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Abstract. The generalized Stokes problem, which arises frequently in the simulation of time-
dependent Navier–Stokes equations for incompressible fluid flow, gives rise to symmetric linear sys-
tems of equations. These systems are indefinite due to a set of linear constraints on the velocity,
causing difficulty for most preconditioners and iterative methods. This paper presents a novel method
to obtain a preconditioned linear system from the original one which is then solved by an iterative
method. This new method generates a basis for the velocity space and solves a reduced system
which is symmetric and positive definite. Numerical experiments indicating superior convergence
compared to existing methods are presented. A natural extension of this method to elliptic problems
is also proposed, along with theoretical bounds on the rate of convergence, and results of experiments
demonstrating robust and effective preconditioning.
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1. Introduction. Large-scale simulation of incompressible fluid flow requires
the solution of the nonlinear time-dependent Navier–Stokes equations. The most
time-consuming part of this process is the solution of the generalized Stokes problem
at each nonlinear iteration. Therefore, efficient algorithms for the generalized Stokes
problem are indispensable for the numerical solution of the Navier–Stokes equations.

Given a domain Ω with boundary ∂Ω along with a function f , the generalized
Stokes problem requires finding the velocity u and pressure p satisfying

αu − ν∆u + ∇p = f in Ω,(1.1)
∇ · u = 0 in Ω,(1.2)

where α and ν are positive parameters. For simplicity, let

u = 0 on ∂Ω.(1.3)

The most commonly used Galerkin-type weak formulation for the generalized
Stokes problem (1.1)–(1.3) is the following: given f , we seek u ∈ H1

0(Ω) and p ∈ L2
0(Ω)

such that

α(u,v) + νa(u,v) + b(v, p) = (f ,v) ∀v ∈ H1
0(Ω),

b(u, q) = 0 ∀q ∈ L2
0(Ω),

where

a(u,v) =
∫

Ω
∇u : ∇vdΩ ∀u,v ∈ H1(Ω),

b(v, q) = −
∫

Ω
q∇ · vdΩ ∀v ∈ H1(Ω).
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Mixed finite element schemes [12, 7] used for the generalized Stokes problem require
finding u ∈ Vh

0 and p ∈ Sh
0 for suitable spaces Vh

0 and Sh
0 such that

α(u,v) + νa(u,v) + b(v, p) = (f ,v) ∀v ∈ Vh
0 ,

b(u, q) = 0 ∀q ∈ Sh
0 .

In matrix notation, we need to solve the following system:(
A B

BT 0

) (
u
p

)
=

(
f
0

)
,(1.4)

where A = αM + νT , in which M is the n × n mass matrix and T is a symmetric
positive definite matrix corresponding to the Laplace operator. B is an n × k matrix
(k < n) such that BT ensures the constraint of discrete null divergence on the solution
vector u. In the case of steady-state flow, α = 0 and A = νT .

The linear system (1.4) is a saddle-point problem. Even though the matrix A is
symmetric and positive definite, the system is indefinite due to the incompressibility
constraint. This causes difficulties both for iterative methods and commonly used
preconditioners.

Most iterative methods proposed for (1.4) are modifications of Uzawa’s method.
The classical Uzawa method [11] solves the system

BT A−1Bp = BT A−1f

by the method of steepest descent. Each iteration requires the solution of the linear
system Ax = b. If an iterative method is used to solve Ax = b, then we obtain a
two-level solver with inner and outer iterations. Convergence may be considerably
improved by replacing A by Aε = A + 1

ε BBT , where ε is a very small constant. This,
however, worsens the condition number of Aε and causes extreme difficulties for the
inner iterative method.

The conjugate gradient method (CG) may be used to accelerate the convergence
of the outer iterations. For a mixed finite element that satisfies the inf-sup condition
(see [7]), the condition number of BT A−1B is independent of the mesh discretization,
and the CG algorithm converges rapidly. The inner system may be solved to desired
accuracy in many ways including multigrid, spectral methods, and preconditioned
CG algorithm. Verfürth [19] uses multigrid to solve the inner system Ax = b. Elman
and Golub [10] analyze inexact solve at the inner level. Silvester and Wathen [20, 18]
suggest diagonal and block preconditioners for solving the system (1.4).

In contrast, for the generalized Stokes problem, the condition number of BT A−1B
depends on the mesh discretization. In this case, preconditioners proposed by Cahouet
and Chabard [8] and analyzed by Bramble and Pasciak [5] may be used. Other variants
of the Uzawa method for such systems have been proposed in [4, 9, 16].

Projection methods [17, 6] obtain the velocity by solving

PAPu = Pf,

where P = I−B(BT B)−1BT is the orthogonal projection onto Null(BT ). Computing
the action of the projector in each iteration requires solving the system BT Bx = b
which is as difficult as solving the system Au = b, and may require the use of an
inner iterative method. In the absence of effective preconditioners, these methods are
competitive only for systems where A is diagonally dominant.
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For realistic problems on two- and three-dimensional domains, both Uzawa-type
and projection methods are two-level nested iterative methods with expensive iter-
ations. Moreover, effective preconditioners for these methods have been developed
only for the cases when the system satisfies certain restrictive conditions.

In this paper, we describe a method to compute a well-conditioned basis for the
velocity space and solve a reduced symmetric positive definite linear system using the
CG algorithm. The construction of the basis as well as the matrix–vector product in
each iteration of CG require only O(n) operations. Furthermore, our choice of the ba-
sis preconditions the reduced system implicitly, thereby accelerating the convergence
of CG. Our method yields a single-level (nonnested) preconditioned iterative method
with superior convergence compared to some of the existing methods. To the best of
our knowledge, other techniques for computing divergence-free bases (e.g., [13, 14])
have not addressed similar issues.

