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SparseTransformations and Preconditioners for 3-D Capacitance
Extraction

ShuYan, Vivek Sarin,andWeiping Shi

Abstract— Thr ee-dimensional capacitance extraction algo-
rithms are important due to their high accuracy. However, the
curr ent 3D algorithms are slow and thus their application is
limited. In this paper, we presenta novel method to significantly
speedup capacitanceextraction algorithms based on boundary
element methods,under uniform and multiple dielectrics.

The ����� coefficientmatrix in the boundary elementmethod is
dense,even when approximated with the fast multipole method,
where � is the number of panels needed to discretize the
conductor surfacesand dielectric interfaces.As a result, effective
preconditionersare hard to obtain and iterati ve solvers converge
slowly. In this paper, we intr oduce a linear transformation to
convert the ����� densecoefficient matrix into a sparsematrix
with

��� �
	 nonzero entries, and then useincomplete factorization
to produce a very effective preconditioner. For the � � � bus
crossing benchmark, our method requires at most 4 iterations,
whereas previous best methods such as FastCap and HiCap
require 10-20 iterations. As a result, our algorithm is up to 70
times faster than FastCap and up to 2 times faster than HiCap
on thesebenchmarks. Additional experiments illustrate that our
method consistently outperforms previous best methods by a
large magnitude on complex industrial problems with multiple
dielectrics.

Index Terms— Parasitic extraction, capacitance extraction,
boundary element method, iterati ve method, preconditioning.

I . INTRODUCTION

CAPACITANCE extraction is important for timing veri-
fication and signal integrity analysisof VLSI circuits,

multi-chip modules,printedcircuit boardsandpackages.Most
existing methods fall into two categories: library look-up
wherethe layout is divided into sectionsandmatchedagainst
a pre-characterizedlibrary to derive the capacitancevalue,or
field solverwheretheelectromagneticfield is solvedto derive
thecapacitance.The library methodsarefaster, while thefield
methodsare more accurate.As the technologyshrinks, the
demandfor fastandaccuratetools is increasing.In this paper,
we try to meetthis demandby proposinga novel techniqueto
significantlyspeed-upfastmultipoleaccelerated[1] boundary
elementmethod(BEM), which is usedby many field solvers
suchasFastCap[2], HiCap [3], the multi-scalealgorithm[4],
andhybrid algorithms[5].

The linear systemarising from BEM is often solved by
iterative methods.However, the linear systemis dense,even
when approximatedwith the fast multipole method. As a
result, effective preconditionersare hard to obtain and the
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iterativesolversconvergeslowly. In thispaper, weproposePH-
iCap,aPreconditionedHierarchicalalgorithmfor Capacitance
extraction.PHiCapusesa linear transformationto convert the
denselinear systemobtainedfrom the hierarchicalalgorithm
[3] to an equivalent sparsesystem.The sparsestructure is
exploitedto constructpreconditionersbasedon incompleteLU
or incompleteCholesky factorizations.The transformedlinear
systemis solved by preconditionedGMRES or CG iterative
methods(see,e.g.,[6]). Therateof convergenceof theiterative
methodsincreasesdramaticallyby usingthesepreconditioners.
For benchmarkexamples,PHiCap usesfewer iterationsand
runssignificantlyfasterthanpreviousmethodssuchasFastCap
[2] andHiCap [3]. The numberof iterationsusedby PHiCap
is also lessthan the multi-scalemethod[4].

In addition to fast multipole acceleratedBEMs, there are
otherfastcapacitanceextractionalgorithms,suchasthepFFT
algorithm [7], the singularvalue decomposition(SVD) algo-
rithm [8] and the geometricindependentmethod[9]. We do
not know if our method can be applied to speed-upthese
algorithms.

The paperis organizedasfollows: In SectionII, we review
the integral equationapproachfor capacitanceextraction for
uniform andmultiple dielectrics.In SectionIII, we introduce
the new algorithm. We presentexperimentalresults in Sec-
tion IV andconclusionsin SectionV.

I I . PRELIMINARIES

To computethe self and coupling capacitances,we need
to computethe conductorsurfacecharges,given certaincon-
ductor potentials.In general,the surface chargessatisfy the
integral equation��
������ � ��� � �
� 
���������
��! "���"�$#&%��' (1)

where
��
����

denotesthe known conductorsurface potential,(*)
is the the conductorsurfaces,

(�+
is the dielectric-dielectric

interfaces,� is the charge densitieson
(*)

and
(*+

,
��
��! "� � �

is
theGreen’s function,

#,% �
is the incrementalconductorsurface

area,and
� �.- #,% �

. The Green’s function
��
��/ �� � �

has the
form ��
��! "� � �0� 1243�5'6�7 �98:� � 7  
where

7 ��8;� � 7
denotestheEuclideandistancebetween

�
and� �

.
In addition,the interfacecondition5�</= � < 
��0�=&> < 8 5�?@= � ? 
��0�=&> < �BA

(2)

must be satisfiedat any point
� - (*+

. Here,
5 <

and
5 ?

are
thepermittivities of the two adjacentdielectricsC and D , > < is
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the normal to the dielectric-dielectricinterfaceat
�

pointing
into C , and = � < 
��0�"E =&> < and = � ? 
����"E =&> < are the normal
componentof electricfield at

�
in C and D , respectively. Here,

the equivalentcharge approach[10], [11] is usedto dealwith
multiple dielectric.

