
Bounded-Error Compression of Particle Data from Hierarchical

Approximate Methods

Dow-Yung Yang∗ and Ananth Grama

(∗ Primary Author is a Student)

Computer Science Department,
Purdue University,

West Lafayette, IN 47907.

{yangdy, ayg}@cs.purdue.edu

Vivek Sarin

Department of Computer Science,
Texas A & M University,

College Station, TX 77843

sarin@cs.tamu.edu

Abstract

This paper presents an analytical and computational framework for the compression of particle data resulting from

hierarchical approximate treecodes such as the Barnes-Hut and Fast Multipole Methods. Due to the approximations

introduced by hierarchical methods, the position (as well as velocity and acceleration) of a particle can be bounded

by a distortion radius. We develop storage schemes that maintain this distortion radii while maximizing compression.

Our schemes make extensive use of spatial and temporal coherence of particle behavior and yield compression ratios

higher than 12:1 over raw data, and 6:1 over gzipped (LZ78) raw data. We demonstrate that for uniform distributions

with 100K particles, storage requirements can be reduced from 1200KB (100K × 12B) to about 99KB (under 1 byte

per particle per timestep). This is significant because it enables faster storage/retrieval, better temporal resolution,

and improved analysis. Our results are shown to scale from small systems (2K particles) to much larger systems (over

100K particles). The associated algorithm is optimal (O(n)) in both storage and computation with small constants.

1 Introduction and Motivation

Particle methods find application in a variety of domains ranging from molecular dynamics to astrophysics. Starting

from an initial state, the system state is advanced by computing forces (such as Coulombic and Lennard-Jones) at

each timestep and advancing the particles using a leapfrog method. A simple all-to-all force computation in an n

particle system results in a complexity of O(n2) because of long-range Coulombic (or gravitational) forces. A number

of approximation techniques have been explored to reduce this complexity. Of these, the prominent ones are lattice-

1

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



based methods and treecodes such as Barnes-Hut [3] and Fast Multipole Method (FMM) [9]. This paper focuses on

compression of particle data resulting from simulations based on hierarchical treecodes. While considerable work has

gone into compression techniques for both topology and geometry data [11, 2, 10, 5], the unique characteristics of the

problem combined with theoretical error bounds provide us with unique opportunities for compression.

Multipole methods (both FMM and Barnes-Hut variants) use a truncated series approximation of charges within a

localized region to estimate impact on well-separated sets of particles. The method of Barnes and Hut relies simply

on particle-cluster interactions to achieve an O(n logn) computational bound for uniform particle distributions. The

fast multipole method uses both particle-cluster and cluster-cluster interactions to achieve an O(n) bound for uniform

distributions. For non-uniform distributions, similar bounds can be obtained by using box-collapsing techniques of

Callahan and Kosaraju [4] or the chaining techniques of Aluru and Gustafson [1].

The reduced complexity comes at the expense of approximations introduced by hierarchical treecodes. Specifically,

it can be shown that the error in potential due to a set of charges circumscribed in a circle of radius r s at a distance r

from the center is bounded by:

ε ≤ A

r − rs

(rs

r

)p+1

, (1)

where p is the degree of the truncated multipole series and A =
∑k

j=1 |qj| (i.e. sum of circumscribed charges) [8].

In [7], we show that the aggregate error in potential at a particle due to all charges in the Barnes-Hut method applied

to a uniform particle system is given by:

ε ≤ Aαp+1. (2)

Here, α corresponds to the α criterion of the Barnes-Hut method and is generally chosen to be between 0.5 and 0.8. For

the Fast Multipole Method, similar bounds can be derived with the constant α determined by the well-separatedness

criterion of FMM. These proofs follow from bounds on number of interactions and their distance ratios. We use these

results to develop variable degree multipoles to reduce this bound to:

ε ≤ log(A)αp+1 . (3)

Similar bounds have been established for force computations using multipole methods as well [6]:

εFORCE ≤ A × pαp−1. (4)

These expressions have been simplified to demonstrate error behavior as functions of domain and simulation parame-

ters. More accurate error expressions are presented in [6, 7].