Mixed finite element approximations of self-adjoint elliptic partial differential
equations yield systems of the form (1.4) with A = M . This observation leads to
a straightforward extension of our method to these problems and provides a strat-
egy for robust and effective preconditioning for such systems. Moreover, our method
can easily be extended to the commonly used finite difference and finite element ap-
proximations of these problems. This paper also presents application of our method
to such problems, along with analysis of the preconditioned system and numerical
experiments which confirm excellent preconditioning properties.

This paper is organized as follows. Sections 2 and 3 describe a multilevel scheme to
compute the basis for Null(BT ), along with extensions to elliptic problems and anal-
ysis of the condition number for these systems. Numerical experiments are presented
in section 4, followed by conclusions and prospects for future research in section 5.

2. Multilevel scheme. Although the multilevel scheme proposed in this section
is motivated by the generalized Stokes problem (1.4), it can be used to obtain pre-
conditioned systems for self-adjoint elliptic partial differential equations. It may be
noted, however, that our approach has no obvious similarities with other well-known
multilevel methods for elliptic problems (see [1, 21, 2, 3]).

A multilevel approach is used to compute a basis for Null(BT ). This null-space
basis P2 is expressed as the product of a sequence of sparse matrices, such that it
requires only O(n) operations to perform a matrix–vector product with P2. In fact,
we determine matrices P , D, and Z such that

PT BZ =
(

D
0

)
,

where P is a nonsingular n×n matrix, D is a k × k diagonal matrix, and Z is a k × k
orthogonal matrix. Further, P = [P1, P2], where P2 is comprised of the last n − k
columns of P . The linear system (1.4) may be rewritten as PT

1 AP1 PT
1 AP2 D

PT
2 AP1 PT

2 AP2 0
D 0 0

  û1
û2

ZT p

 =

 PT
1 f

PT
2 f
0

 ,

where u = Pû. The solution is obtained by solving the reduced system

PT
2 AP2û2 = PT

2 f(2.1)

by an iterative method like the CG algorithm.



ITERATIVE METHOD FOR GENERALIZED STOKES PROBLEM 209

FIG. 2.1. A uniform mesh with directional edges for the discrete gradient operator E.

2.1. Sample problem: The Poisson equation. As an illustration, we de-
scribe our scheme for a finite difference approximation of the following Poisson equa-
tion on a two-dimensional square domain:

−∇ · ∇u = f in Ω,(2.2)
∂u

∂n
= 0 on ∂Ω(2.3)

which has a unique solution under the assumption that f has zero mean. It may
be noted that the proposed multilevel scheme is more general and can easily be ex-
tended to more complicated PDEs with different boundary conditions, as well as other
discretization schemes like the finite element and finite volume methods.

Equation (2.2) may written in the following form:

v + ∇u = 0,

−∇ · v = −f,

where v is the gradient of the function u. The domain is discretized by a
√

n ×
√

n
uniform mesh (Fig. 2.1), where n = 4k for some constant k is assumed for simplicity.
Let us assume that v = (v1, v2)T , where v1 and v2 are the components of the gradi-
ent along the axes and are fixed at the midpoint of edges along the x- and y-axis,
respectively. Furthermore, the boundary condition on u implies that v = 0 outside
the domain. Using one-sided differencing, the equation at the node (i, j) is

vi,j,1 +
ui+1,j − ui,j

h
= 0,

vi,j,2 +
ui,j+1 − ui,j

h
= 0,

−
(

vi,j,1 − vi−1,j,1

h
+

vi,j,2 − vi,j−1,2

h

)
= −fi,j .

Appropriate scaling of the variables yields the linear system(
I E

ET 0

) (
y
x

)
=

(
0

−b

)
,(2.4)
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where E and ET are discrete forms of the gradient operator (∇) and the divergence
operator (−∇·), respectively.

Further, E is a matrix of size e × n, where n is the number of nodes and e is
the number of edges in the mesh (in this case e = 2(n −

√
n)). It may be noted that

the rows of E correspond to edges in the mesh, and columns correspond to nodes.
Natural ordering of nodes and natural ordering of edges along the x-direction followed
by edges along the y-direction give

E =



C
C

. . .
. . .

C
−I I

−I I
. . . . . .

−I I


,

where I is a
√

n ×
√

n identity matrix and C is the following
√

n − 1 ×
√

n bidiagonal
matrix:

C =

 −1 1
. . . . . .

−1 1

 .

As mentioned earlier, the matrices P , D, and Z are to be determined such that

PT EZ =
(

D
0

)
,(2.5)

where P is a nonsingular e × e matrix, D is an n × n diagonal matrix, and Z is an
n × n orthogonal matrix. Assuming P = [P1, P2], where P2 consists of the last e − n
columns, the linear system (2.4) is transformed to PT

1 P1 PT
1 P2 D

PT
2 P1 PT

2 P2 0
D 0 0

  ŷ1
ŷ2

ZT x

 =

 0
0

−ZT b

 ,

where y = P ŷ and the solution x is given as

x = ZD−1PT
1 [I − P2(PT

2 P2)−1PT
2 ]P1D

−1ZT b.

