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Abstract:  
The problem of evaluating the potential due to a set of particles is an important and time-
consuming one. The development of fast treecodes such as the Barnes-Hut and Fast 
Multipole Methods for n-body systems has enabled large scale simulations in astrophysics [9, 
10, 13] and molecular dynamics [1]. Coupled with efficient parallel processing, these 
treecodes are capable of yielding several orders of magnitude improvement in 
performance [6, 14, 15]. In addition, treecodes have applications in the solution of dense 
linear systems arising from boundary element methods [3, 4, 5, 11, 12]. Using a p-term 
multipole expansion, the FMM reduces the complexity of a single timestep from  to 

 and Barnes-Hut method reduces it to  for a uniform distribution. In this 

paper, we analyze the approximations introduced by these methods. We describe an 
algorithm that reduces the error significantly by selecting the multipole degree appropriately 
for different clusters. Furthermore, we show that for practical problem sizes, this increases 
the computational complexity marginally. We support our theoretical result with experiments 
in the context of particle simulations as well as boundary element methods. Our POSIX 
threads-based treecode yields excellent speedups on a 32 processor SGI Origin 2000, even for 
relatively small problems.  
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Global Error Estimate for Barnes-Hut Method 
  

The potential due to a set of charges located within a sphere of radius  at an observation point at 
distance r from the origin can be expressed as a multipole series. The error in a truncated multipole 
series of degree p was first derived by Greengard and Rokhlin [7, 8]. The following theorem 
from [7] describes the multipole expansion and the associated error. 
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Proof 

See [7, page 54,]. 

In Barnes-Hut method, the potential at a point is computed as a sum of the contributing potentials 
from clusters of particles. An interaction with a cluster is computed only if the point is well-
separated from the cluster. This is enforced using a multipole acceptance criterion such as the  -
criterion which requires that the ratio of the distance between the point and the center of mass of 
the cluster and the dimension of the box enclosing the cluster be greater than  for a constant  
less than unity. Theorem 1 can be used to estimate the error in Barnes-Hut method.  

    

Proof 
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The  -criterion of the Barnes-Hut method ensures that  . Subtracting unity and 
inverting, we obtain the following relation 

  

From Thm. 1,  

  

which proves the theorem.  

This theorem illustrates the main problem with aggregate error in Barnes-Hut method. The error 
grows linearly with the net charge of the particle clusters. Moreover, the size of the largest cluster 
with which an interaction is computed can be shown to be within constant factor of the total 
simulation domain. Thus, the aggregate error can be large, and even unbounded for unstructured 
distributions. For instance, in applications such as protein simulations, the charge density is largely 
uniform across the domain of simulation; therefore, the overall error in the Barnes-Hut method 
grows linearly with the magnitude of charge in the system. In general, for large simulation 
domains, the aggregate error may become unacceptable.  

Fortunately, this theorem also suggests an alternative strategy to control the error. By increasing 
the polynomial degree p for clusters with increased net charge A, the error in each interaction can 
be restricted to a constant value. The error in potential at each point would then be proportional to 
the total number of interactions. The multipole acceptance criterion along with the hierarchical 
decomposition of the domain can be used to establish the following:  

! the number of interactions with clusters of a particular size are bounded by constant, and  
! the number of distinct sizes of clusters is equal to the height of the decomposition tree.  

For structured distributions with uniform charge density, this translates to  aggregate error. 
We now prove these assertions and outline an improved algorithm for selecting the polynomial 
degree p to restrict the error. 

In order to bound the number of interactions for fixed size clusters, we first establish limits on the 
ratio  .  

    

Proof 

The interaction of particle s with box b indicates that s could not interact with its parent box B
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based on the  -criterion (see Fig. 1). Therefore, 

  

where  and  .  

     
Figure 1: Establishing bounds on  in Barnes-Hut method.  

Using the triangle inequality  , it can be shown that  

  

which completes the proof.  

As  is reduced, this bound tends to  , indicating a tight bound. It is now easy to 
show that the number of interactions with a box of size  is bounded by a constant.  

    

Proof 

Lemma 1 shows that  ; therefore, the centers of all boxes of size  lie within an 
annular region defined by the following relation: 

  

and the boxes themselves lie completely within the annular region:  

  

The ratio of the volume of this annular region and the volume of a single box gives an upper bound 
on the number of boxes of size  . For a three dimensional problem,  
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where  is the maximum number of boxes of a fixed size interacting with any particle.  

The polynomial degree p needs to be selected for each particle-cluster interaction in order to 
restrict the error. The next theorem shows how to determine the multipole degree to keep 
interaction error constant.  

    

Proof 

Let  be a cluster of particles in a box of size  at the jth level of the tree. To fix the error for 
clusters at different levels in the tree, we force the bound on error (Thm. 2) to be equal: 

  

for the pair of clusters  and  . This simplifies to  

  

where  . The theorem follows from the choice of  as the smallest net charge cluster 

at lowest level.  