Multipole methods are used to compute the forces and/or potentials at each timestep. These forces are used to

advance particle positions using methods such as the leapfrog scheme. In a typical simulation, the positions and

velocities associated with particles need to be stored and analyzed. For a small system with 20K particles, storing

the positions (coordinate data) requires 12 bytes per particle (3 floats, 4 bytes/float) and approximately 240KB for the

entire system per stored timestep. Due to this high storage requirement, data is typically stored once every k timesteps,

where k is selected based on available storage, underlying phenomena being analyzed, and timestep size. This places

severe restrictions on the post-processing operations that need to be performed on the data since phenomena at lower

time-scales are completely lost in temporal sub-sampling.

In this paper, we present a set of schemes for compression of particle data that use the same hierarchical data

structure as the potential estimation and force computation framework. These compression schemes rely on the fact

that the approximate nature of the force computation phase introduces a distortion sphere around the particle. The

particle may lie anywhere within this distortion sphere and still maintain accuracy bounds guaranteed by the hierarchi-

cal treecode. The compression schemes developed in this paper place the particle appropriately within the distortion

sphere to maximize compression. They combine this with spatial and temporal coherence of particle behavior to

2

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



improve compression. Spatially proximate particles are likely to display coherent behavior. Similarly, particles are

expected to demonstrate coherent behavior in successive timesteps. Using these, we develop a family of schemes that

reduce the storage-per-particle to under 8 bits/particle per timestep in the best case. This corresponds to a compression

ratio of over 12:1 over raw data and over 6:1 over gzipped raw data (LZ78). In addition to excellent compression

ratios, we demonstrate the following desirable properties of our compression scheme:

• Bounded error rates – in particular, we maintain the error bounds of the original treecode.

• High compression and decompression rates – both O(n) with small constants.

• Supports fast querying of intermediate frames – using intermediate MPEG-style I-frames, we can access any

intermediate frame quickly and decompress the frame in O(n) time. Sub-domain retrievals can be accomplished

in O(k) time where k is the number of particles in the sub-domain. All of these complexities are asymptotically

optimal.

• Provides an in-built framework for analysis of spatial and temporal artifacts in data.

In Section 2, we describe a family of compression schemes based on our framework, Section 3 presents compres-

sion ratios and timings for these schemes, and the impact of proposed schemes is discussed in Section 4.

2 Compression Schemes for Particle Data

The basis for the compression schemes presented in this paper is the freedom to assign particles (quantize) to desirable

points within a specified distortion sphere of radius ε. Here, ε is determined by the error in the multipole method. The

following theorem derives the bound on the distortion radius for a particle:

Theorem 2.1 After n timesteps of size ∆t, the distortion radius of a particle is bounded by

|En| ≤ T 2 + T∆t

2
[
c1 + ∆t2c2

]
,

where T = n∆t is the total time, and c1 and c2 are constants.

Proof Consider the Verlet-Leapfrog scheme to compute the position and velocity of each particle:

vk+1/2 = vk+1/2 + ak∆t, (5)

sk+1 = sk + vk+1/2∆t, (6)

where sk , vk , and ak denote the position, velocity, and acceleration, respectively, of a particle at time tk after k

timesteps of size ∆t each, i.e., tk = k∆t. The difference of (6) at tk−1 and tk is

sk+1 − sk = sk − sk−1 + ak∆t2. (7)

Taylor series expansion of the actual position s(tk±1) around s(tk) is given as

s(tk±1) = s(tk) ± ∆tv(tk) +
∆t2

2
a(tk) ± ∆t3

6
a′(tk) +

∆t4

24
a′′(τk±1),

where the last term represents the truncation error. Manipulating the sum of s(tk+1) and s(tk−1), we get

s(tk+1) − s(tk) = s(tk) − s(tk−1) + ∆t2a(tk) +
∆t4

24
[a′′(τk+1) + a′′(τk−1)] . (8)

3

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



Defining the local error in position as

Ek = sk − s(tk),

the difference of (7) and (8) yields the recurrence

Ek+1 − Ek = Ek − Ek−1 + ∆t2
[
ak − a(tk) +

∆t2

24
[a′′(τk+1) + a′′(τk−1)]

]
.

