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The convergence of iterative methods used to solve the linear systems arising in incom-
pressible flow problems is sensitive to flow parameters such as the Reynolds number, time
step and the mesh width. Incompressibility of the fluid makes the systems indefinite, and
poses difficulty for the iterative solvers. This paper outlines a class of solenoidal basis
methods that use local solenoidal functions to restrict fuid velocity to divergence-free
subspace. An optimal preconditioner based on the Laplace operator is used to solve the
resulting ill-conditioned reduced system. Experimental results for two and three dimen-
sional problems show that the convergence of the proposed algorithm is optimal across
the range of flow parameter variation. Scalability of the algorithm is suggested by the
experiments on the SGI Origin 2000.

1. INTRODUCTION

Large-scale simulation of incompressible flow is one of the most challenging application.
Realistic simulations are possible only with the use of sophisticated modeling techniques,
preconditioned iterative methods and advanced parallel architectures. The motivation
for this work is to develop an effective approach for solving the linear systems arising in
incompressible flows with high efficiency on a multi-processor platform.

The principles of classical mechanics, thermodynamics, and laws of conservation of
mass, momentum, and energy govern the motion of the fluid. Law of conservation of
momentum for incompressible, viscous flow in a region  with boundary 952 is captured
by Navier-Stokes equation given by
86—?+u-Vu=—Vp+%
where p = p(x,t) is the pressure, R is the Reynolds number, and u = u(x,t) is the
velocity vector at x. The law of conservation of mass for incompressible fluids gives rise
to the continuity equation

Au, (1)

V-u=0 in Q. ()
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Appropriate boundary conditions may be specified for fluid velocity. Suitable discretiza-
tion and linearization of the equations (1)—(2) result in the following linear system

EXINRH! ®

where BT is the discrete divergence operator and A is given by

1 1
A_AtM+C+RL’ (4)
in which M is the mass matrix, L is the Laplace matrix, and C is the matrix arising from
the convection term. When operator splitting is used to separate the linear and non-linear
terms, we obtain the generalized Stokes problem (GSP) with a symmetric positive definite
A given as

1 1
A= AtM + RL. (5)

The linear system (3) is large and sparse. Although direct methods can be used to
solve this system, they require prohibitively large amount of memory and computational
power. The inherent sequential nature of these techniques limits the efficiency on parallel
architectures. In contrast, iterative methods require significantly less memory and are
well suited for parallel processing. These methods can be made more reliable by using
preconditioning techniques which accelerate convergence to the solution. In order to make
iterative methods more competitive, one must devise robust preconditioning techniques
that are not only effective but parallelizable as well.

This paper presents a preconditioned solenoidal basis method to solve the linear system
(3) arising in the generalized Stokes problem. Section 2 describes the solenoidal basis
method and section 3 outlines the preconditioning scheme. Experiments for the driven
cavity problem in 2D and 3D are presented in section 4.

2. A SOLENOIDAL BASIS METHOD

Incompressible fluid flow can be viewed as compressible flow with additional constraint
that fluid velocity should be divergence free. This incompressibility constraint in (3)
BTy = 0, makes the linear system indefinite. This indefinite nature is the main cause
of difficulty in solving the system via preconditioned iterative methods. The degree of
difficulty also depends upon the nature of matrix A which is affected by the Reynolds
number R and the choice of time step At and mesh width.

Solenoidal basis methods are a class of techniques that use a divergence-free or solenoidal
basis to represent velocity. A discrete solenoidal basis can be obtained by computing the
null space of the divergence operator BT. A matrix P € R™ "™ that satisfies the
condition BTP = 0 is used to compute divergence-free velocity via the matrix-vector
product u = Pz, for an arbitrary z € R(™ ™. Clearly, such a velocity satisfies the
continuity constraint BTu = 0. By restricting « to the column space of P and pre-
multiplying the first block of (3) by PT, we get the following reduced system

PTAPz = PTf, (6)
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which may be solved by a suitable iterative method such as the conjugate gradients (CQ)
method, GMRES, etc. (see, e.g., [6]). Once z has been calculated, velocity is computed
as

u = Pz, (7)
and pressure is recovered by solving the least squares problem iteratively
Bp=~ f — APx. (8)

The success of the solenoidal basis method depends on a number of factors. First, the
matrix-vector product with the reduced system must be computed efficiently. Second,
one must develop a robust and effective preconditioner for the reduced system. Finally,
these computations must be implemented efficiently on a parallel processor.

