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We present an overview of the design of software packages called Particle Movers that
have been developed to simulate the motion of particles in two and three dimensional
domains. These simulations require the solution of nonlinear Navier-Stokes equations
for fluids coupled with Newton’s equations for particle dynamics. Furthermore, realistic
simulations are extremely computationally intensive, and are feasible only with algorithms
that can exploit parallelism effectively. We describe the computational structure of the
simulation as well as the data objects required in these packages. We present a brief
description of a particle mover code in this framework, concentrating on the following
features: design modularity, portability, extensibility, and parallelism. Simulations on the
SGI Origin2000 demonstrate very good speedup on a large number of processors.

1. OVERVIEW

The goal of our KDI effort is to develop high-performance, state-of-the-art software
packages called Particle Movers that are capable of simulating the motion of thousands of
particles in two dimensions and hundreds in three dimensions. Such large scale simulations
will then be used to elucidate the fundamental dynamics of particulate flows and solve
problems of engineering interest. The development methodology must encompass all
aspects of the problem, from computational modeling for simulations in Newtonian fluids
that are governed by the Navier-Stokes equations (as well as in several popular models of
viscoelastic fluids), to incorporation of novel preconditioners and solvers for the nonlinear
algebraic equations which ultimately result. The code must, on the one hand, be high-
level, modular, and portable, while at the same time highly efficient and optimized for a
target architecture.

We present a design model for large scale parallel CFD simulation, as well as the PM
code developed for our Grand Challenge project that adheres to this model. It is a true
distributed memory implementation of the prototype set forth, and demonstrates very
good scalability and speedup on the Origin2000 to a maximum test problem size of over
half a million unknowns. Its modular design is based upon the GVec package [14] for
PETSc, which is also discussed, as it forms the basis for all abstractions in the code.
PM has been ported to the Sun SPARC and Intel Pentium running Solaris, IBM SP2
running AIX, Origin2000 running IRIX, and Cray T3E running Unicos with no explicit
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code modification. The code has proved to be easily extensible, for example in the rapid
development of a fluidized bed experiment from the original sedimentation code. The
code for this project was written in Mathematica and C. The C development used the
PETSc framework developed at Argonne National Laboratory, and the GNU toolset.

The goal of our interface development is mainly to support interoperability of scientific
software. “Interoperability” is usually taken to mean portability across different architec-
tures or between different languages. However, we propose to extend this term to cover
what we call algorithmic portability, or the ability to express a mathematical algorithm
in several different software paradigms. The interface must also respect the computa-
tional demands of the application to enable high performance, and provide the flexibility
necessary to extend its capabilities beyond the original design. We first discuss existing
abstractions present in most popular scientific software frameworks. New abstractions
motivated by computational experience with PDEs arising from fluid dynamics applica-
tions are then introduced. Finally, the benefits of this new framework is illustrated using
a novel preconditioner developed for the Navier-Stokes equations. Performance results on
the Origin2000 are available elsewhere [11].

2. EXISTING ABSTRACTION

The existing abstractions in scientific software frameworks are centered around basic
linear algebra operations necessary to support the solution of systems of linear equations.
The concrete examples from this section are taken from the PETSc framework [18], devel-
oped at Argonne National Laboratory, but are fairly generic across related packages [10].
These abstractions differ from the viewpoint adopted for the BLAS libraries [4] in the ac-
cessibility of the underlying data structure. BLAS begins by assuming a data format and
then formulates a set of useful operations which can be applied to the data itself. More-
over, the data structure itself is typically exposed in the calling sequence of the relevant
function. In the data structure neutral model adopted by PETSc, the object is presented
to the programmer as an interface to a certain set of operations. Data may be read in or
out, but the internal data structure is hidden. This data structure independence allows
many different implementations of the same mathematical operation.

The ability to express a set of mathematical operations in terms of generic interfaces,
rather than specific operations on data, is what we refer to as algorithmic portability.
This capability is crucial for code reuse and interoperability [5]. The operations of basic
linear algebra have been successfully abstracted in to the Vector and Matrix interfaces
present in PETSc. A user need not know anything about the internal representation
of a vector to obtain its norm. Krylov solvers for linear systems are almost entirely
based upon these same operations, and therefore have also been successfully abstracted
from the underlying data structures. Even in the nonlinear regime, the Newton-Krylov
iteration adds only further straightforward vector operations to the linear solve. These
abstractions fail when we discretize a continuous problem, or utilize information inherent
in that process to aid in solving the system. A richer set of abstractions is discussed in
the next section.
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3. HIGHER LEVEL ABSTRACTIONS