Next, we define a new variable:

E′
k = Ek − Ek−1.

Assuming there exist constants c1 and c2 such that

c1 ≥ |ak − a(tk)|,
c2 ≥ ∆t2

24
|a′′(τk+1) +′′ (τk−1)| ,

we have

E′
k+1 ≤ E′

k + ∆t2
[
c1 + ∆t2c2

]
.

Thus,

E′
k ≤ k∆t2

[
c1 + ∆t2c2

]
,

which implies that

Ek ≤ Ek−1 + k∆t2
[
c1 + ∆t2c2

]
.

Therefore, after n steps,

|En| ≤ n(n + 1)∆t2

2
[
c1 + ∆t2c2

]
. (9)

Equation 9 gives us an analytical bound on the distortion radius after n timesteps. For simulations over a fixed time

period T , the error in position is given by

|En| ≤ T 2 + T∆t

2
[
c1 + ∆t2c2

]
,

which is proportional to c1 + ∆t2c2. The dominant component of c1 is the error in force computations arising from

approximations in the multipole methods as given by Equation 4. �

We start with the description of a scheme for storing particle positions and then use the framework for storing

particle displacements and difference in displacements (second order differences). Finally, we present a scheme that

uses MPEG style index frames. Particle positions for interspersed non-index frames are computed differentially with

respect to a trajectory interpolated over these index frames.

2.1 Framework for Bounded Distortion Multi-Dimensional Quantization

Given a set of particles with specified distortion radii, the basic scheme imposes an oct-tree structure over the domain.

The refinement criteria for this oct-tree is that tree nodes are subdivided if they contain more than one particle 1, or the

center of the node is outside the distortion radii of the particle in the node. Note that this refinement criteria is not the

same as the refinement criteria for the FMM or Barnes-Hut tree. The refinement process is illustrated in Figure 1. The

hierarchical structure used for compression is in fact a refinement of the Barnes-Hut or FMM tree and does not need

to be explicitly constructed.

1This is not entirely necessary. If an oct contains two particles and falls within both of their distortion spheres, the simulation accuracy must be

increased.

4

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



Once a hierarchical structure has been constructed, particles are assigned to leaf nodes that lie within distortion

radii. The problem of representing particle positions now reduces to the problem of representing populated leaf nodes

in the oct-tree. This is done by coding the path from the root to the leaf node. By associating a pre-defined ordering

of children in the oct tree, we can associate 3 bits per level in the tree. We illustrate this process for a 2-D problem in

Figure 1. In this case, we require only 2 bits per node since the tree is a quad tree. In the example, particle a is at level

three in the tree and according to the predefined node ordering for children of a node, it is represented as 00 00 11.

This provides the basic quantization mechanism for our schemes.

2.1.1 Encoding Spatial Coherence

The next order of compression relies on spatial coherence of representation. Simply stated, particles that are spatially

proximate are likely to share large prefixes in the path from root to leaf. This implies that if the particles are sorted in

a proximity preserving order (such as Morton or Hilbert curves), then we can represent particle positions relative to

the previous particle. Indeed, for improved cache performance as well as parallel performance, particles are typically

sorted in a spatial order (such as a Morton order or a Peano-Hilbert order) for the FMM/Barnes-Hut computation and

this requires no additional processing for compression.

