wðxÞ ¼
Z
oX

Gðx; x0Þrðx0Þda0; ð1Þ
where oX is the boundary of the domain X, Gðx; x0Þ is the Green�s function, wðxÞ is
the given potential at point x on the surface, rðxÞ is the unknown surface charge

density, and da0 represents the surface element. The Green�s function Gðx; x0Þ in three
dimensions is given by 1=r, where r is Euclidean distance between x and x0.

The surface charge density can be approximated as a weighted sum of n known

expansion functions
rðxÞ ¼
Xn

i¼1

qiriðxÞ: ð2Þ
The coefficients of the expansion function can be determined by using a colloca-

tion condition of the form
p ¼ Cq; ð3Þ



1264 S.R. Sambavaram et al. / Parallel Computing 29 (2003) 1261–1273
where p is a vector of the known potentials at n panels, C is an n� n coupling matrix

of Green�s functions, and q is the vector of unknown coefficients. Since a large

number of panels are required for acceptable accuracy, iterative techniques must be

used to solve the system (3). At each iteration, the most time-consuming component

is the matrix–vector product of the form p0 ¼ Cq0, which requires computing the
potential at a set of n collocation points due to the charge density of q0, as indicated
in (2).

There are several ways of computing the required potentials. The first approxima-

tion is that the charge densities are uniform over a panel and that the charge is rep-

resented as a point charge at the centeroid of the panel. This results in a discrete

potential estimation problem similar to the n-body problem. This approximation

is valid only when the source and observation panels are far apart; i.e., kx� x0k is

much larger than size of the element over which the integration is performed. This
is not the case when we are dealing with spatially proximate elements. In these cases,

Gaussian quadratures with higher number of Gauss points must be used to compute

the potential.

The required matrix–vector product can be computed using approximate hierar-

chical methods. The matrix C is never computed explicitly. Instead panels are aggre-

gated and their impact on other panels is expressed in terms of multipole expansions.

We first introduce approximate hierarchical methods for particle dynamics and then

illustrate how they can be used to compute matrix–vector products.
A number of hierarchical approximation techniques have been proposed for

particle dynamics. Of these, the methods of Barnes and Hut [1], and the fast multi-

pole method [10] have gained widespread popularity. In this paper, we use an aug-

mented version of the Barnes–Hut method for computing the mat–vecs. The

method works in two phases: the tree construction phase and the force computa-

tion phase. In the tree construction phase, a spatial tree representation of the do-

main is derived. At each step in this phase, if the domain contains more than s
particles (for some preset constant s), it is recursively divided into eight equal
parts. This process continues until each part has at most s elements. The resulting

tree is an unstructured oct-tree. Each internal node in the tree computes and stores

an approximate multipole series representation of the particles contained in that

sub-tree. Once the tree has been constructed, the force or potential at each parti-

cle can be computed as follows: a �multipole acceptance criterion� is applied to

the root of the tree to determine if an interaction can be computed; if not, the

node is expanded and the process is repeated for each of the eight children. The

multipole acceptance criterion for the Barnes–Hut method computes the ratio of
the distance of the point from the center of mass of the box to the dimension

of the box. If this ratio is greater than 1=a, where a is a constant less than

unity, an interaction can be computed. The Barnes–Hut method is illustrated in

Fig. 1.

For computing matrix–vector products, particles correspond to Gauss points

within elements and the force model between them corresponds to numerical integra-

tion. Computing a matrix–vector product in this manner involves the following

steps:



d1

rs

Rs

d3

d2
rsd1 α        if (    /    >1/   )

Rsd αif (   /     > 1/ )

Center of mass of domain

Centers of mass of subdomains

Source particle

        compute direct force interaction
        with the center of mass of domain.
else

                compute direct force computation
                with center of mass of subdomain 1
        else
                expand subdomain 1 further

        Apply similar criteria to domains 2, 3, and 4

4

21

3

d

Fig. 1. Illustration of the Barnes–Hut method.

S.R. Sambavaram et al. / Parallel Computing 29 (2003) 1261–1273 1265
(1) Construct a hierarchical representation of the domain: given a domain discreti-

zation into elements, element centers correspond to particle coordinates. An oct-

tree is constructed based on these element centers. Each node in the tree stores

the extremities along x, y, and z dimensions of the subdomain corresponding

to the node.
(2) The number of particles in the tree is equal to the product of the number of ele-

ments and the number of Gauss points in the far field. In the case of a single

Gauss point in the far field, the multipole expansions are computed with the cen-

ter of the element as the particle coordinate.

