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The numerical simulation of particulate flow, a mixtures of incompressible viscous
fluids and hundreds of rigid particles, is computational expensive and parallelism often
appears as the only way towards large scale of simulations even we have a fast Navier-
Stokes solver. The method we advocate here combines distributed Lagrange multipliers
based fictitious domain methods, which allows the use of fized structured finite element
grids on a simple shape auxiliary domain containing the actual one for the fluid flow
computations, with time discretizations by operator splitting a la Marchuk-Yanenko to
decouple the various computational difficulties associated to the simulation. This method
offers an alternative to the ALE methods investigated in [5], [7], and [8] and can be easily
parallelized due to the use of uniform structured grids and no need to generate mesh at
each time step right after finding the new position of rigid particles. Numerical results of
particulate flow obtained on a SGI Origin 2000 are presented.

-1 A model problem

For simplicity, we shall consider the motion of a unique rigid body B(t) surrounded by
a Newtonian incompressible viscous fluid (see Figure 1) in a region  C IR?. But there is
no basic difficulty to generalize the following considerations to 3-dimensional particulate
flow. The fluid flow is modeled by the following Navier-Stokes equations (with obvious
and /or classical notation):

p5 [%lti + (u- V)u] =pg+V-.0oin Q\B(t), (1.1)
V.u=0in Q\B(t), (1.2)

u(x,0) = up(x),x € Q\B(0), with V-ug =0, (1.3)
u=goonl A (1.4)
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with the stress tensor o = —pI + v;(Vu + Vu') for Newtonian fluids and B(t) =
0B(t) U B(t) where 0B(t) is the boundary of the rigid body B(t). Assuming that a
no-slip condition holds on 9B(t), the rigid body motion of B(t), combined with the in-
compressibility condition (1.2), implies that [, go-ndl’ = 0. Denoting by V (resp., w) the

= TR

Figure 1: The rigid body B and the flow region Q\B

velocity of the center of mass G (resp., the angular velocity) of the rigid body B, we have
for the motion of B the following Newton’s equations:

MV=F+Mg, Io=T, G=V, (1.5)

with the force F and torque T, resulting from the fluid-particle interaction, given by
_’
F= / ondy, T = / (Gx x on) - e3dy, (1.6)
8B(t) 8B(t)

where, in (1.6), e3 = {0, 0,1} if we assume that () is contained in the plane z,0z,. The
no-slip boundary condition mentioned above implies that on 8B(t) we have

u(x,t) = V() + w(t)es x Gx, Vx € B(). (1.7)

Of course, I is the moment of inertia of B, with respect to G.

2 A fictitious domain formulation

Through fictitious domain methods, the actual problems with complex geometries can
be solved on a simple shape auxiliary domain containing the actual one. Therefore we
can use structured uniform finite element grids and then parallel fast solvers designed on
the structured uniform grids, and avoid mesh generations at each time step right after
finding the new position of rigid particles. The fictitious domain method described below,
offers an alternative to the ALE methods investigated in [5], 7], and [8]. The basic idea
is quite simple and can be summarized as follows:

(i) Fill each particle with the surrounding fluid.
(i) Impose a rigid body motion to the fluid inside each particle.

(iii) Relaz the rigid body motion inside each particle by using a distributed Lagrange
multiplier defined over the space region occupied by the particles.
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In the following, we shall assume that the particle B is made of an homogeneous material
of density p,. Starting from the variational formulation of (1.1)-(1.7) and following steps
(i) to (iii) lead to the following generalized variational problem (for detail, see [4]) on €,
where A(t) is the distributed Lagrange multiplier forcing at time ¢ rigid body motion for
the fluid ”filling” body B:

For a.e. t >0, find {U(t), P(t), A(t), V(t), G(t),w(t)} such that
U(t) € Weo = {vIv € H(Q)?, v=go(t) on T}, P(t) € L§(Q) = {qlq € L*(©),

/ gdx = 0}, A(t) € At) = H'(B()% V() € R, G(t) € R, w(t) € R
and

pf/ vdx+pf/(U-V)U-vdx /PV vdx+21/f/D (U) : D(v)dx
§ +(1—pf/p )MV —g)- Y + (1= ps/ps)Iwb— < A, v =Y — fe; x Gx >py (2.1)
= pf/g-vdx,Vv € H}(Q)?, V{Y,6} € R,

Q

\

/ ¢V - Udx = 0, Vg € IA(Q), (2.2)
0

<u,U-V —we; X (?x >B(t)= 0, Vu € A(t), (2.3)