Since the main computational effort involves the solution of a system of the type
PT

2 P2w = d by CG, it is necessary that PT
2 P2 be well conditioned, and the matrix–

vector product with PT
2 P2 be computed in O(n) operations. In the next section, we

describe how to compute the matrices P , D, and Z with these desirable properties.

2.2. Multilevel scheme for Poisson equation. The multilevel scheme sys-
tematically coarsens the mesh to obtain the matrices P , D, and Z with the desired
properties. A coarse level mesh is obtained from the original mesh by combining
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FIG. 2.2. Groups of four nodes (shaded) are combined into a single node (circled) for the coarse
level mesh.

groups of four nodes (see Fig. 2.2) into a single node. The coarsening of the mesh is
used to obtain the discrete gradient matrix E(1) for the coarse mesh from the one on
the original mesh. The linear transformation from E to E(1) may be written as

P (1)T
EZ(1) =

 D(1)

E(1)

0

 ,

where D(1) is a submatrix of D. The mesh is recursively coarsened to a single node
by repeated linear transformations to obtain the discrete gradient matrix E(i+1) for
level i + 1 from E(i) at the previous level. The overall transformation is given by

P = P (1)P (2) · · ·P (k),

Z = Z(1)Z(2) · · ·Z(k),

where k = log4 n.
We now describe the transformations to obtain E(1) from E. The nodes in the

mesh are grouped into n
4 partitions, as shown in Fig. 2.2, and reordered so that

nodes within a partition are ordered consecutively. The edges are divided into two
classes: interior edges connect nodes within the same partition whereas boundary
edges connect nodes in different partitions. Figure 2.2 shows that each partition has
four interior edges, and each pair of neighboring partitions has two boundary edges
between them.

Further, the edges (rows of E) are reordered such that the interior edges within
a partition are ordered consecutively, followed by all the boundary edges. After re-
ordering we have

E =
(

Eint

Ebnd

)
,

where Eint consists of the rows of E corresponding to the interior edges, and Ebnd

consists of the rows corresponding to the boundary edges. Eint is the following block
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diagonal matrix:

Eint =

 Eint1

. . .
Eintr

 ,

where r is the number of partitions, and

Einti
=


−1 1

−1 1
1 −1

−1 1

 , i = 1, . . . , r.

The singular value decomposition of Einti , i = 1, . . . , r, is

Einti
= UiSiV

T
i ,(2.6)

Ui =


−1

2
1
2

1
2 − 1

2
1
2

1
2 − 1

2 − 1
2

1
2

1
2

1
2

1
2

− 1
2

1
2 − 1

2
1
2

 ,(2.7)

Si =


2 √

2 √
2

0

 ,(2.8)

V T
i =


1
2 − 1

2
1
2 − 1

2

− 1√
2

0 1√
2

0

0 1√
2

0 − 1√
2

1
2

1
2

1
2

1
2

 ,(2.9)

and that of Eint is

Eint = USV T(2.10)

=

 U1
. . .

Ur


 S1

. . .
Sr


 V T

1
. . .

V T
r

 .

The coarsening process divides the nodes in the original mesh into two classes: active
nodes which form the coarse mesh and inactive nodes. The matrices P (1) and Z(1)

are used to obtain the discrete gradient operator E(1) for a coarse mesh defined only
on the active nodes.

Let S† be the pseudoinverse of S. Then(
I 0

−EbndV S† I

) (
UT

I

) (
Eint

Ebnd

)
V =

(
S

EbndV (I − S†S)

)
=

(
S

EbndV̂

)
,(2.11)
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where V̂ = V (I − S†S) is the matrix V with nonzeros only in the columns corre-
sponding to the n

4 active nodes. In particular, V̂ consists of the last column of Vi for
i = 1, . . . , r.

The next step is to establish that rows of EbndV̂ actually define edges in the
coarse mesh. To show this, let us consider the nonzero structure of the matrix EbndV̂ .
Clearly, EbndV̂ has nonzeros only in the columns of the active nodes. Further, a
boundary edge between two nodes in the original mesh Ebnd is transformed into an
edge between the active nodes of those partitions in EbndV̂ , and scaled by 1

2 . For
instance, in Fig. 2.2 the edge from 2 to 5 in Ebnd with value (−1, 1) is replaced by an
edge from 4 to 8 in EbndV̂ with value (− 1

2 , 1
2 ). This implies that each row of EbndV̂

is an edge between the active nodes of a pair of neighboring partitions. Therefore,
EbndV̂ is the edge matrix for a coarse mesh defined by the active nodes.

The edge matrix EbndV̂ for the coarse mesh can be simplified further, as the
following observation suggests. Observe that there are exactly two edges between
each pair of neighboring active nodes. For example, in Fig. 2.2 both the edges from
2 to 5 and 3 to 8 are replaced by edges from 4 to 8, each with value (−1

2 , 1
2 ). It

can be shown that these rows of EbndV̂ are linearly dependent1. The orthogonal
transformation

QT
i,j =

(
1√
2

1√
2

− 1√
2

1√
2

)

combines two linearly dependent identical rows of EbndV̂ which correspond to the
boundary edges between the active nodes of partitions i and j. As a result, one of
the rows becomes zero. In the example of the two edges between 4 and 8,(

1√
2

1√
2

− 1√
2

1√
2

) (
− 1

2
1
2

− 1
2

1
2

)
=

(
− 1√

2
1√
2

0 0

)
.