In the original multipole method, for all other domains with higher aggregate charge, this error 
criteria will be violated. In general, we select a minimum degree of interaction  associated with a 
threshold value  and increase multipole degree for larger cluster sizes. For structured domains, it 
is easy to control the polynomial degree in this manner since increase in the polynomial degree is 
not large. The multipole series are computed a-priori to the maximum required degree (this is 
possible since all parameters for the degree of an interaction are available at the time of tree 
construction). However, this technique can result in very large degree multipoles for unstructured 
domains. This difficulty is overcome by:  
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2. computing and storing the increased degree multipoles, or  
3. using alternate height-balanced tree constructions.  

In this paper, we concentrate primarily on uniform distributions; but will demonstrate empirically 
that the paradigm works for unstructured domains as well. 

We now examine the error associated with the Barnes-Hut method with this improved multipole 
degree selection criteria.  

    

Proof 

Observe that the number of particle-cluster interactions with fixed size clusters is bounded 
(Lemma 2), the number of distinct sizes of clusters equals the height of the decomposition tree ( 

 for structured distributions), and the error associated with each interaction is constant 
(Thms. 2 and 3). From this it can be concluded that the error for uniform charge density is 

 ). The proof follows directly from the observation that for uniform charge density, 

 is equivalent to  . 

The reader will note that this error is considerably less than the error bound on the original fixed-
degree multipole based Barnes-Hut method. The only issue that remains to be resolved is the 
increased computation introduced by the additional multipole evaluations. The next theorem shows 
that this additional computation is minimal.  

    

Proof 

For each particle, we need to compute at most  interactions with  degree multipole for levels 
 . The total computation is proportional to . For uniform charge density, 

Thm. 3 prescribes  where c is a constant that depends on  only. Therefore, the overall 
computation is proportional to  , where  . 

This result can be extended to unstructured distributions as well using the box-collapsing and 
flexible splitting techniques of Callahan and Kosaraju [2]. It is useful to note that the complexity of 
the original Barnes-Hut method grows as  . The number of levels in a uniform 

distribution l grows as  assuming a single particle per leaf cell. For typical values of p (6-7 
degree approximations), this corresponds to between 256K-2M particles. In order to optimize 
cache performance and for lower algorithmic constants, leaf nodes of the tree often represent 
clusters of up to 32 or 64 particles. This increases the number of particles to between 8M and 64M. 
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Thus, even for very large scale simulations, the improved method is within a small constant off the 
fixed-degree method. In general, for  , the complexity of the improved method is within 7/3 of 
the original method. Clearly, the new method yields significant improvements in error while 
incurring minimum additional overhead.  

Experimental Results 

Experimental Setup 

The improved and original Barnes-Hut methods are coded for an Origin 2000 and tested with up to 
32 processors. The code is based on POSIX threads and optimized for single-processor cache 
performance, data-locality across processors, and false sharing. The parallel formulation exploits 
the concurrency available in independent tree traversal of each particle. The particles are sorted in 
a proximity-preserving order (a Peano-Hilbert ordering) and force computation for sets of w 
particles are aggregated into a single thread. We refer the reader to [5, 6, 15, 14] for a more 
detailed explanation of these schemes.  

The treecode was tested in the context of particle simulations as well as boundary element solvers. 
Problem instances for particle simulations range from uniform to highly irregular distributions in 
three dimensions. Uniform distributions correspond to a random distribution of points distributed 
equally across the domain. Irregular distributions are generated using a Gaussian density function 
or overlapped Gaussian distributions (multiple Gaussians superimposed).  

The notion of error in a simulation is formally defined as follows: let a be the vector corresponding 
to the accurate potentials at n particles; if the potentials computed from the treecode are 
represented by the vector a' then the error  in the simulation is defined as:  

  

Serial Complexity and Error Bounds 

To compare the serial complexities of the new and original methods, we use the number of 
multipole terms evaluated. The number of terms is an excellent indication of the serial computation 
time. Using this instead of wall clock time allows us to eliminate impact of potentially varying 
parallel efficiencies of the two methods and processor loads. Issues of parallel efficiencies are 
addressed subsequently in this section.  

   Structured Distributions 

n orig new Terms(orig) Terms(new)

10000 
 

15000 
 

20000 
 

30000 
 

0.012027 

0.017326 

0.025982 

0.036880 

0.012027 

0.010399 

0.016820 

0.017386 

12 million 
25 million 
60 million 
95 million 

254 million 

12 million  
25 million  
60 million  
96 million  

297 million 
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Unstructured Distributions 

Table 1: Comparison of the new method with the original method.  