U(X, 0) = UO(X), X € Q, (W’ith V. U() =0 and UO'Q\F(JS = 'Ll()), (24)

U= go ON F, V(O) = Vo, w(O) = wo,G(O) = GO (25)

where D(v) = (Vv + (Vv)1)/2, G(t) = Go + [, V(s)ds, Vi (resp., wp) is the initial
velocity (resp., initial angular velocity) of the partlcle B (t) and Gy is the initial center
position of the particle. If (2.1)-(2.5) holds, it can be easily shown that U(¢)|o\55 =
u(t), P(t)lo\gm = p(t), where {u(t),p(t)} completed by {V(t),w(t)} is a solution of the
variational problem of (1.1)-(1.7).

Remark 4.1: In the case of Dirichlet boundary conditions on I, and taking the incom-
pressibility condition V - U = 0 into account, we can easily show that

2Vf/D(U) :D(v)dx = uf/ VU : Vvdx, Yv € W,, (2.6)
Q Q

which, from a computational point of view, leads to a substantial simplification in (2.1)-
(2.5). O

3 Approximation

‘With h a space discretization step we introduce a finite element triangulation T of @
and then T3, a triangulation twice coarser (in practice we should construct 7z, first and
then 75 by joining the midpoints of the edges of T, dividing thus each triangle of Ton
into 4 similar subtriangles, as shown in Figure 2, below).
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Figure 2. Subdivision of a triangle of T3,

We define the following finite dimensional spaces which approximate Wy, (t), (Ha(£2))?,
L3(2), LE(Q), respectively:

Wean (t) = {valva € (C°(Q))?, vilr € Pux Py, VT € T, valr = ga(8)}, (3.1

Wor = {valva € (C°(Q))?, valr € Py x P, VT € Ty, vi|r = 0}, (3.2)

L = {anlgn € C°(Q), anlr € P1, VT € Ton}, L%, = {qnlan € L2, /qhdx =0}; (3.3)
Q

in (3.1)-(3.3), gor(t) is an approximation of go(t) verifying / gon(t) - ndl' = 0 and P, is
r

the space of the polynomials in two variables of degree < 1.
A finite dimensional space approximating A(t) is defined as follows: let {x;}2 be a
set of points from B(t) which cover B(t) (uniformly, for example); we define then

Np
Ap(t) = {pplpy, = Zui(S(x —-x;), p; € R? Vi=1,..Ng}, (3.4)

=1

where §(-) is the Dirac measure at x = 0. Then the scalar product, < -,- > B(t), is defined
by

B “
< KUy, Vh >Bt)= Zp,i . vh(xi), V[.lh € Ah(t), Vv, € Wg()h(t) or Wop,. (35)
i=1

The approach, based on (3.4), (3.5), makes little sense for the continuous problem, but is
meaningful for the discrete problem; it amounts to forcing the rigid body motion of B(t)
via a collocation method. A similar technique has been used to enforce Dirichlet boundary

conditions by F. Bertrand, P.A. Tanguy and F. Thibault (ref. [1}).
Using above finite dimensional spaces and operator splitting ¢ la Marchuk- Yanenko

discussed in [6], we obtain the following discrete scheme:

U? = Ug, V%, w0, GO are given; (3.6)
forn > 0, assuming that U™, V", w"™ G™ are known, solve
Un+1/3 -y
pf/———ﬁ - vdx — /P"+1/3V -vdx =0, Vv € Wy,
Q At Q

(3.7)
/Q gV - UntBdx = 0, Vg € L}; {U™1/3, PrH1fs} e Witl x L2,
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Nezt, compute Unt2/3 ynt2/3 Gnt2/3 yig the solution of

Un+2/3 _ Un+1/3
[

At

- vdx + vy / VU3 . Vvdx+
0
pfj(Un+l/3 . V)Un+2/3 . de —_ pf/g . de, VV E WOh; Un+1/3 c W‘n+1
Q Q

(3.8)

Bon ?

Vn+2/3 =V" 4+ gAt, Gn—fj2/3 =G" + (V’n + V"+2/3)At/2_ (39)

Finally, compute U™ AP+ yatl ntl Gntl yig the solution of

n

( unrtl — Un+2/3 W™t —
-vd 1-— J——0
pr [ T - vix+ e
Vn+1 _ Vn+2 3
+(1 = ps/ps)M A7 :
L
=< A"l v — Y — ez x G™23x > patass, Vv € Wy, {Y, 0} € IR?,
—
< p, Ul = Vi rtley x GP423% > pupas= 0, Y € AT,
\Un+1 € Wntl \ntl ¢ AZ+2/3,V"+1 € Rz, whtl e R,

gor

(3.10)

and
G"tl = G" + (V™ + VAL /2. (3.11)

In (3.6)-(3.11) we have W = Wy n(sAt), A} = Ap(sAt), and B® = B(sAt).

