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The numerical simulation of interaction between fluid and complex geometries, e.g.,
multibody store separation, is computationally expensive and parallelism often appears as
the only way toward large scale of simulations, even if we have a fast Navier-Stokes solver.
The method we advocate here is a combination of a distributed Lagrange multiplier based
fictitious domain method and operator splitting schemes. This method allows the use of
a fized structured finite element grid on a simple shape auxiliary domain containing the
actual one for the entire fluid flow simulation. It can be easily parallelized and there is
no need to generate a new mesh at each time step right after finding the new position
of the rigid bodies. Numerical results of multibody store separation in an incompressible
viscous fluid on an SGI Origin 2000 are presented.

1. FORMULATION

In this article, we consider the numerical simulation of multibody store separation
in an incompressible viscous fluid by a distributed Lagrange multiplier/fictitious domain
method (see refs. [1, 2]). The motion of the rigid body, such as the NACA0012 airfoil, is
not known a priori and is due to the hydrodynamical forces and gravity. In the simulation
we do not need to compute the hydrodynamical forces explicitly, since the interaction
between fluid and rigid bodies is implicitly modeled by the global variational formulation
at the foundation of the methodology employed here. This method offers an alternative
to the ALE methods investigated in [3], [4], and [5].

Let us first describe the variational formulation of a distributed Lagrange multiplier
based fictitious domain method. Let Q C IR%(d = 2, 3; see Figure 1 for a particular case
where d = 2) be a space region; for simplicity we suppose that 2 is filled with a Newtonian
viscous incompressible fluid (of density py and viscosity v;) and contains a moving rigid
body B of density p,; the incompressible viscous flow is modeled by the Navier-Stokes
equations and the motion of the ball is described by the Euler’s equations (an almost
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Figure 1: An example of two-dimensional flow region with one rigid body.

direct consequence of Newton’s laws of motion). With the following functional spaces
Wey(t) = {vIv € HYQ)?, v = go(t) on T},
L) = {alg € @), [ adx=0}, A@) = H'(BE)"
Q

the fictitious domain formulation with distributed Lagrange multipliers for flows around
freely moving rigid bodies (see [2] for detail) is as follows

For ae. t> 0, find {u(t),p(t), Va(t), G(t),w(t), A(t)} such that

u(t) € Wg, (1), p(t) € L3(Q), Va(t) € RY G(t) € RY, w(t) € R, A(t) € A(t)

and
( Ju
vdx+pf/(u~V)u-vdx—/pV-vdx
q Ot Q
+2yf/D( ): D(v)dx — < Av—Y — 0 x G >a
\ Q dV dw (1)
G

=(1- ——)Mg-Y+pf‘/g‘vdx, Vv € H(Q)Y, VY € RY, VO € R?,

\ s Q
/qV -u(t)dx = 0, Vq € L*(R), (2)

Q

dG
- = 3
< pm, u(t) — Vg(t) w(t ) X G( )x >A(t)— 0, Vu € A( ) (4)
Ve(0) = V?, w(0) = w’, G(0) = (5)
u(x, 0) = up(x), Vx € Q\B(0) and u(x, 0) = V° + w® x (Wc, vx € B(0). (6)
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In (1)-(6), u(= {w;}%.,) and p denote velocity and pressure respectively, A is a Lagrange
multiplier, D(v) = (Vv + Vv!)/2, g is the gravity, Vg is the translation velocity of the
mass center of the rigid body B, w is the angular velocity of B, M is the mass of the
rigid body, I is the inertia tensor of the rigid body at G, G is the center of mass of B;
w(t) = {wi(t)}i-, and 0 = {6:;}2, if d = 3, while w(t) = {0, 0,w(t)} and 8 = {0,0, 8}

if d = 2. From the rigid body motion of B, go has to satisfy [ gy - ndl' = 0, where n

r
denotes the unit vector of the outward normal at T’ (we suppose the no-slip condition on
OB). We also use, if necessary, the notation ¢(t) for the function x — ¢(x, t).

Remark 1. The hydrodynamics forces and torque imposed on the rigid body by the fluid
are built in (1)-(6) implicitly (see [2] for detail), hence we do not need to compute them
explicitly in the simulation. Since in (1)-(6) the flow field is defined on the entire domain
2, it can be computed with a simple structured grid. Then by (4), we can enforce the
rigid body motion in the region occupied by the rigid bodies via Lagrange multipliers.

Remark 2. In the case of Dirichlet boundary conditions on I', and taking the incompress-
ibility condition V - U = 0 into account, we can easily show that

21/f/D(U) :D(v)dx = Vf/VU : Vvdx, Vv € W, (7)
) Q

which, from a computational point of view, leads to a substantial simplification in (1)-(6).

2. APPROXIMATION

Concerning the space approximation of the problem (1)-(6) by finite element methods,
we use PyisoP; and P, finite elements for the velocity field and pressure, respectively (see
[6] for details). Then for discretization in time we apply an operator-splitting technique 3
la Marchuk-Yanenko [7] to decouple the various computational difficulties associated with
the simulation. In the resulting discretized problem, there are three major subproblems:
(i) a divergence-free projection subproblem, (ii) a linear advection-diffusion subproblem,
and (iii) a rigid body motion projection subproblem. Each of these subproblems can be
solved by conjugate gradient methods (for further details, see ref, [2]).