At each iteration, the matrix-vector product with PT AP is computed as a series of three
matrix-vector products with P, A, and P, respectively, in that order. Each column of
P represents a solenoidal function with a localized region of influence on the mesh. As
an example, consider a uniform 3D mesh to discretize a driven cavity problem via the
Marker-and-Cell (MAC) scheme. The MAC scheme assigns pressure unknowns to each
node and velocity unknowns to each edge. One can construct a local circulating flow by
assigning appropriate velocity to the edges forming a face of a given cell in this mesh. Such
a flow is represented as a vector, and the set of these vectors form the columns of P. The
localized nature of these flows leads to a sparse P with a nonzero structure resulting from
the underlying mesh. This may be used to compute Pz and PTy efficiently in parallel.
Furthermore, one can apply P and P to a vector without actually constructing P itself.
This feature has been exploited to develop a matrix-free implementation.

We proposed the use of local solenoidal functions for 2D flows in (7], where we presented
a scheme to construct a solenoidal basis derived from circulating flows or vortices on uni-
form meshes. We also outlined an optimal preconditioning technique for the generalized
Stokes problem. In [8], we introduced a linear algebraic technique to construct a hierarchi-
cal basis of solenoidal functions which is applicable to the generalized Stokes problem on
arbitrary meshes. This approach was successfully applied to 2D particulate flow problems
using structured meshes (3,5,9] and was extended to unstructured meshes [3]. Details of a
distributed memory parallel implementation were presented in [3]. Several schemes have
been proposed for computing discrete solenoidal functions [2,1]. Unlike other schemes, our
approach can be formulated as a linear-algebraic method which is applicable to arbitrary
discretization schemes including finite element and finite volume methods.

In this paper, we extend the solenoidal basis method to 3D problems defined on uniform
meshes. In 3D, the solenoidal basis P constructed from local solenoidal functions turn out
to be rank-deficient due to linear dependence between the local circulating flows. However,
it can be shown that the space of discrete solenoidal functions is contained within the
column space of P. Since the reduced system is consistent despite the rank-deficiency of
the system matrix, it can be solved by preconditioned CG or GMRES. Iterative solution
of the driven cavity problem via the MAC scheme exhibits optimal convergence rate.
The parallel implementation demonstrates good speed improvement on a medium-sized
multiprocessor.
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3. ACCELERATING CONVERGENCE BY PRECONDITIONING

Effective preconditioning of the reduced system is critical to the overall success of the
solenoidal basis method. The design of the preconditioner becomes challenging because
the reduced system matrix PTAP is ever explicitly formed. One can take advantage of
the analogy between matrix vector products involving P in the solenoidal basis method
with vortex methods to construct the preconditioner.

Vortex methods are a class of techniques that solve the vorticity transport equation
instead of the Navier-Stokes equation. Vorticity field ¢ is expressed in terms of velocity
u and velocity is in turn obtained by applying curl operator on scalar stream function 9.
In particular, vorticity is given as € = V x u and velocity is expressed as u = V x 9. The
relation between £ and v is given by the Poisson equation A¢ = —1) The matrix vector
product u = Py computes the velocity vector function u = V x y and the matrix vector
product w = PTu computes the vorticity vector function w = V x u. Further more, y
and w are analogous to the velocity potential ¢ and £. The relation w = V x Vxy
can be implemented via matrix vector product w = PTPy. Since, w and Yy are assumed
divergence-free, it is easy to show that —w = Ay, which is identical to the relation between
¥ and &.