(3) For computing the matrix–vector product, we need to compute the potential at

each of the n observation points. This is done using a variant of the Barnes–Hut

method. The hierarchical tree is traversed for each of the elements. If an element

falls within the near field of the observation element, integration is performed
using direct Gaussian quadrature. The far-field contributions are computed us-

ing the multipole expansions. The a criterion of the Barnes–Hut method is

slightly modified. The size of the subdomain is now defined by the extremities

of all elements corresponding to the node in the tree. This is unlike the original

Barnes–Hut method which uses the size of the box for computing the a criterion.
3. Multipole-based preconditioning techniques

Multipole-based approximation schemes described in the preceding section can be

directly used as effective solvers/preconditioners for the Laplace operator.

Consider the following Laplace problem:
Du ¼ 0 in X; u ¼ g on oX: ð4Þ

Physically, this problem is identical to one of estimating the potential in the interior

of a perfectly conducting body, given the boundary potential. Since Du corresponds to



1266 S.R. Sambavaram et al. / Parallel Computing 29 (2003) 1261–1273
the charge and all charge resides on the boundary of a conductor, the correspondence

is natural. The sparse linear system associated with this problem, Ax ¼ 0, discretizes

the Laplacian operator in the interior of the domain. To solve this sparse system, we

can place m charges on the boundary of the conductor. We must now estimate these

charges, subject to the constraint that the potential induced by these charges satisfies
the boundary conditions. This reduces the problem to an equivalent dense linear sys-

tem of the form p ¼ Cq, discussed before. Here, C is the dense matrix of coupling

Green�s functions (1=r in three dimensions). Iterative methods for solving this system

require a matrix–vector product with matrix C, which can be computed using multi-

pole methods. Once boundary charges have been estimated, the potential at interior

points can be estimated easily using multipole methods as well. If a higher level of ac-

curacy is desired, this multipole-based solver can be used as a preconditioner for an

outer sparse solver.

3.1. Application to the Poisson problem

Consider, now, the problem of computing a function u on a domain X such that
Du ¼ f in X; u ¼ g on oX; ð5Þ
where f and g are known functions. The associated linear system of equations has

the form
Ax ¼ b; ð6Þ

in which b and x can again be interpreted as vectors of charges and potentials, re-

spectively, at n points in the interior of the domain. In contrast to the previous case,

the potential at the boundary points is a result of interior as well as boundary

charges. To reduce the problem to one defined on the boundary nodes, we must first

cancel the effect on boundary potential of the internal nodes. To do this, we first

locate m points on the boundary where we estimate the potential due to internal
nodes. We subtract this potential from the specified boundary conditions f to define

a dense problem over the m boundary nodes. The charges at these boundary nodes

are therefore determined by solving an m� m linear system of the form (3) with

p ¼ g � g0 where g0 is the potential on the boundary due to interior charges. Once the

boundary charges are known, x can again be computed as the potential due to the

interior and boundary charges.

The linear system for the boundary charges is solved using an iterative method.

The multipole-based approximations that are used to compute matrix–vector pro-
ducts with the dense coefficient matrix introduce errors in the solution. Nevertheless,

one can use this approach as a preconditioning step for an outer iterative method

which is used to solve (6). Since the linear system for the preconditioning step is de-

fined only on the boundary, the inner iterative solve is not expensive. This is evident

from Table 1, which shows the number of iterations and total time taken by the

preconditioned CG method for solving the Poisson problem on a uniform three-

dimensional grid. The experiments were conducted on a 2.4 GHz Pentium 4 work-

station with 1GB memory. The outer CG method was terminated when the relative



Table 1

Performance of the multipole-based preconditioner for the Poisson problem

Mesh size Nodes Unpreconditioned Preconditioned

Iterations Time (s) Iterations Time (s)

25 · 25 · 25 15 625 1301 3.86 3 4.06

30 · 30 · 30 27 000 1895 14.06 4 11.74

40 · 40 · 40 64 000 3451 61.97 3 17.97

50 · 50 · 50 125 000 5465 184.68 3 39.67

60 · 60 · 60 216 000 7936 413.02 3 67.90

S.R. Sambavaram et al. / Parallel Computing 29 (2003) 1261–1273 1267
residual norm was reduced below 10�5. The inner GMRES method used a Krylov

subspace of dimension 3 and a tolerance of 0.05 on the relative residual norm.