The use of spatial coherence for improving compression ratios is illustrated in Figure 1, Time-step 0. The quantized

representations for particles a, b, and c are given by 00 00 11, 00 10, and 00 11 01 respectively. Assuming

that these particles are sorted in the order a, b, and then c, it is easy to see that particles b and c share the prefix 00

with particle a. Consequently, the prefix does not need to be stored for these and the representations for b and c are

simply 10 and 11 01. While this may not seem to be a significant improvement, in typical trees, the depth can be

very high. For example, with a normalized domain of unit size in each dimension, a distortion radius of 10−3 would

require up to 10 levels in the oct tree. In such cases with higher particle densities, significant improvements result

from the use of spatial coherence in our quantization framework.

The performance of spatial coherence encoding is impacted by the fact that two spatially proximate particles may

have significantly different prefixes based on which half of the tree they fall into. Trivially, two particles that lie on

either side of a half split will have entirely different prefixes. In such cases, the spatial coherence framework does not

provide any additional benefits over simple quantized representation. However, the number of such particles is a small

fraction of the total number of particles.

2.1.2 Encoding Temporal Coherence

In addition to spatial coherence, compression rates can be further improved by considering temporal coherence; i.e.

a particle is not expected to move significantly over a single timestep. Consequently, instead of storing the entire

relative leaf location corresponding to a populated leaf node, we can store only the difference with respect to the

previous location. This is stored as a sequence of XOR’ed least significant bits. This is illustrated in Figure 1, Time-

step 1. The quantized positions of particles a, b, and c are given by 00 00 01, 10, and 11 11 respectively after

coding spatial coherence. These representations can be reduced to 10 and 10 respectively for a and c since the rest

of the prefix is shared with the previous timestep. Also, since the representation of b did not change between the two

timesteps, it does not require any storage. It is easy to see from this simple illustration that the hierarchical framework

when combined with spatial and temporal coherence is capable of yielding very high compression rates.

An important aspect that impacts the performance of time-coherence exploitation is the choice of boundary condi-

tions in the simulation. Typical simulations are run with periodic boundary conditions; i.e., the simulation domain is

infinitely replicated around itself. With such boundary conditions, a particle leaving the domain of simulation re-enters

it on the far side. This causes a significant shift in the particle position and for these particles the differentially coded

position requires the same amount of storage as a naive representation of the path from root to the leaf node. However,

5

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



the number of such particles is small and does not significantly degrade the performance of the compression scheme.

b

c

a

00 01

10 11

a: 00 00 11
b: 00 10
c: 00 11 01

Particle Representations:

Relative Representations (low bits)
a: 00 00 11
b: 10
c: 11 01

Timestep 0

Relative Representations:

Timestep 1

a: 00 00 01
b: 10
c: 11 11

Temporally Relative Representations
XOR with prev. step and store low bits

a: 10
b:
c: 10

Figure 1: Illustration of compression of particle position data using distortion sphere, and spatial and temporal coher-

ence.

2.1.3 Coding Particle Displacements and Higher Order Differences

It is possible to code particle displacements and higher order differences in the same framework as illustrated above.

The driving intuition behind coding displacements between timesteps is that spatially proximate particles are expected

to have coherent displacements. Furthermore, displacements of particles between timesteps are not expected to change

abruptly. To code particle displacements in the above framework, the refinement criteria for the oct-tree must be

modified slightly – a node is sub-divided only until its center is within prescribed distortion radii. The condition

relating to single particle per leaf is not required. Furthermore, the distortion radius needs to be altered appropriately

to maintain the same distortion radii for particle positions as before.

This compression process is illustrated in Figure 2. Between timesteps 0 and 1, particles a, b, and c are displaced

by vectors (0.1, 0.3), (0.05, 0.25), and (0.35, 0.15) respectively. These values are now coded in

our quantization framework as before. Since more than one particle can have the same displacement (but not the

same position), multiple particles can be assigned to the same leaf node in the hierarchy. The hierarchy corresponding

to the displacements is illustrated in Figure 2. The hierarchy is populated with vectors, each corresponding to the

6

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



displacement of a single particle. Populated leaf nodes in this hierarchy are now coded using spatial coherence.