Table 1 illustrates the errors and the number of term expansions. From these tables, it is easy to see 
that the growth in error is much faster in the original method than in the improved method. 
Furthermore, the term expansions of the two methods are similar. This is also illustrated 
graphically in Fig. 2 and is in good agreement with our theoretical results.  

     
Figure 2: A comparison of the error and computational cost of the original and new methods 

illustrates the close agreement with theoretical results and advantages of the new scheme.  

Parallel Performance 

Results on parallel performance are presented in Table 2 for a 32 processor SGI Origin 2000. The 
speedup is computed as the ratio of the runtime of the threaded version with multiple kernel 
threads to that of the single thread version. It is evident from the table that the performance of the 
treecode is extremely good, with parallel efficiencies in the range of 80 - 90%. This must be 
tempered by the observation that the dataset for the two simulations presented is only slightly 
larger than the total L2 cache. Nevertheless, the treecode yields excellent speedups on the Origin 
2000.  

   

Table 2: Runtimes (in seconds) and speedups (in parenthesis) for single-thread and multi-
threaded versions of a single iteration of the treecode on a 32 processor SGI Origin 2000.  

From Table 2, we can conclude that our threaded parallel formulations yield excellent speedups. 

80000 0.098395 0.019327 

n orig new Terms(orig) Terms(new)

45000 
 

82000 

2.479027 

2.307508 

0.334691 

0.268452 

70 million 
179 million 

102 million  
224 million 

Problem
Serial Parallel

Original New Original New

uniform40K  
non-uniform46K

195.46 
360.93 

212.41 

390.68 

6.68 (29.26) 
11.67 (30.92) 

7.37 (28.82)  
12.97 (27.83) 
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Furthermore, the new algorithm yields slightly poorer speedups than the original algorithm. This is 
because the new algorithm fetches longer multipole series. However, the effect of this increased 
communication is not very significant because a large fraction of the data is local to the processor. 
The increased communication volume can also be estimated in a manner similar to the computation 
and shown to be bounded. 

Solving Boundary Integral Equations 

The treecode can be used to solve dense linear systems arising from boundary element methods for 
solving integral equations. In particular, the treecode was used to compute matrix-vector products 
with the approximation of the dense matrices in each iteration of the GMRES iterative solver. The 
surface of the domain is discretized into triangular elements. Gaussian quadrature is used for 
integration over the surface. Typically, a fixed number of Gauss-points are located inside each 
element and inserted into the hierarchical domain representation. Using this hierarchical domain, 
the potential is computed at the vertices of the elements and matched to the boundary values. This 
process forms a single matrix-vector product that is required at each step of GMRES.  

This technique was used to solve dense linear systems arising from three complex domains: 
propeller (140,800 elements, 70,439 nodes), gripper1 (142,296 elements, 71,152 nodes), and 
gripper2 (185,856 elements, 92,918 nodes). The first instance is a propeller from an airplane and 
the next two are surface discretizations of an industrial gripper. These correspond to highly 
unstructured problem instances, since a bulk of the volume is empty and the nodes are concentrated 
on the surface.  

In Table 3, we present single iteration errors and execution times for the improved and original 
methods. The errors are computed with respect to a 9 degree polynomial since the exact method 
took an inordinately large amount of time. From the table, once again it is evident that the 
improved method yields significantly better error properties while adding minimal computational 
overhead. The matrix-vector product was used in a GMRES solver with a restart of 10 and was 
observed to converge very well. Using this method, we were able to solve dense systems with over 
100,000 unknowns within a few minutes.  

   Propeller 
140,800 elements, 70,439 nodes, 6 Gauss points per element 

Gripper 
185,856 elements, 92,918 nodes, 6 Gauss points per element 

Table 3: Single iteration errors and execution times (seconds) on a 32 processor SGI Origin 
2000 for the improved and original methods. Accuracy is compared with a reference using 9 

Algorithm Degree Time  

Original 
Improved
Reference

4 
4* 
9

31.83
33.60

100.81

0.000406
0.000026

_____

Algorithm Degree Time  

Original 
Improved
Reference

4 
4* 
9

46.40
50.13

151.21

0.000516
0.000028

_____
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degree multipole expansion (the exact computation takes over 900 seconds).  

Ongoing Work and Conclusions 
Hierarchical treecodes have proven to be a critical component of large scale n-body computations. 
In this paper, we have presented an improved treecode that yields considerably better error bounds 
while incurring minimal computational overhead. We prove these bounds theoretically and 
demonstrate them experimentally for uniform as well as non-uniform distribution. Parallel 
formulations of these techniques are shown to yield excellent speedups on a 32 processor SGI 
Origin 2000. The treecode is also applied to solving large scale boundary element problems. The 
performance of the new matrix-vector product is shown to be superior to the original method. The 
results presented in this paper can easily be extended to the the Fast Multipole Method as well. We 
are currently exploring this and extending our theoretical results to unstructured distributions.  
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