3.2. Application to incompressible flows

The generalized Stokes problem arises in the solution of time-dependent Navier–

Stokes equations for incompressible fluid flows. It consists of solving the following

linear system:
1
Dt M þ mL B

BT 0

� �
u
p

� �
¼ f

0

� �
; ð7Þ
where u is the fluid velocity, p is the pressure, Dt is the time step, m is the viscosity, and
M , L, and BT are the mass, Laplace, and divergence matrices, respectively. The linear

system is large, sparse, and indefinite due to the incompressibility constraint BTu ¼ 0,

which forces the velocity to lie in a discrete divergence-free subspace. While the

primary challenge in developing robust preconditioners for this system is due to the

indefiniteness of the matrix, parameters such as viscosity and time step also influence

the effectiveness of the preconditioner.

The linear system in (7) can be transformed to the following reduced system by
restricting velocity to the discrete divergence-free subspace:
PT 1

Dt
M þ mL

� �
Px ¼ PTf ; u ¼ Px: ð8Þ
Here, P is a basis for the discrete divergence-free subspace which is identical to the

null space of BT. While the symmetric positive definite character of the reduced

system allows use of the CG method, it introduces additional complexity in con-

structing preconditioners.

In order to compute a discrete divergence-free basis P with modest computational

and storage requirements, we observe that circulating flows or vortices can be used as

a divergence-free basis in the continuum space. The discrete counterpart uses the
edges of a mesh to define circulating flows that are divergence-free in the discretized

domain. One can obtain these flows by computing the null space of submatrices of

BT defined over local regions of the mesh. Each such flow is represented as a vector,

and the set of these vectors forms the columns of P (see, e.g., [11] for details). The



1268 S.R. Sambavaram et al. / Parallel Computing 29 (2003) 1261–1273
matrix P is sparse due to the local support of the flows. In addition, matrix–vector

products with P can be computed directly from the local flow vectors without assem-

bling the matrix itself. Due to the unavailability of P , several commonly used precon-

ditioning techniques such as those based on incomplete factorizations are no longer

viable.
The similarity of this approach with vorticity–velocity function formulation of the

Navier–Stokes equations for incompressible flows can be exploited to develop a pre-

conditioner for the reduced system. We observe that the matrix–vector products Px
and PTy compute the discrete curl of the functions represented by x and y, respec-
tively. Furthermore, the matrix–vector product PTPx represents the application of

the Laplace operator, say Ls, defined on the discrete divergence-free space. The re-

duced system may be approximated as shown below:
1

Dt
PTMP þ mPTLP � 1

Dt
MsLs þ mL2

s ;
where Ms is the equivalent mass matrix for the flow vectors, and preconditioned by

the following matrix:
G ¼ 1

Dt
Ms þ mLs

� �
Ls: ð9Þ
Since the preconditioned system is spectrally equivalent to a symmetric positive

definite matrix, one can use preconditioned CG to solve the reduced system (8). Ex-

periments reported in [11] show that the preconditioner is very effective over a large

range of values for Dt and m.
To illustrate the effectiveness of the preconditioner, we consider the driven cavity

problem on a three-dimensional cube. We use the Marker-and-Cell (MAC) scheme

in which the domain is discretized by an n� n� n uniform mesh. Pressure unknowns

are defined at the nodes and velocity unknowns are defined at the mid-point of the

edges. The x-component of velocity is defined on the edges along x-axis. Similarly,

y- and z-components of the velocity are defined on the edges along y-axis and z-axis,
respectively. This gives a linear system with n3 pressure unknowns and 3n2ðn� 1Þ
velocity unknowns.

The mesh is made up of an ðn� 1Þ � ðn� 1Þ � ðn� 1Þ array of cubes. The local

divergence-free flows are defined on the faces of these cubes. The normals to the faces

are used to divide the flows into x-, y-, and z-components. The preconditioning step

requires computing z ¼ ½Dt�1I þ mLs��1L�1
s r, where Ls is a Laplace matrix with a

block diagonal structure: Ls ¼ diag½Lx; Ly ; Lz�. The matrix Lx is the Laplace operator

for x-component of the divergence-free flows, and is defined on a mesh with nodes at

the mid-points of the faces supporting these flows. The matrices Ly and Lz are defined

in a similar manner. Dirichlet boundary conditions are assumed in each case.
The influence of the mesh width h, viscosity m and time step Dt is indicated by the

following condition number estimate:
j
1

Dt
M

�
þ mL

�
¼ sþ 12

sþ h2
; s ¼ h2

mDt
:



Table 2

Effectiveness of the preconditioner for the generalized Stokes problem (s ¼ 10�3)

Mesh size Unknowns Iterations

Unpreconditioned Preconditioned

8 · 8 · 8 1856 66 8

16 · 16 · 16 15 616 208 12

32 · 32 · 32 128 000 772 17

Table 3

The number of iterations required by the preconditioned CG for various instances of the generalized

Stokes problem

Mesh size Unknowns s ¼ 10�3 s ¼ 10�1 s ¼ 100 s ¼ 101 s ¼ 103

8 · 8 · 8 1856 8 8 6 5 5

16 · 16 · 16 15 616 12 10 8 6 6

32 · 32 · 32 128 000 17 13 10 7 7

S.R. Sambavaram et al. / Parallel Computing 29 (2003) 1261–1273 1269
Table 2 shows that the number of iterations required by the CG method to solve

the reduced system in (8) is dramatically reduced by the use of the preconditioner in

(9). The preconditioning step uses the multipole-based preconditioner for the Pois-
son problem and an inner CG method for the Helmholtz problem. The diagonal

dominance of the Helmholtz problem assures rapid convergence without additional

preconditioning. The outer CG iterations were terminated when the relative residual

norm reduced below 10�4 whereas the inner iterations used a tolerance of 10�2. This

variation in the preconditioner over successive outer iterations can be accommo-

dated by using a flexible CG as the outer solver.

Table 3 shows the number of iterations required by the preconditioned CG

method for several instances of the generalized Stokes problem. Depending upon
the value of s, the condition number of the reduced system ranges from Oðh�2Þ to
Oðh�4Þ. The preconditioner ensures a stable convergence rate which is nearly inde-

pendent of problem parameters.
4. Parallel formulation

The multipole-based preconditioning step is the most expensive component of the
iterative solver. The execution time in the experiments reported in Section 3 is dom-

inated by the hierarchical multipole-based matrix–vector products with the dense

preconditioner (over 90% of total time is spent in the preconditioning step). The

focus of this section is therefore to develop efficient parallel formulations of the mul-

tipole-based preconditioning step. The remaining components of the iterative solver

include sparse matrix–vector products and vector operations, which can be parallel-

ized easily once the mesh has been partitioned across processors (using conventional

mesh partitioners such as METIS [8] and CHACO [7]).



1270 S.R. Sambavaram et al. / Parallel Computing 29 (2003) 1261–1273
As described in Section 3.1, the multipole-based preconditioner is posed as a

boundary-enforced solve in which unknown boundary charges are computed to sat-

isfy the boundary condition on potential. The interior and boundary charges are

then used to evaluate potential inside the domain. The kernel operation in each case

is a dense matrix–vector product, which is computed using a multipole-based hierar-
chical method. A single instance of this method requires a tree construction and a

tree traversal. Since the tree construction phase is relatively inexpensive (requiring

less than 2% of total time in our experiments) we focus on efficient parallelization

of the tree traversal phase. It has been observed by us and others in the past

[9,12,13] that an effective parallelization strategy can be derived from the observation

that two spatially proximate particles are likely to interact with largely the same

nodes in the tree. This leads to a partitioning strategy in which spatially proximate

particles are aggregated into a single concurrent computational unit.
In our parallel formulation, we first sort the nodes in the mesh in a proximity pre-

serving order such as a Peano–Hilbert ordering, and group a set of m nodes into a

single thread. The parameter m should be chosen in such a way that the number

of threads is greater than the number of processors p by a factor log p. This is gene-
rally adequate for ensuring load balance in the tree traversal phase as well as amor-

tizing the cost of remote communication. This parallel formulation of multipole

methods on SMP multiprocessors such as the SGI Origin and IBM p690 is observed

to yield high performance and excellent scalability.

4.1. Performance of multipole-based methods

In this section, we profile the parallel performance of the multipole operator in iso-

lation, followed by the preconditioned solve. The multipole operator is implemented

in POSIX threads and is portable across a range of serial and parallel platforms. The

performance of the operator is a function of a number of parameters––the degree of

multipole series, the a parameter of the Barnes–Hut method, and the underlying ar-
chitecture, in addition to the problem size.