Using QT
i,j , we define the block diagonal orthogonal matrix QT which operates on the

rows of EbndV̂ to combine linearly dependent identical rows between pairs of active
nodes. Further, the rows of QT are permuted so that all the rows which are nonzero
after multiplication with QT are collected at the top. Then we have

QT EbndV̂ =
(

E(1)

0

)
,(2.12)

where E(1) is a gradient operator for the coarse mesh defined on the n
4 active nodes.

In particular, this new gradient operator has been scaled by 1√
2
.

The linear transformation to obtain E(1) from E can be formally defined as fol-
lows:

Z(1) = V,

P (1)T
=

(
I

QT

) (
I

−EbndV S† I

) (
UT

I

)
.(2.13)

1A constant vector over two neighboring partitions i and j is in the null space of the submatrix
of E formed by Einti , Eintj , and Ebnd(i,j)

, where Ebnd(i,j)
is the set of rows corresponding to the

boundary edges between partitions i and j.
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From (2.11) and (2.12) it follows that

P (1)T
EZ(1) =

 S
E(1)

0

 .

Recall that S is a diagonal matrix with zero elements on the diagonal for the
columns corresponding to the active nodes. On the other hand, E(1) has nonzero
columns only for the active nodes. This implies that we can choose suitable P (2)

and Z(2) which operate only on the nonzero rows and columns of E(1) to obtain E(2)

without affecting S. Using this technique, a coarse level gradient operator E(i+1) is
obtained from E(i) at the ith level by the transformation

P (i+1)T
E(i)Z(i+1) =

 S(i+1)

E(i+1)

0

 .

This process may be continued until we reach a mesh with a single partition. At this
level, say k, all the edges are interior edges and

P (k) =
(

U (k)

I

)
,

where U (k)S(k)V (k)T
is the SVD of the coarsest level gradient matrix E(k).

The combined transformation for all the k levels is

P = P (1)P (2) · · ·P (k),

Z = Z(1)Z(2) · · ·Z(k), and

PT EZ =


S(1)

...
S(k)

0

 .

The diagonal matrix S(i), obtained at the ith level, has nonzero elements which cor-
respond exactly to those nodes which become inactive at this level. This also implies
that each column of PT EZ has exactly one nonzero2. A suitable permutation of the
rows of this matrix is used to convert it into the desired form (2.5).

To summarize, we have described a scheme which transforms the gradient matrix
E for the original mesh into one for a coarser mesh. We have also shown how to
apply this strategy recursively to coarsen the mesh all the way up to a single node.
This yields a sequence of linear transformations which converts the original gradient
matrix E to a diagonal matrix. An outline of the multilevel algorithm for computing
the decomposition (2.5) is presented in the appendix.

The following lemma establishes that the computational complexity of matrix–
vector products with Z and P is O(n) operations.

LEMMA 2.1. A matrix–vector product with Z and P is O(n) operations.

2For our sample problem with rank deficiency, the multilevel scheme terminates with zero as the
last column of S(k). Since the last column of Z is the constant vector over the domain which is
identical to Null(E), a solution can still be found provided b is orthogonal to Null(E), i.e., if b has
zero mean.
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Proof. The proof is in two parts. First we show that a matrix–vector product
with the first level matrices Z(1) and P (1) requires O(n) operations, and then we prove
that the complexity of a matrix–vector product with Z or P is O(n) operations. From
the preceding discussion, it is clear that U and V are n × n block diagonal matrices
with 4 × 4 dense blocks. Ebnd is a q × n matrix with two nonzeros per row, where q
is the number of boundary edges (q ≈ n). Furthermore, QT is a q × q matrix with
two nonzeros in each row. Therefore, matrix–vector products with Z(1) and P (1) each
require O(n) operations. Since the number of nodes in the mesh decreases by a factor
of four at each level of coarsening, the total number of operations for a matrix–vector
product with Z or P is

∑log4 n−1
i=0

cn
4i for some constant c, which is O(n).

We conclude this section with remarks on the versatility of the proposed scheme.
Remark 1. A truncated multilevel scheme. In section 3, we show that for our

sample problem the condition number κ(PT
2 P2) degrades by a constant factor with

each level. Substantial improvement in convergence may be achieved by terminating
the multilevel scheme after k0 < k levels. This truncated multilevel scheme requires the
QR factorization of the gradient matrix E(k0) at the coarsest level. Now, P (k0) = Q,
and D has the upper triangular matrix R in the columns for the active nodes at level
k0. If we choose k0 = k

2 , κ(PT
2 P2) is reduced by a power of 1

2 , along with an increase in
storage and computation per iteration of only O(n). However, experimental evidence
in section 4 suggests that the condition number for the truncated multilevel scheme
for k0 = 1

2 log4 n is O( 4
√

n).
Remark 2. Dirichlet boundary conditions. Dirichlet boundary condition at a

node i results in the removal of that column from the gradient matrix E. Due to
this, each neighbor j of i acquires a self edge which corresponds to a row of E with a
single nonzero element in the column for j. Even though a partition including such a
neighbor j has a nonzero smallest singular value, it is not used to define S†. Instead,
it is included in the gradient matrix for the coarse mesh E(1) and acts as a Dirichlet
boundary condition at the active node from this partition.