An important consideration in this process is the choice of timestep data with respect to which differences are

computed. Consider two vectors Ti and Ti+1 of positions along with their error-bounded quantized counterparts T ′
i

and T ′
i+1. To code Ti+1, its differences with respect to T ′

i must be coded instead of vector Ti (as would be the

obvious choice). This is because when uncompressing this data, we have access only to T ′
i and not Ti. Therefore, the

differences must be error bounded with respect to T ′
i and not Ti, otherwise errors will accrue and exceed distortion

bound. A similar technique is used for coding second order differences in particle positions.

Representations:
a: 10
b: 10 00
c: 01 11
Relative Representations
a: 10
b: 00
c: 01 11

a: (0.1, 0.3)

c: (0.35, 0.15)
b: (0.05, 0.25)

Displacements:

Timestep 0 Timestep 1

b

0.0 0.4

0.4

c

b

a

a

c

b

c

a

Figure 2: Illustration of compression of particle displacement data using distortion sphere and spatial coherence.

Notice that the hierarchical domain is determined by the maximum displacement in any dimension and that the radius

of distortion sphere is in fact smaller than for coding positions.

2.2 Index Time-Steps for Interpolated Encoding

An alternate scheme for compressing particle positions relies on using periodic index frames. Consider the illustration

in Figure 3. This example shows a 1D trajectory of a single particle across nine timesteps. Errorbars on particle

positions indicate the distortion radius introduced by the hierarchical method. In this example, every fourth frame is

an index frame (marked by an I in the figure). A simple technique for coding particle positions in this framework uses

the neighboring index frames to construct a polynomial that specifies particle positions at intermediate timesteps. If

the polynomial approximation lies within the error-bars, no data needs to be stored for the particle. If the polynomial

lies outside the errorbar, then the data can be differentially coded with respect to the polynomial. In the example in

Figure 3, it is easy to see that there is no storage associated with timesteps 1, 2, 5, and 7 (0, 3, 6, and 9 are index

timesteps). Only timesteps 4 and 8 require additional encoding. Clearly, this technique has the potential for significant

compression.

We now look at the reduction in magnitude of quantities that need to be encoded because of the interpolation

7

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



Timestep

I I I I

P
ar

tic
le

 p
os

iti
on

 (
1D

 e
xa

m
pl

e)

0 1 2 3 4 5 6 7 8 9

Figure 3: Using Index (I) timesteps for interpolating particle positions for intermediate timesteps.

framework above. In Figure 4, we illustrate the use of index frames with interpolation polynomials of varying degrees

for a 2568 atom system (water). For the sake of illustration, we only show the encoding of the x coordinate. The

magnitude of difference between the polynomial and actual position computed from the timestepping scheme applied

to the hierarchical method is shown. In the extreme case, if each of the magnitudes in the figures were under, say,

10−2, and the distortion radius was 10−2, then no encoding is required for the intermediate timesteps. In Figure 4,

we see that the magnitude of differences can be reduced very significantly by quadratic and cubic interpolation. We

experimented with varying number of intermediate timesteps and present results for these in Section 3. Once particle

trajectories have been interpolated, the data is differentially coded with respect to this trajectory. This differential

coding is done using the hierarchical framework used for quantizing particle positions as before.

This approach of using index frames for compression has other benefits over simply coding first and second order

differences in particle positions. Loss or corruption of data corresponding to any timestep in the original scheme

renders all subsequent timestep data useless. Furthermore, if during the analysis phase, it is necessary to query an

intermediate timestep, we would need to unroll all the timesteps leading up to the required step. This is expensive and

undesirable. The I-frame approach alleviates the drawbacks of differentially coding timesteps and supports fast access

to intermediate timestep data with limited unrolling. Note that this approach is similar in philosophy to that taken by

MPEG coders for video compression.