3. PARALLELIZATION

For the divergence-free projection subproblems, we apply a conjugate gradient algo-
rithm preconditioned by the discrete equivalent of —A for the homogeneous Neumann
boundary condition; such an algorithm is described in [8]. In this article, the numerical
solution of the Neumann problems occurring in the treatment of the divergence-free con-
dition is achieved by a parallel multilevel Poisson solver developed by Sarin and Sameh
[9].

The advection-diffusion subproblems are solved by a least-squares/conjugate-gradient
algorithm [10] with two or three iterations at most in the simulation. The arising linear
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systems associated with the discrete elliptic problems have been solved by the Jacobi
iterative method, which is easy to parallelize.

Finally, the subproblems associated with rigid body motion projection can also be
solved by an Uzawa/conjugate gradient algorithm (in which there is no need to solve any
elliptic problems); such an algorithm is described in [1] and [2].

Due to the fact that the distributed Lagrange multiplier method uses uniform mesheg
on a rectangular domain and relies on matrix-free operations on the velocity and pressure
unknowns, this approach simplifies the distribution of data on parallel architectures and
ensures very good load balancing. The basic computational kernels comprising of vector
operations such as additions and dot products, and matrix-free matrix-vector products
yield nice scalability on distributed shared memory computers such as the SGI Origin

2000.

4. NUMERICAL RESULTS

In this article, the parallelized code of algorithm (1)-(6) has been applied to simulate
multibody store separation in a 2D channel with non-spherical rigid bodies. There are
three NACAQ012 airfoils in the channel. The characteristic length of the fixed NACA0012
airfoil is 1.25 and those of the two moving ones are 1. The z; and z2 dimensions of the
channel are 16.047 and 4 respectively. The density of the fluid is py = 1.0 and the density
of the particles is p, = 1.1. The viscosity of the fluid is vy = 0.001. The initial condition
for the fluid flow is u = 0. The boundary condition on 0% of velocity field is

0, if o = —2, or, 2,

u(xb T2, t) = 0 .
, if x; = —4, or, 16.047
((1.0 — e750t)(1 — x§/4)> I

for t > 0. Hence the Reynolds number is 1000 with respect to the characteristic length
of the two smaller airfoils and the maximal in-flow speed. The initial mass centers of
the three NACA0012 airfoils are located at (0.5,1.5), (1,1.25), and (—0.25,1.25). Initial
velocities and angular velocities of the airfoils are zeroes. The time step is At = 0.0005.
The mesh size for the velocity field is h, = 2/255. The mesh size for pressure is hy, = 2h,.

An example of a part of the mesh for the velocity field and an example of mesh points
for enforcing the rigid body motion in NACA0012 airfoils are shown in Figure 2. All three
NACA0012 airfoils are fixed up to ¢t = 1. After t = 1, we allow the two smaller airfoils
to move freely. These two smaller NACA0012 airfoils keep their stable orientations when
they are moving downward in the simulation. Flow field visualizations and density plots
of the vorticity obtained from numerical simulations (done on 4 processors) are shown in
Figures 3 and 4.

In Table 1, we have observed overall algorithmic speed-up of 15.08 on 32 processors,
compared with the elapsed time on one processor. In addition, we also obtain an impres-
sive about thirteen-fold increase in speed over the serial implementation on a workstation,
a DEC alpha-500au, with 0.5 GB RAM and 500MHz clock speed.

P ¢ N o N o



333

Figure 2. Part of the velocity mesh and example of mesh points for enforcing the rigid
body motion in the NACA0012 airfoils with h, = 3/64.

5. CONCLUSION

We have presented in this article a distributed Lagrange multiplier based fictitious
domain method for the simulation of flow with moving boundaries. Some preliminary
experiments of parallelized code have shown the potential of this method for the direct
simulation of complicated flow. In the future, our goal is to develop portable 3D code -
with the ability to simulate large scale problems on a wide variety of architectures.

Table 1 :
Elapsed time/time step and algorithmic speed-up on a SGI Origin 2000

Elapsed Time  Algorithmic speed-up

1 processor* 146.32 sec. 1

2 processors 97.58 sec. 1.50
4 processors 50.74 sec. 2.88
8 processors 27.25 sec. 5.37
16 processors 15.82 sec. 9.25
32 processors 9.70 sec. 15.08

* The sequential code took about 125.26 sec./time step on a DEC alpha-500au.
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Figure 3. Flow field visualization (top) and density plot of the vorticity (bottom) around
the NACA0012 airfoils at ¢ =1.5.




[oo2zoic,
SIS LS
poooiiizelon,
iyt ASIII
TSI

.
focrmrrnsic.

O s
Coeriniimrr fl P

o .

bt b df s 2

TTTTITITJ223I3I]I0N

PR

N
ANANNNNNNNT
TIIIIITANAANN

M
N
NN
N
7 NN NI
) RNy
" S PEeieiss
Jins
. AR
n y12222
A S
Al 2
(, 3 //////////
A

7.
7.
A
7
7
7
7
’
’
»
.

5
£
A IAPAAAIASS
AL 7Y ’////
7 3
22277 -
rs

it 2

e
o e o
e,

o

335

Figure 4. Flow field visualization (top) and density plot of the vorticity (bottom) around
the NACA0012 airfoils at ¢ =2.
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