Combining the edges between two partitions by orthogonal transformation QT can
also yield self edges for the active nodes on the boundary. This is due to the fact that
in EbndV̂ , the boundary edges between such nodes are no longer linearly dependent.
For example, if active nodes i (from a boundary partition) and j are connected by a
set of boundary edges which form the submatrix [EbndV̂ ]i,j with linearly independent
rows, then QT

i,j is chosen such that QT
i,j [EbndV̂ ]i,j = Ri,j , where Ri,j is an upper

triangular matrix. The first row of Ri,j is the new edge between the nodes i and j.
The second row (with a single nonzero element) is a new self edge for node j and acts
as a Dirichlet condition at this node. Recall that in the case of Neumann conditions
the rows of [EbndV̂ ]i,j were linearly dependent, and the second row of Ri,j was zero.

The number of operations required for matrix–vector products with P and Z are
still O(n). The estimate for the condition number κ(PT

2 P2) derived in section 3 is
valid for Dirichlet boundary conditions as well.

Remark 3. Multilevel scheme for finite elements. The finite element method
yields a linear system with the matrix

A =
t∑

j=1

Aj ,

where Aj is the element stiffness matrix for the jth element, and t is the total number
of elements. Further, Aj is rank deficient and may be expressed as Aj = VjV

T
j .

Defining ET = [V1, V2, . . . , Vt] , we can express the linear system in the alternate
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form (2.4). The main difference now is that each row of E consists of three nonzeros
corresponding to the nodes of each triangular element. However, these rows can be
viewed as super edges of size 3, where a super edge of size m is defined as an edge
over m nodes. As before, the nodes are grouped into partitions. The elements within
a partition are called interior elements, and the elements lying outside the partitions
are called boundary elements. Since each element had two super edges (rows of V T

j ),
we can partition the rows of E into interior rows Eint and boundary rows Ebnd. The
linear transformations to obtain E(1) from E are derived in a manner similar to the
one described previously.

From this point onward, the multilevel scheme for the finite element method is
essentially the same as that for the finite difference scheme. The mesh is systematically
coarsened, and the matrices E(i) are obtained in the same manner. The rows of E(i)

may have two nonzeros for edges between two nodes, or three nonzeros for super edges
arising from elements.

3. Convergence. In this section, we prove that the condition number of the
matrix PT

2 P2 for our sample problem is smaller than that of the original system,
which confirms the fact that the multilevel scheme acts as an effective preconditioner
as well. It is well known that the rate of convergence of CG for solving the symmetric
positive definite system Ax = b is given by

‖em‖
‖e0‖

≤ 2
(√

κ − 1√
κ + 1

)m

,

where ‖em‖A = ‖x − xm‖A is the A-norm of the error in the solution at the mth
iteration, and κ is the condition number of A. Therefore, CG converges rapidly for
systems with small κ.

An estimate of κ(PT
2 P2) is obtained as follows. First we represent P2 as a product

of matrices P
(i)
2 , i = 1, . . . , k, where P

(i)
2 is a submatrix of P (i) at the ith level of

the multilevel scheme. Next, we estimate the extremal singular values of P
(i)
2 , say

σmax(P (i)
2 ) and σmin(P (i)

2 ). Then

κ(PT
2 P2) ≤

k∏
i=1

(
σmax(P (i)

2 )

σmin(P (i)
2 )

)2

,(3.1)

where P2 consists of e−n columns of P which form a basis for Null(ET ), i.e., PT
2 E = 0.

Since

P (1)T
EZ(1) =

 S
E(1)

0

 ,

the columns of P (1) are divided into three categories: nonbasis columns that yield a
nonzero row in S, basis columns that yield a zero row, and undetermined columns that
yield the nonzero matrix E(1). Subsequent transformations using P (i), i = 2, . . . , k,
applied to E(1) do not affect basis and nonbasis columns. This leads to the conclusion
that the basis columns are included in P2 and nonbasis columns are excluded from
P2. At this point, no such assertion can be made for the undetermined columns. At
level i the equation

P (i)T
E(i−1)Z(i) =

 S(i)

E(i)

0


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is used to divide columns of P (i) into basis, nonbasis, and undetermined columns,
and the basis columns are included in P2. The last level has only basis and nonba-
sis columns. The matrix P2 is defined as follows: let P

(i)
2 be the set of basis and

undetermined columns of P (i) at level i. Then

P2 = P
(1)
2 P

(2)
2 · · ·P (k)

2 .(3.2)

Assuming

W = −S†T
V T ET

bndQ

we obtain from (2.13)

P (1)T
P (1) =

(
I

WT QT

) (
I W

Q

)
=

(
I W

WT I + WT W

)
.

Notice that the off-diagonal blocks contain nonzero elements only in the nonbasis

rows (and columns) for the first level. To obtain P
(1)
2

T
P

(1)
2 we extract the rows and

columns corresponding to basis and undetermined rows. This yields the following
(e − 3n

4 ) × (e − 3n
4 ) matrix:

P
(1)
2

T
P

(1)
2 =

(
I

I + WT W

)
.

The following lemma establishes bounds for the extremal singular values of P
(i)
2 .

LEMMA 3.1. Define W (i) = S(i)†T

V (i)T
E

(i−1)
bnd

T
Q(i). Then

1 ≤ σ(P (i)
2 )

2
≤ 1 + σmax(W (i))

2
.

Proof. From the above discussion, it follows that for level i

P
(i)
2

T
P

(i)
2 =

(
I

I + W (i)T
W (i)

)

which proves the lemma.
THEOREM 3.2. The condition number of PT

2 P2

κ(PT
2 P2) ≤

k∏
i=1

[1 + σmax(W (i))2].