Increasing the degree d of the multipole series increases the volume of data (as

Oðd2Þ) that must be communicated from remote nodes. While the corresponding

computation also increases (as Oðd2Þ), the associated per-word communication time

exceeds per-degree computation time. Therefore the efficiency can be expected to de-

crease with increasing degree. (Note that this does not hold for translation of mul-

tipole operators since translation complexity varies as Oðd4Þ.) Decreasing the a
parameter of the Barnes–Hut method increases the range of interaction, and there-
fore results in a lower efficiency for the corresponding parallel formulation.

In Table 4, we present the parallel performance of the multipole operator for a

range of problem sizes and multipole degrees. These results correspond to a single

dense matrix–vector product, which is encapsulated in an inner GMRES precondi-

tioning solve. It is evident from the table that the parallel formulation of the multi-

pole operator yields excellent performance across a range of problem sizes.

Fig. 2 shows the speedup achieved by a single multipole-based potential estima-

tion on a 32-processor SGI Origin. It is evident that for reasonable problem sizes



Table 4

Parallel execution time (in seconds) and speedups (in parenthesis) on a 32-processor SGI Origin of a single

multipole-based dense matrix–vector product

Nodes Multipole degree

d ¼ 3 d ¼ 5 d ¼ 7

4096 0.14 (20.38) 0.40 (19.31) 0.73 (19.20)

32 768 1.63 (26.04) 4.70 (25.10) 9.26 (24.27)

65 536 4.04 (28.08) 11.88 (26.53) 23.11 (25.91)

Processors

Sp
ee

du
p

5

4096 nodes
32768 nodes

linear

3530252015

35

1050

30

25

20

15

10

0

Fig. 2. Speedup on a 32-processor SGI Origin of the preconditioned solve for two problem instances with

32768 and 4096 nodes, respectively.

S.R. Sambavaram et al. / Parallel Computing 29 (2003) 1261–1273 1271
(with at least 32K nodes), the solver yields over 80% parallel efficiency on up to 32

processors. This efficiency can be expected to further improve as the number of un-

knowns is increased. This validates our claims of multipole operators as highly par-
allelizable and effective preconditioners.

4.2. Performance of multipole-based preconditioners

The preconditioning step in the CG method consists of three different types of

multipole-based dense matrix–vector products: (i) computation of boundary poten-

tial from interior charges, (ii) computation of boundary charges via an inner

GMRES method that requires boundary potential computation from boundary
charges at each iteration, and (iii) computation of interior potential from all the

charges. Since the last step of the computation involves the greatest number of po-

tential evaluations, it dominates the cost of the preconditioning step. The objective

of this set of experiments is to demonstrate that it is possible to achieve high effi-

ciency in an algorithm that requires each of these three steps (with associated data

redistribution).



Table 5

Parallel execution time (in seconds) and efficiency of the preconditioned CG method on the IBM p690 and

SGI Origin shared-memory multiprocessors

Mesh size IBM p690 SGI origin

p ¼ 1 p ¼ 8 Efficiency p ¼ 1 p ¼ 32 Efficiency

25· 25 · 25 7.72 1.21 0.80 12.06 1.17 0.32

30· 30 · 30 19.96 3.25 0.77 30.78 2.44 0.39

40· 40 · 40 31.18 4.80 0.81 48.29 3.40 0.44

50· 50 · 50 68.88 9.69 0.81 96.28 5.73 0.52

60· 60 · 60 108.17 15.47 0.87 163.63 7.41 0.69

Table 6

Parallel execution time (in seconds) and efficiency of the preconditioned CG method on x86 Solaris shared-

memory multiprocessors

Mesh size 4-processor SMP (550 MHz P3) 8-processor SMP (750 MHz Xeon)

p ¼ 1 p ¼ 4 Efficiency p ¼ 1 p ¼ 8 Efficiency

25· 25 · 25 16.51 5.73 0.72 11.44 2.73 0.52

30· 30 · 30 41.39 13.19 0.78 28.78 5.97 0.60

40· 40 · 40 67.37 20.76 0.81 47.23 7.19 0.82

50· 50 · 50 129.87 39.49 0.82 115.29 16.70 0.86

1272 S.R. Sambavaram et al. / Parallel Computing 29 (2003) 1261–1273
Table 5 shows that execution time and parallel efficiency of the preconditioned

CG solver on the IBM p690 and SGI Origin. On 8 processors of the IBM p690,

the code exhibits parallel efficiency in excess of 80% in most cases. On the 32-proces-

sor SGI Origin, the efficiency grows with the problem size, attaining a maximum va-
lue of 69%. It must be noted that the corresponding problem size per processor for

the Origin is small––contributing to the moderately high efficiency.