To obtain a generic expression of more modern algorithms, we must supplement our
set of basic operations and raise the level of abstraction at which we specify algorithmic
components [3,2]. For instance, in most multilevel algorithms there is some concept of
a hierarchy of spaces, and in finite element based code this hierarchy must be generated
by a corresponding hierarchy of meshes [7,1,17,19]. Thus the formation of this hierarchy
should in some sense be a basic operation. The detailed nature of the meshes affects the
performance of an algorithm but not its conceptual basis; however, it might be necessary
to specify nested meshes or similar restrictions. Raising the level of abstraction, by making
coarsening a basic operation, allows the specification of these algorithms independently
of the detailed operations on the computational mesh. We propose a set of higher level
abstractions to encapsulate solution algorithms for mesh-based PDEs that respects the
current PETSc-like interface for objects such as vectors and matrices.

A Mesh abstraction should allow the programmer to interrogate the structure of the
discrete coordinate system without exposing the details of the storage or manipulation.
Thus it should allow low level queries about the coordinates of nodes, elements containing
a given node or generic point, and also support higher level operations such as iteration
over a given boundary, automatic partitioning and automatic coarsening or refinement.
In the GVec libraries, a Partition interface is also employed for encapsulating the layout
of a given mesh over multiple domains.

A mesh combined with a discretization prescription on each cell provides a description
of the discrete space which we encapsulate in the Grid interface. The Grid provides
access to both the Mesh and a Discretization. The Discretization for each field which
understands how to form the weak form of a function or operator on a given cell of
the mesh. In GVec, Operator abstractions are used to encapsulate the weak form of
continuous operators on the mesh, and provide an interface for registration of user-defined
operators. This capability is absolutely essential as the default set of operators could never
incorporate enough for all users. Finally, the Grid must maintain a total ordering of the
variables for any given discretized operator or set of equations. In GVec, the VarOrdering
interface encapsulates the global ordering and ties it to the nodes in the mesh, while the
LocalVarOrdering interface describes the ordering of variables on any given node.

The Grid must also encapsulate a given mathematical problem defined over the mesh.
Thus it should possess a database of the fields defined on the mesh, including the number
of components and discretization of each. Furthermore, each problem should include some
set of operators and functions defining it which should be available to the programmer
through structured queries. This allows runtime management of the problem which can be
very useful. For example, in the Backward-Euler integrator written for GVec, the identity
operator is added automatically with the correct scaling to a steady-state problem to
create the correct time-dependence. The only information necessary from the programmer
is a specification of the the fields which have explicit time derivatives in the equation.
This permits more complicated time-stepping schemes to be used without any change
to the original code. The Grid should also maintain information about the boundary
conditions and constraints. In GVec, these are specified as functions defined over a subset
of mesh nodes identified by a boundary marker, which is given to each node during
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mesh generation. This allows automatic implementation of these constraints with the
programmer only specifying the original continuous representation of the boundary values.

3.1. Node Classes

In order to facilitate more complex distributions of variables over the mesh, GVec
employs a simple scheme requiring one extra integer per mesh node. We define a class
as a subset of fields defined on some part of the mesh. Each node is assigned a class,
meaning that the fields contained in that class are defined on that node. For example, in
a P2/P1 discretization of the Stokes equation on a triangular mesh, the vertices might have
class 0, which includes velocity and pressure, whereas the midnodes on edges would have
class 1, including only velocity. Thus this scheme easily handles mixed discretizations.
However, it is much more flexible. Boundary conditions can be implemented merely by
creating a new class for the affected nodes that excludes the constrained fields, and the
approach for constraints is analogous. This information also permits these constraints to
be implemented at the element level so that explicit elimination of constrained variables is
possible, as well as construction of operators over only constrained variables. This method
has proven to be extremely flexible while incurring minimal overhead or processing cost.

4. MULTILEVEL PRECONDITIONING FOR NAVIER-STOKES

As an example of the utility of higher level abstractions in CFD code, we present a
particulate flow problem [9,11] that incorporates a novel multilevel preconditioner [17] for
the Navier-Stokes equations augmented by constraints at the surface of particles [13]. The
fluid obeys the Navier-Stokes equations and the particles each obey Newton’s equations.
However, the interior forces need not be explicitly calculated due to the special nature of
our finite element spaces [8,9,15]. These equations are coupled through a no-slip boundary
condition at the surface of each particle. The multilevel preconditioner is employed to
accelerate the solution of the discrete nonlinear system generated by the discretization '
procedure.