Proof. The proof follows from (3.1), (3.2), and Lemma 3.1.
We now estimate κ(PT

2 P2) for our sample problem. From the definition of W (i),

σmax(W (i)) ≤ σmax(S(i)†
)σmax(E(i)

bnd).

At the first level (2.10) gives σmax(S†) = 1√
2
. To estimate σmax(Ebnd), we compute

the SVD of Ebnd in a manner similar to the SVD for Eint. Groups of boundary edges
(see Fig. 3.1) are used to define partitions of nodes and reorder the rows and columns
of Ebnd to obtain the following block diagonal matrix:
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FIG. 3.1. Groups of boundary edges (bold) which form partitions (shaded) in an 8 × 8 mesh.

Ẽbnd =


Ebnd1

Ebnd2

. . .
Ebndl

 ,

where l is the number of partitions. For partitions with two nodes

Ebndj
=

(
−1 1

)
and the SVD is

Ebndj = UjSjV
T
j =

(
1

) ( √
2

) (
1√
2

− 1√
2

)
,

whereas for partitions with four nodes

Ebndj
=


−1 1

−1 1
1 −1

−1 1


and the SVD is

Ebndj
= UjSjV

T
j ,

where Uj , Sj , and Vj are identical to Ui, Si, and Vi in (2.7)–(2.9). Therefore, the
SVD of Ẽbnd is given by

Ẽbnd = UbndSbndV
T
bnd

=

 U1
. . .

Ul


 S1

. . .
Sl


 V T

1
. . .

V T
l


which shows that σmax(Ebnd) = 2 and σmax(W ) ≤

√
2.
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Recall that E(1) was the gradient matrix for the first level coarse mesh scaled by
a factor 1√

2
. Each level of coarsening scales the gradient matrix by 1√

2
, which implies

that at level i, E(i) is the gradient matrix for the coarse mesh scaled by a factor of
2−i/2. Hence, it may be concluded that for level i

σmax(S(i)†
) = 2(i−1)/2,

σmax(E(i)
bnd) = 2(2−i)/2, and

σmax(W (i)) ≤
√

2.

THEOREM 3.3. For the Poisson equation with Neumann boundary conditions,

σmax(W (i)) ≤
√

2, i = 1, . . . , log4 n,

κ(PT
2 P2) ≤ n

1
2 log2 3.

Proof. From the preceding discussion, σmax(W (i)) ≤
√

2 for i = 1, . . . , k, where k
is the total number of levels. Theorem 3.2 shows that

κ(PT
2 P2) ≤

k∏
i=1

[1 + σmax(W (i))2].

It follows that for k = log4 n

κ(PT
2 P2) ≤ 3log4 n = n

1
2 log2 3 ≈ n0.7925,

which proves the theorem.
Remark 4. Theorem 3.3 gives a pessimistic bound for κ(PT

2 P2). Results of
numerical experiments in section 4 suggest that κ(PT

2 P2) is O(
√

n). This is most
likely due to the inaccuracy in estimating σmax(W (i)).

4. Numerical experiments. In this section, we present the results of numerical
experiments for elliptic problems as well as the generalized Stokes problem. All the
experiments were performed on an IBM RS6000 workstation with 66.5 MHz clock and
256 MB main memory.

4.1. Elliptic problems. The main purpose of this section is to illustrate the
preconditioning properties of the proposed multilevel scheme and, therefore, we com-
pare it with the diagonally preconditioned CG method (DCG). The following PDE
was solved on a unit square domain with appropriate boundary conditions:

−∇ · (a(x, y)∇u) = f.(4.1)

The domain is discretized by a uniform
√

n ×
√

n mesh, and a finite difference ap-
proximation identical to the one described in section 2.1 is used. The convergence
criterion for terminating an iteration was a 10−6 reduction in the relative residual
norm for DCG. For the multilevel scheme, an iteration was terminated upon a 10−8

reduction in the relative residual norm, which yielded a relative residual norm less
than 10−6 for the original system. In each case, the initial guess for the solution was
zero.

Problem 1. Poisson equation. As our first example, we solve (4.1) with a(x, y) = 1
over the entire domain. Table 4.1 presents the comparison between the multilevel
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TABLE 4.1
Comparison of DCG and multilevel scheme for the Poisson equation.

Neumann Dirichlet
Mesh size DCG Multilevel DCG Multilevel

(
√

n) Iter Time Iter Time Iter Time Iter Time

16 77 .10 19 .10 39 .05 19 .12
32 157 .73 27 .53 77 .38 25 .48
64 329 6.37 38 3.19 153 3.09 35 2.83
128 666 51.76 53 17.50 309 24.59 49 16.18

TABLE 4.2
Comparison of DCG and multilevel scheme for different inhomogeneity functions.

Mesh size Type a Type b Type c Type d
(
√

n) DCG ML DCG ML DCG ML DCG ML

16 44 18 50 17 48 19 46 21
32 90 25 101 23 95 26 92 29
64 180 34 199 32 188 36 179 40
128 361 46 394 43 372 48 355 55

scheme and DCG method for the cases of Dirichlet and Neumann conditions over
the entire boundary. The system was made nonsingular for the case with Neumann
condition by enforcing a Dirichlet condition at node 1.

The number of iterations and time (in seconds) required for CG in DCG and
multilevel scheme are reported in columns Iter and Time, respectively. It is well
known that the linear system for the DCG method has condition number of O(n). In
contrast, the convergence of the multilevel scheme suggests that κ(PT

2 P2) = O(
√

n).
It was also observed that the time to compute the matrices P , Z, and D was a fifth of
the overall time and increased linearly with the size of the problem, confirming that
the computation required for the decomposition of the edge matrix E in the multilevel
scheme is O(n).