2.3 Performance of Compression Schemes

It is worth mentioning that the best compression for such applications is simply to store the initial state of the system.

The decompressor is the simulation process itself. This highlights the tradeoff between computational overhead (speed

of compression and decompression), and the compression ratio. It is important for any compression scheme to have

the following properties:

• Fast compression and decompression.

• High compression ratios.

• Data-structures that can build on existing hierarchies and support further analysis tasks on the data.

Our schemes address each of these requirements explicitly. The performance of the proposed schemes is a sensitive

function of the distortion radius associated with the quantity being stored. While theoretical bounds exist on distortion

8

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



500 1000 1500 2000 2500
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

particle

ab
s(

di
ffe

re
nc

e)
 in

 th
e 

x 
co

or
di

na
te

500 1000 1500 2000 2500
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

particle

ab
s(

di
ffe

re
nc

e)
 in

 th
e 

x 
co

or
di

na
te

Quadratic and cubic fitting: Graphs show magnitude of difference between interpolated and actual values. Each pair of index frames

is separated by two interpolated timesteps. Differences are shown for the second interpolated timestep.

500 1000 1500 2000 2500
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

particle

ab
s(

di
ffe

re
nc

e)
 in

 th
e 

x 
co

or
di

na
te

500 1000 1500 2000 2500
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

particle

ab
s(

di
ffe

re
nc

e)
 in

 th
e 

x 
co

or
di

na
te

Four interpolated timesteps between each pair of index frames. Magnitude of differences are shown for the third interpolated

timestep.

Figure 4: Use of index frames for interpolating intermediate timesteps.

9

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



radii, it is often observed that these bounds are loose and that hierarchical methods yield much better results in practice.

For our compression schemes, we use distortion radii which are much smaller than theoretical bounds. For instance, for

a charge-normalized system with charges totaling to 1, the error behavior is given by α p+1. For α = 0.5, an increase

in multipole degree by one leads to halving of the error term. In the oct-tree structure for compression, each additional

level corresponds to halving of the distortion radius. Therefore, the depth of the tree is expected to grow linearly with

the multipole degree. For a compression tree depth of 10, the distortion radius is 2−11 and the corresponding storage

per path is 30 bits (3 bits per level). Notice that without using any coherence (spatial or temporal), we can already

achieve a 3-fold compression (down from 12 bytes) in storing positions. Spatial coherence can be coded either by

sorting particles in a proximity order and coding differences with respect to previous particles or by using oct-tries

(simple variants of binary-tries used in LZ78). We chose to use the former since the particles are already sorted in

proximity order for force/potential estimation.

The compression algorithm can be easily parallelized (threaded) and incurs little parallel overhead. Subdomains

assigned to processors can be independently compressed. It is assumed that the first particle is always coded inde-

pendently (i.e. no differential coding). Subsequent particles are coded using spatial and temporal coherence. This is

important because no serialization bottlenecks are added in the simulation / online analysis phases. This also provides

a natural de-clustering of particle data across disk for improved parallel I/O performance. There is a slight loss of

compression since each processor treats its sub-domain independently of the others; thus leading to loss of coherence.

However, in practice, this loss of compression is negligible.

3 Experimental Results

We have implemented our compression framework in conjunction with a fast multipole based leapfrog particle dynam-

ics scheme. We tested our schemes on various problems with sizes ranging from 2K to 100K particles and distributions

ranging from uniform to Gaussian and multiple Gaussians. These distributions are illustrated in Figure 5. Uniform

distributions are synthetically generated by locating particles randomly across the domain. Gaussian distributions

are generated by altering the point density according to a Gaussian curve and generating the required point density

randomly.