4.1. Preconditioning .
The nonlinear system may be formulated as a saddle-point problem, where the upper
left block A is a nonlinear operator, but the constraint matrix B is still linear:

(o0 9)(3)-(3) 8

Thus we may approach the problem exactly as with Stokes, by constructing a divergence-
less basis using a factorization of B. The ML algorithm constructs the factorization

PTBV = (18 ) , @)

viv = 1, (3)
where V is unitary, D is diagonal, but P is merely full rank. If P were also unitary we
would have the SVD, however this is prohibitively expensive to construct. Using this fac-

torization, we may project the problem onto the space of divergenceless functions spanned
by P,. Thus we need only solve the reduced nonlinear problem (4) in the projected space

P} APy = PJ (f — ARD™"V7g) (4)
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The efficiency issues for this scheme are the costs of computing, storing, and applying
the factors, as well as the conditioning of the resulting basis. The ML algorithm can
store the factors in O(N) space and apply them in O(N) time. The conditioning of the
basis can be guaranteed for structured Stokes problems, and good performance is seen
for two and three dimensional unstructured meshes. The basis for the range and null
space of B are both formed as a product of a logarithmic number of sparse matrices.
The algorithm proceeds recursively, coarsening the mesh, computing the gradient at the
coarse level B, and forming one factor at each level. The algorithm terminates when the
mesh is coarsened to a single node, or at some level when an explicit QR decomposition
of B can be accomplished. In a parallel setting, the processor domains are coarsened to
a single node and then a QR decomposition is carried out along the interface.

4.1.1. Software Issues

The ML algorithm must decompose the initial mesh into subdomains, and in each
domain form the local gradient operator. Thus if ML is to be algorithmically portable,
we must have basic operations expressing these actions. The ability of the Mesh interface
to automatically generate this hierarchy allows the programmer to specify the algorithm
independently of a particular implementation, such as a structured or unstructured mesh.
In fact, the convergence of ML is insensitive to the particular partition of the domain
so that a user may select among mesh coarsening algorithms to maximum other factors
in the performance of the code. Using the Grid interface to form local gradients on
each subdomain frees the programmer from the details of handling complex boundary
conditions or constraints, such as those arising in the particulate flow problem. For
example, the gradient in the particulate flow problem actually appears as

b= (PEIBF> ’ (5)

where B; denotes the gradient on the interior and outer boundary of the domain, Br is the
gradient operator at the surface of the particles, and P is the projector from particle un-
knowns to fluid velocities at the particle surface implementing the no-slip condition. This
new gradient operator has more connectivity and more complicated analytic properties.
However, the code required no change in order to run this problem since the abstractions
used were powerful enough to accommodate it.

4.1.2. Single Level Reduction
We begin by grouping adjacent nodes into partitions and dividing the edges into two
groups: interior edges connecting nodes in one partition, and boundary edges connecting

partitions. The gradient matrix may be reordered to represent this division, BI)'
r

The upper matrix B is block diagonal, with one block for each partition. Each block
represents the restriction of the gradient operator to that cluster. Furthermore, we may

factor each block independently using the SVD, so that if UB;VT = (DO') we may factor

each domain independently. We now use these diagonal matrices to reduce the columns
in BpVT by block row reduction. A more complete exposition may be found in [13].



278

4.1.3. Recursive Framework

We may now recursively apply this decomposition to each domain instead of performing
an exact SVD. The factorization process may be terminated at any level with an explicit
QR decomposition, or be continued until the coarsest mesh consists of only a single node.
The basis P is better conditioned with earlier termination, but this must be weighed
against the relatively high cost of QR factorization. Thus, we have the high level algorithm

1. Until numNodes < threshold do:

(a) Partition mesh

(b) Factor local operator
(c) Block reduce interface
(d) Coarsen mesh

2. QR factor remaining global operator

5. CONCLUSIONS

The slow adoption of modern solution methods in large CFD codes highlights the
close ties between interoperability and abstraction. If sufficiently powerful abstractions
are not present in a software environment, algorithms making use of these abstractions
are effectively not portable to that system. Implementations are, of course, possible using
lower level operations, but these are prone to error, inflexible, and very time-consuming to
construct. The rapid integration of the ML preconditioner into an existing particulate flow
code[16] demonstrates the advantages of these more powerful abstractions in a practical
piece of software. Furthermore, in the development and especially in the implementation
of these higher level abstractions, the architecture must be taken into account. It has
become increasingly clear that some popular computational kernels, such as the sparse
matrix-vector product, may be unsuitable for modern RISC cache-based architectures[17].
Algorithms such as ML which possess kernels that perform much more work on data before
it is ejected from the cache should be explored as an alternative or supplement to current
solvers and preconditioners.
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