Problem 2. Inhomogeneous problems. We consider problems of the form (4.1)
with Dirichlet boundary condition. We use the same discretization as in the previous
case but allow the following types of functions:

1. Type a: a(x, y) =

{
0.01 if x ≤ 0.5,

1 if x > 0.5.

2. Type b: a(x, y) =


0.01 if x ≤ 0.5 and y < 0.5,

1 if x > 0.5 and y < 0.5,

0.0001 if x ≤ 0.5 and y ≥ 0.5,

0.01 if x > 0.5 and y ≥ 0.5.

3. Type c: a(x, y) = 0.01 + x2 + y2.

4. Type d: a(x, y) =

{
10x if edge along x-axis,
10y if edge along y-axis.

Table 4.2 presents the number of iterations required by the CG algorithm to converge
to the solution for the multilevel scheme and the DCG method.

Problem 3. Truncated multilevel scheme for Poisson equation. We present results
for solving the Poisson equation with Dirichlet boundary conditions using the trun-
cated multilevel scheme and compare it with the multilevel scheme. Table 4.3 presents
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TABLE 4.3
Comparison of multilevel and truncated multilevel scheme for the Laplace equation with Dirich-

let boundary conditions.

Mesh size Truncated multilevel Multilevel
(
√

n) k0 Iter Time Iter Time

16 2 17 .11 19 .12
32 2 19 .60 25 .48
64 3 27 2.52 35 2.83
128 3 28 12.77 49 16.18

the iterations and time required for both methods and the number of levels used by
the truncated multilevel scheme. It may be observed that the condition number of
the truncated multilevel scheme κ(PT

2 P2) = O( 4
√

n) and depends only on the number
of levels k0 to which the mesh is coarsened.

The results presented in Tables 4.1 and 4.2 indicate that the estimate for the
condition number in Theorem 3.3 is quite pessimistic and that κ(PT

2 P2) = O(
√

n)
instead of O(n0.7925). Moreover, the multilevel scheme displays similar behavior in
the case of problems with varying inhomogeneity which demonstrates the robustness
of its preconditioning. It must also be noted that the time to compute the matrices P ,
Z, and D increases linearly with the size of the problem, indicating the feasibility of
the scheme for large-scale problems. Finally, we observe that the truncated multilevel
scheme can be used to improve convergence at the expense of memory and computa-
tion per iteration. Similar results have been obtained for finite element discretization
of the domain using unstructured meshes.

4.2. Generalized Stokes problem. In this section, we present experiments
for the lid-driven cavity problem on a unit square using the multilevel scheme. The
domain is discretized by a mesh defined on pressure nodes. We compare the multilevel
algorithm to the Uzawa method preconditioned by the matrix C, where

C−1 = νM−1
p + αT−1

p

in which Mp and Tp are the mass matrix and the discrete Laplace matrix defined
on the pressure mesh. In the case of finite difference approximation, Tp is an M -
matrix. This preconditioner was first presented in [8] and appears to be the most
effective for our problem. The CG algorithm preconditioned by incomplete Cholesky
factorization was used for the inner system solve, as well as the application of T−1

p

in the preconditioner. The pressure mass matrix Mp was approximated by a lumped
diagonal matrix. To obtain a fair comparison, the fill-in was restricted so that the
amount of storage used was similar to the multilevel scheme.

One advantage of multilevel scheme over other methods is its ability to ensure
that the discrete divergence of the velocity is of the order of machine precision, which
is a direct consequence of an explicit representation of the null-divergence basis P2.
Therefore, the use of the CG method in the multilevel scheme is merely to reduce
the residual of the momentum equation to an acceptable tolerance. In contrast, the
Uzawa methods implicitly reduce the divergence residual at the outer level and the
momentum residual at the inner level.

The nature of the linear system (1.4) depends greatly on the ratio α/ν which
determines the characteristics of the matrix A. Therefore, the main focus of the
experiments was the behavior of each algorithm for α/ν ∈ [0,∞).
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FIG. 4.1. Finite difference method using the MAC discretization.

TABLE 4.4
Comparison of Uzawa and multilevel for steady-state Stokes problem (α/ν = 0) discretized by

the MAC scheme on a uniform mesh.

Size Uzawa Multilevel

np nu Iter timeU Iter timeML
timeU

timeML

255 480 19 (39) 0.77 28 0.09 8.6
1023 1984 21 (72) 6.35 41 0.57 11.1
4095 8064 22 (140) 53.55 61 2.90 18.5
16383 32512 25 (272) 496.18 81 15.08 32.9

Problem 4. Finite difference method. We use the marker-and-cell (MAC) dis-
cretization scheme [15] on a staggered mesh (see Fig. 4.1). The velocity u = (0, 0)T

on the boundary except for the top edge where u = (1, 0)T , and p = 0 at the lower
left corner to ensure full rank of B. Points on the boundary satisfy the boundary
conditions, whereas points outside the domain must be interpolated. A tolerance of
10−9 was placed on the divergence residual.

Tables 4.4 and 4.5 present a comparison between the multilevel scheme and the
Uzawa method for the extreme values of α/ν. The number of velocity and pressure
unknowns are shown as nu and np, respectively, and the numbers in parentheses give
the total number of iterations at the inner level of the Uzawa method. Figure 4.2
shows that even in the worst case, the condition number of the preconditioned system
grows as O(√np).