50

55

60

65

70

75

80

85

90

95

100

0 10 20 30 40 50 60 70 80

"ip24K"

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

"ip45K"

Figure 5: Sample distributions for experiments: (a) Gaussian (24,000 particles), and (b) Overlapped Gaussians (45,000

particles).

We present results of the basic compression scheme followed by the effect of various optimizations in Table 1.

The following observations can be made from the table: coding particle position data using the hierarchical distortion

radii proposed in the paper with spatial coherence yields up to a factor of three improvement in compression over

10

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



gzipped raw data. This corresponds to a compression ratio of six over raw data and can be seen to scale very well

with problem size. Applying temporal coherence for coding the next timestep yields improvements in the range of

20% over spatial coherence. This is less than expected; however, it is due to the fact that the selected distortion radii

is very small. Consequently, particles traverse significant number of leaf octs in the tree-space. The last two columns

correspond to storing first and second order differences in particle positions in the hierarchical framework using only

spatial coherence. It can be seen that storing second order differences yields the best storage of any scheme and yields

compression ratios ranging from 4:1 to 12:1 over raw data and 2:1 to 6:1 over gzipped data.

Problem Position Data Position Data 2nd timestep Displacement Data 2nd Order Diff.

Size gzipped (LZ78) (Spat. Coh.) (Temp. Coh.) (Spat. Coh.) (Spat. Coh.)

(Scheme 1) (Scheme 2) (Scheme 3) (Scheme 4)

2568 15289 10646 8453 8612 7602

10K 76123 38329 23007 18149 14314

20K 157426 66623 45649 33307 25761

100K 704018 219755 232050 135444 98820

Unstructured Distributions

24K 241036 58106 107403 96550 64043

45K 457151 91784 182312 160333 107031

Table 1: Compression results for uniform particle distributions of varying sizes.

An interesting observation from the table is that compression improves as the number of particles is increased.

This is because the error bound of multipole methods grows with the total charge in the system. Thus the distortion

radii increases with increase in number of particles. Consequently, the compression ratio increases. This also points

to an important fact that the accuracy of multipole methods needs to be increased (by changing the α parameter or

multipole degree) as systems become larger. In that case, we expect the compression ratios to be largely independent

of the size of particle system. For unstructured distributions, it can be seen from Table 1 that compression ratios are

much lower than their structured counterparts. For example, for a 100K particle uniform distribution, the encoded

space is 98820 bytes, whereas for a 45K particle unstructured distribution, it is 107031 bytes. This large difference

is a result of the fact that the tree depth in unstructured distributions can be much higher. For this purpose, it may

be necessary to use alternate hierarchical data structures. The discrepancy is also a function of the fact that we use

the same distortion radii in both cases. In reality, the distortion radii for unstructured distributions is much higher for

simple FMM/Barnes-Hut methods.

The relative improvements due to our schemes are illustrated in Figure 6. It is easy to see that our schemes yield

excellent compression ratios in a fast and flexible framework.

In Table 2, we present results from compression schemes based on the use of index timesteps. We present encoded

results for quadratic and cubic fitting for a number of distributions. The size of compressed data is computed as an

average of one index timestep and all of the intermediate timesteps up to (but not including) the next timestep. This

is done to ensure a fair comparison of various schemes. The number of intermediate (interpolated) timesteps is varied

between 2 and 4. Several observations can be made from Table 2 and its comparison to Table 1. The compression ratio

for uniform distributions improves with increasing number of intermediate frames. This is expected to saturate and

then decrease as the number of intermediate frames is further increased. A comparison with Table 1 also reveals that

this scheme yields the best compression of any scheme for smaller systems. For larger systems (100K), the second

order difference scheme with spatial coherence outperforms the I-frame approach. The storage requirement of the

scheme is almost linear in the number of particles and approaches 8 bits/particle/timestep. Furthermore, a quadratic fit