4 Parellelization

Solving problem (3.7) is equivalent to computing the L?(Q)-projection of U™ on the
(affine) subset of the functions v € Wé‘ojfl such that / gV -vdx =0, Vg € L2, and that

P13 s the corresponding Lagrange multiplier in L2,. The pair {U+!/3 pr+1/3} jg
unique. To compute {U™*+1/3, PP*+1/3} we can use an Uzawa/conjugate gradient algorithm
operating in L2, equipped with the scalar product

{0.d} - /Q Vq- V¢ dx.

We obtained then an algorithm preconditioned by the discrete equivalent of —A for the
homogeneous Neumann boundary condition; such an algorithm is described in [10]. In
this article the solution of the Laplacian for the pressure mesh that functions as precondi-
tioner mentioned in the above algorithm is solved by a parallel multilevel Poisson solver,
developed by Sarin and Sameh [9]

Problem (3.8), the advection-diffusion problem, is solved by a least-squares/conjugate-
gradient algorithm [2] with two or three iterations. The arisen linear system has been
solved by the Jacobi iterative method which is easy to be parallelized.
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Finally, problem (3.10) has the following - classical - saddle-point structure
(4.1)

Az + By =b,
Bir =,

with A a symmetric and positive definite matriz. Problem (3.10) can also be solved by
an Uzawa/conjugate gradient algorithm (in which there is no need to solve any elliptic
problems); such an algorithm is described in [3] and [4].

Due to the fact that distributed Lagrange multiplier method uses uniform meshes on
a rectangular domain and relies on matrix-free operations on the velocity and pressure
unkowns, this approach simplifies the distribution of data on parallel architectures and
ensures very good load balance. The basic computational kernels comprising of vector
operations such as additions and dot product, and matrix-free matrix-vector products
yield nice scalability on distributed shared memory computers such as the SGI Origin
2000.

5 Numerical results

The parallelized code of algorithm (3.6)-(3.11) has been used to simulate the motion
of 240 particles in a 2D fluidized bed whose z; and x5 dimensions are 8.182 and 40.64,
respectively. The density of the fluid is ps = 1.0 and the density of the particles is
ps = 1.14. The viscosity of the fluid is vs = 0.01. The initial condition for the fluid flow
is u = 0 and The boundary condition on 99 of velocity field is '

0, on two vertical walls,

u= 0 .
Us(1.0 — e‘5°t) , on two horizontal walls

with Up = 0.25. The diameter d of the particles is 0.635 and the initial position of the
particles is shown in Figure 3. Initial velocity and angular velocity of the particles are
VY =0, wd=0fori=1,.. -,240. The time step is At = 0.001. The mesh sizes for the
velocity field are h, = 2.54/80, and 2.54/160. The mesh size for pressure is h, = 2h,,.

Table 1

The averaged elapsed time per time step on a SGI Origin 2000
h=1/80 h=1/160

serial code 61.90 sec. 312.28 sec.

2 processor 44.58 sec. 234.70 sec.

4 processors 23.06 sec. 121.55 sec.

8 processors 12.42 sec. 74.54 sec.

16 processors 7.33 sec. 42.20 sec.
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Figure 3. Particle position at ¢t = 0, 2, and 4 (left to right) where the solid segment of
line above the particles is the initial given bed height.

In this test case, U is not strong enough to fluidize those 240 particles (see Figure
3). In Table 1, we have observed overall algorithmic speed-up of 6.08 (resp., 5.56) on
16 processors compared with the elapsed time on 2 processors when the mesh size is
h, = 2.54/80 (resp., h, = 2.54/160). In addition, we also obtain an impressive seven to
eight fold increase in speed over the serial implementation.

6 Conclusion

We have presented in this article a distributed Lagrange multiplier based fictitious domain
method for the simulation of flow with moving boundaries. Some preliminary experiments
of parallelized code have shown the potential of this method for the direct simulation of
particulate flow with thousands of particles. In future, our goal is to develop portable 3D
code with the ability to simulate large scale problems on a wide variety of architectures.
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