Problem 5. Finite elements method. In this case, we used an unstructured tri-
angular mesh to discretize the domain. We chose the P1-isoP1 piecewise linear finite
element pair for the mixed finite elements approximation, in which pressure is approx-
imated by continuous piecewise linear elements on a triangular mesh Th, and velocity
is approximated by continuous piecewise linear elements on a finer mesh Th/2 obtained
by refining each element in the pressure mesh into four elements using the midpoints
of each side.
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TABLE 4.5
Comparison of Uzawa and multilevel for the generalized Stokes problem (α/ν = 1010) discretized

by the MAC scheme on a uniform mesh.

Size Uzawa Multilevel

np nu Iter timeU Iter timeML
timeU

timeML

255 480 2 (22) 0.06 19 0.08 0.8
1023 1984 2 (40) 0.37 28 0.45 0.8
4095 8064 2 (75) 2.77 40 2.27 1.2
16383 32512 2 (144) 21.63 56 11.59 1.9
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FIG. 4.2. Iterations required by the multilevel scheme for α/ν ∈ [0, 1010] for the MAC dis-
cretization.

TABLE 4.6
Comparison of Uzawa and multilevel for steady-state Stokes problem (α/ν = 0) using P1-isoP1

mixed finite elements.

Size Uzawa Multilevel

np nu Iter timeU Iter timeML
timeU

timeML

351 2426 60 (72) 16.55 446 3.68 4.5
1334 9906 65 (139) 143.70 1077 36.97 3.9
2636 19938 67 (196) 413.57 1874 132.13 3.1
5178 39890 64 (274) 1237.50 3000 442.03 2.8

The velocity obeys Dirichlet boundary condition, and the pressure at the lower
left corner is set to zero. In this case, a tolerance of 10−13 was enforced on the
divergence residual. Tables 4.6 and 4.7 present a comparison between the multilevel
scheme and the Uzawa method for the extreme values of α/ν. The relative behavior
of these methods for other values of α/ν was observed to be an interpolation between
these extremes.
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TABLE 4.7
Comparison of Uzawa and multilevel for the generalized Stokes problem (α/ν = 107) using

P1-isoP1 mixed finite elements.

Size Uzawa Multilevel

np nu Iter timeU Iter timeML
timeU

timeML

351 2426 23 (19) 1.90 96 0.94 2.0
1334 9906 24 (25) 10.20 125 5.02 2.0
2636 19938 23 (30) 24.55 165 13.06 1.9
5178 39890 23 (38) 59.24 190 31.06 1.9

For our problems, the multilevel scheme is faster than the preconditioned Uzawa
method for both the finite difference and finite element approximations. Moreover,
our approach retains this edge for a wide choice of parameters α and ν which makes
it a very effective method for these problems. It is interesting to note that for the
MAC discretization, the preconditioning effect of the multilevel scheme is relatively
independent of α/ν. Even though this property is not evident in the experiments with
mixed finite element discretization, our approach appears to be very competitive with
the Uzawa method.

The performance of the Uzawa method can be improved for uniform discretiza-
tions by the use of fast algorithms for inner system solves. However, for the more
general case of unstructured meshes, the effectiveness of the Uzawa method depends
greatly on the methods used for the solution of the inner systems. In this respect,
we believe that our experiments demonstrate that the proposed multilevel scheme is
very competitive for the solution of the generalized Stokes problem.

5. Conclusions. We have proposed a novel technique to solve the generalized
Stokes problem, which computes a well-conditioned basis for the null-divergence ve-
locity space and solves a reduced symmetric and positive definite system in that space
using the CG method. We also describe a multilevel scheme for computing such a
basis along with analysis of its convergence properties for the Poisson problem on a
uniform mesh. Our approach is directly applicable to several discretization methods
for self-adjoint elliptic problems including finite difference, finite element, and finite
volume techniques. The extension of the multilevel scheme to convection-diffusion-
type problems remains a topic for future research. We supplement our method with
results of numerical experiments for finite difference and mixed finite element dis-
cretizations of the self-adjoint problems as well as the generalized Stokes problem.
These experiments demonstrate that our approach provides a robust and effective
preconditioning technique for these problems.

Appendix.
Algorithm Multilevel.
1. Initialize E(0) = E, i = 1.
2. Divide the nodes in the mesh into l partitions.
3. If l = 1, then set k = i, Z(k) = V (k), and

P (k)T
=

(
U (k)T

I

)
,

where E(i−1) = U (i)S(i)V (i)T
. Go to step 9.
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4. Compute the SVD E
(i−1)
int = U (i)S(i)V (i)T

, where

E(i−1) =

(
E

(i−1)
int

E
(i−1)
bnd

)

in which Eint and Ebnd consist of the rows corresponding to interior and
boundary edges, respectively.

5. Compute E
(i−1)
bnd V̂ (i) and Q(i) to combine rows between neighboring active

nodes in the coarse mesh.
6. Set Z(i) = V (i) and

P (i)T
=

(
I

Q(i)T

) (
I

−E
(i−1)
bnd V (i)S(i)†

I

) (
U (i)T

I

)
.

7. Compute the gradient operator for the coarse mesh

Q(i)T
E

(i−1)
bnd V̂ (i) =

(
E(i)

0

)
.

8. Set i = i + 1 and go to step 2.
9. Set P = P (1)P (2) · · ·P (k) and Z = Z(1)Z(2) · · ·Z(k).
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