11

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



2568 10K 20K 100K
0

2

4

6

8

10

12

14

Number of Particles

C
om

pr
es

si
on

 R
at

io

Compression Ratio of Various Schemes

Uncompressed
Gzipped
Scheme1
Scheme2
Scheme3
Scheme4

Figure 6: Comparison of compression rates of various schemes: Scheme 1 compresses particle positions with only

spatial coherence, Scheme 2 compresses particle positions using both spatial and temporal coherence, Scheme 3

compresses particle displacements with spatial coherence, and Scheme 4 compresses second order differences with

spatial coherence.

is largely adequate and higher order interpolations do not result in significant improvements in performance. In some

cases, they result in slightly poorer performance. This is because cubic interpolants use the previous 4 I-frames for

prediction and in doing so make potential mistakes.

Problem I-FRAME SCHEME

Quadratic Fit Cubic Fit

N of Interpolated Frames N of Interpolated Frames

Size 2 3 4 2 3 4

2568 6127 6382 6843 6325 6963 7669

10K 17521 14039 12050 16592 13429 11972

20K 34873 27955 24293 33097 27005 24406

100K 174257 141260 126841 166801 140221 134161

Table 2: Compression results for uniform particle distributions of varying sizes.

4 Discussion and Impact

The compression schemes presented in this paper reduce storage requirements of particle data by as much as a factor of

12 without any further loss of accuracy. Improvements using the I-frame approach pushes this compression rate closer

to 15-20. This has several important implications for particle simulations: given a subsampling frequency, the I/O

overheads can be reduced significantly, conversely, given a desired overhead factor, the sampling rate can be increased

significantly for better analysis. It also facilitates remote access across networks where bandwidth is a bottleneck. The

12

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



framework put forth in this paper provides a natural mechanism for clustering and quantifying cluster behavior. It can

be used to identify high energy regions of the domain and other quantitative sub-domain features. It also supports

segmented retrieval without expensive unrolling overheads in asymptotically optimal time.

While our schemes have achieved excellent results, we are exploring the following issues as a part of our current

work: using frequency domain transforms for further improving compression ratios, incorporating analysis tools into

our compression framework, and using our compression framework for supporting progressive visualization.

References

[1] Srinivas Aluru. Greengard’s n-body algorithm is not O(n). SIAM Journal on Scientific Computing, 17(3):773–

776, 1996.

[2] C. Bajaj, V. Pascucci, and G. Zhuang. Single resolution compression of arbitrary triangular meshes with proper-

ties. In Proceedings of Data Compression Conference, 1999.

[3] J. Barnes and P. Hut. A hierarchical o(n log n) force calculation algorithm. Nature, 324, 1986.

[4] P. B. Callahan and S. R. Kosaraju. A decomposition of multi-dimensional point-sets with applications to k-

nearest-neighbors and n-body potential fields. In Proceedings of 24th Annual ACM Symp. on Theory of Comput-

ing, pages 546–556, May 1992.

[5] M. Deering. Geometry compression. In Proceedings of SIGGRAPH’95, pages 13–20, 1995.

[6] William D. Elliott. Revisiting the fast multipole algorithm error bounds. Technical Report TR94-008, Duke

University, 1994. available from http://www.ee.duke.edu/Research/SciComp/Papers/TR94-008.html.

[7] Ananth Grama, Vivek Sarin, and Ahmed Sameh. On error and computation complexity of multipole methods.

Technical report, Department of Computer Science, Purdue University, W. Lafayette, IN 47906, 1999. Accepted

for publication in SIAM J. Sci. Comput.

[8] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, 1987.

[9] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp. Physics, 73:325–348, 1987.

[10] M. Levoy. Polygon-assisted jpeg and mpeg compression of synthetic images. In Proceedings of SIGGRAPH’95,

pages 21–25, 1995.

[11] G. Taubin and J. Rossignac. Geometric compression through topological surgery. ACM Transactions on Graph-

ics, 17(2):84-115, 1998.

13

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 