Observing that the product Pz and PTy compute the discrete curl of the functions
represented by z and y, respectively, it can be inferred that the product y = PT Py
represents V X V x w in a discrete setting. Thus, the matrix PTP can be shown to be
equivalent to the Laplace operator on the solenoidal function space. This suggests the
following preconditioner for the generalized Stokes problem:

1 1
M4+ =
A TR
where L, is the Laplace operator for the local solenoidal functions. Since the precondi-
tioned system is spectrally equivalent to a symmetric positive definite matrix, one can use
preconditioned CG to solve the reduced system (6).

G = [ Ls] L., 9)

4. EXPERIMENTS

In this section, we present results of numerical experiments for the driven cavity prob-
lem. The preconditioned solenoidal basis method was used to solve the linear system
arising in the generalized Stokes problem. The experiments were conducted for 2D unit
square and 3D unit cube domains. In each case, the MAC scheme was used to discretize
the domain. The linear system was solved under various physical conditions by changing
the ratio h?R/At which determines the condition number of A. For the 3D driven cavity
problem, the condition number of A is approximated by

2
_ R’R/At+12 | (10)

w(A4) = R2RJAt + B2’

Hence, £(A4) < 2 when h®R/At > 12, and k(A) ~ h~2 when h2R/At < 12. This ratio
also captures the difficulty associated with solving the linear system when parameters
such as mesh width (k), Reynolds number (R) and time step (At) are changed.
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The first set of experiments highlights the effectiveness of the preconditioner in accel-
erating convergence of the CG method. The linear system in the preconditioning step
was solved by CG as well, resulting in an inner-outer scheme. The iterations were ter-
minated when the relative residual was reduced below 107%. A much larger tolerance
(1072) was used for the inner iterations. Table 1 presents the iterations required by the
preconditioned CG method for several instances of h2R/At. The preconditioner ensures
a stable convergence rate independent of the values of various parameters h, R, and At,
suggesting optimality of the preconditioner. The overall computation time was reduced
significantly by using a large threshhold for the inner CG iterations. This choice did not
adversely effect convergence of the outer iterations.

Table 1
Convergence rate independent of mesh width, R and At.
h*R/At
Mesh Reduced system size | 10> [ 10° | 10**
2D
128 x 128 16,128 12 7 4
256 x 256 65,024 12 7 4
512 x 512 261,120 12 7 4
3D
8 x 8 x8 1,176 8 6 5
16 x 16 x 16 10,800 12 8 6
32 x 32 x 32 92,256 16 9 7

4.1. Parallel Performance

The solution methodology can be effectively parallelized. On a multi-processor machine
with g processors, the domain is partitioned into ¢ partitions, and the underlying mesh
is distributed across processors. Parallelization of the computation of P and matrix
vector products with P and PT is fairly straight forward (see, e.g., [7]). Other operations
such as vector additions, inner-products and matrix vector products with A are also
easy to parallelize. The reader may refer to the texts [6,4]. The linear system in the
preconditioning step can be solved via parallel versions of fast poisson solvers, domain
decomposition, multi-grid, and multi-level methods.

A second set of experiments focused on the parallelization of the proposed algorithm.
All the elementary matrix-vector products were parallelized by distributing the grid
equally among the processors. The algorithm was parallelized using OpenMP. Table 2
indicates that the algorithm can be parallelized with high efficiency on a multi-processor
platform such as the SGI Origin 2000.

5. CONCLUSIONS

This paper presents a high performance algorithm for solving the linear systems arising
from incompressible flow problems. The proposed solenoidal basis method uses discrete
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Table 2
A parallel implementation using OpenMP demonstrates good speed improvement on 16
processors of SGI Origin 2000.

Mesh size = 256 x 256 x 256
Processors | Time Speedup
1 2684.10 1.0
2 1552.95 1.7
4 961.71 2.8
8 473.67 5.7
16 278.88 9.5

local solenoidal functions to represent divergence-free velocity. A reduced system is solved
in the divergence-free subspace via a preconditioned iterative scheme. An optimal pre-
conditioner has been suggested which assures stable convergence regardless of parameters
such as the mesh width, Reynolds number, and the time step. An inexpensive low accu-
racy iterative solve for the preconditioner appears to be sufficient for optimal convergence.
The method is parallelizable with high efficiency.
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