Table 6 shows that the parallel efficiency of the code is retained on x86 Solaris

SMPs with up to 8 Pentium processors. These results indicate that for multipole-

based preconditioners, these SMPs can be an inexpensive alternative to high-end

multiprocessors.

4.3. Implementation details

The development of our multipole-based preconditioned solver is an interesting

study in code development and robustness of parallel programming paradigms. The

CG solver is written in OpenMP, which is a directive based programming model rely-

ing on parallel for directives for partitioning loops across threads (and conse-

quently, processors). The multipole preconditioner is written using POSIX threads

(pthreads), which directly partition the computation across threads. The only conside-

ration with respect to parallelism, while integrating these codes, was to ensure that the
parallel regions of OpenMP were closed before POSIX threads were created. With this

simple guideline, the two codes were seamlessly integrated. As we have shown in our

experimental results, the parallel performance of the integrated code is excellent.



S.R. Sambavaram et al. / Parallel Computing 29 (2003) 1261–1273 1273
5. Conclusions

In this paper, we have described a strategy for preconditioning sparse linear sys-

tems with multipole operators. The approach has been used to solve a three-dimen-

sional Poisson problem. The technique has also been applied to the generalized
Stokes problem in which the reduced linear system obtained by restricting velocity

to divergence-free subspace is preconditioned by the multipole operator. Numerical

experiments presented in the paper illustrate the benefits of using multipole-based

preconditioners to improve the rate of convergence of the iterative solver. Additional

experiments indicate that parallel implementations of these techniques can achieve

high efficiency on a variety of shared-memory machines including SGI Origin,

IBM p690, and x86 SMPs.
References

[1] J. Barnes, P. Hut, A hierarchical OðnlognÞ force calculation algorithm, Nature (1986) 324.

[2] R. Coifman, V. Rokhlin, S. Wandzura, The fast multipole algorithm for the wave equation: a

pedestrian prescription, IEEE Antennas Propag. Mag. 35 (3) (1993).

[3] E. Darve, The fast multipole method (I): error analysis and asymptotic complexity, SIAM J. Numer.

Anal. 38 (1) (2000) 98–128.

[4] E. Darve, The fast multipole method: numerical implementation, J. Comp. Phys. 160 (1) (2000) 195–

240.

[5] B. Dembart, E. Yip, A 3D fast multipole method for electromagnetics with multiple levels, in:

Conference Proceedings. 11th Annual Review of Progress in Applied Computational Electromag-

netics, Monterey, CA, 1995.

[6] N. Engheta, W. Murphy, V. Rokhlin, M. Vassiliou, The fast multipole method for electromagnetic

scattering problems, IEEE Trans. Antennas Propag. 40 (6) (1992).

[7] B. Hendrickson, R. Leland, The CHACO user�s guide version 2.0, Technical Report sand94-2692,

Sandia National Laboratories, Albuquerque, NM, 1994.

[8] G. Karypis, V. Kumar, Parallel multilevel k-way partitioning scheme for irregular graphs, SIAM Rev.

41 (2) (1999) 278–300.

[9] A. Grama, V. Kumar, A. Sameh, Parallel hierarchical solvers and preconditioners for boundary

element methods, SIAM J. Sci. Comput. 20 (1) (1998) 337–358.

[10] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comp. Phys. 73 (1987) 325–

348.

[11] S.R. Sambavaram, High Performance Parallel Algorithms for Incompressible Flows, M.S. Thesis,

Texas A&M University, 2002.

[12] J.P. Singh, C. Holt, J.L. Hennessy, A. Gupta. A parallel adaptive fast multipole method, in:

Proceedings of the Supercomputing �93 Conference, 1993.

[13] M.S. Warren, J.K. Salmon, A parallel hashed oct-tree N -body algorithm, in: Supercomputing �93
Proceedings, Washington, DC, IEEE Comp. Soc. Press, 1993, pp. 12–21.

[14] S. Goreinov, E. Tyrtyshnikov, A. Yeremin, Matrix-fee iterative solution strategies for large dense

linear systems, Technical Report EM-RR 11/93, Elegant Mathematics, Inc., 1993.


	Multipole-based preconditioners for large sparse linear systems
	Introduction
	Hierarchical multipole-based methods
	Multipole-based preconditioning techniques
	Application to the Poisson problem
	Application to incompressible flows

	Parallel formulation
	Performance of multipole-based methods
	Performance of multipole-based preconditioners
	Implementation details

	Conclusions
	References