To solve (1) and (2) numerically, the standardGalerkin
schemeis used.In this approach,the conductorsurfacesand
dielectric-dielectricinterfacesaredivided into > small panels,F�G  F�H  JIKIJI$ FML

, anda denselinear systemis formed:

NPOQO NPOQRS RTO S RTR U OU R
� V OW  

(3)

whereU O and U R denotethevectorof chargeson theconductor
panelsand dielectric-dielectricinterfacepanels,respectively,
and V O denotesthe vectorof potentialson conductorpanels.
The


�XY �Z*�
entry of

N O[O
and

N O[R
aredefinedas

\^]�_ � 1`Ta[bJ` 
 F ] � 1`&aQbK` 
 F _ � c/d c
e ��
�� ]  "� _ ��#&% _ #,% ] I
The

X
-th diagonalentry of

S R&R
is definedas

f ]�] �g
 5 <�h 5 ? �i1j C ] 5 6 I
The off-diagonalentriesof

S R&R
and the entriesof

S RTO
are

definedas

fk]�_ � 
 5�< 8 5�? � ==&> < 1`Ta[bJ` 
 F ] � 1`&aQbK` 
 F _ �Pl
l c d c e ��
�� ]  "� _ ��#,% _ #,% ] I

Theproblemwith uniform dielectricis a specialcasewith the
dielectric-dielectricinterfacesremoved.

I I I . THE PHICAP ALGORITHM

In this section,we presentPHiCap,thepreconditionedhier-
archicalcapacitanceextraction algorithm.Reformulatelinear
system(3) as follows.

N U � V I (4)

We will show how to transformdenselinear system(4) to
a sparsesystem,which is then solved by a preconditioned
iterative method.The algorithmis outlinedbelow.

The PHiCap Algorithm

1) Constructthe factorization
N �nmpo�qrm

.
2) Transform the dense system

N U � V to equivalent
sparsesystem sN sU � sV .

3) Computean incompletefactorizationpreconditionerforsN .
4) Solve sN sU � sV by preconditionedCG or GMRES

method.
5) Computecapacitance.
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� � � �
Fig. 1. The hierarchicaldatastructure.

A. Factorizationof
N

(Step1)

We usethe HiCap algorithm[3] to constructa hierarchical
datastructureto storethepotentialcoefficient matrix

N
. Fig. 1

shows an exampleof the hierarchicaldatastructure.Eachtree
representsthe partition of a conductorsurfaceor a dielectric-
dielectric interface. Each non-leaf node representsa panel
that is further subdivided into two child panels.Each leaf
node representsa panel that is not further subdivided. The
coefficientsarestoredas links betweenthe nodes.

In fact, the links storedin thehierarchicaldatastructureare
not exactly entriesof

N
, but a factorizationof

N
, which we

now explain. Let > be thenumberof leaf panelsand � bethe
total numberof leaf andnon-leafpanels.Let

q -
IR�~�@� be

thematrix whereeachnonzeroentryrepresentsa link between
thecorrespondingpanelsin thehierarchicaldatastructure.Letm -

IR�~� L be the matrix representingthe treestructure.Each
row of

m
correspondsto a panel,either leaf or non-leaf,and

eachcolumn correspondsto a leaf panel. Entry

�XY �Z*�

of
m

is 1 if panel
X

containsthe leaf panel
Z
, and 0 otherwise.

Accordingto [3], we have thefactorization:
N ��m$o0qrm

. HereN
is a densematrix with � 
 > � block entriesand

q
is a sparse

matrix with � 
 > � nonzeroentries.

B. Transformingthe Linear System(Step2)

1) Overview: Our transformationis basedon the factoriza-
tion

N ��mpo�qrm
. SinceaQ`&��� 
'm��0� > , we canalwaysconstruct

an orthonormaltransformation� -
IR���*� (describedlater in

this section),suchthat

� m:� � W  
where � -

IR
L � L . Thus,N � m o qrm� m o 
 � o � �'q�
 � o � ��m� 
 � m�� o � q � o 
 � m��� � o W � q � o � W  

where � q � o canbe representedas

� q � o � sN �� � I
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Here, sN is a sparse> � > matrix (we show this propertylater),
and

�
’s denotesubmatricesthatdo not contribute to

N
. SinceN � � o sN � , the denselinear system(4) is transformedto

the sparsesystem

sN sU � sV  (5)

where sU � � U and sV � ��� o V .
2) Constructing� : We first introducea basictransforma-

tion that is usedto construct� . Considerthe matrix

�mp��� 1 1�Q� AA �Q�  
where � � is a constantthat dependson the height   of a node
in the tree.Thereexists an orthonormalmatrix

�� ���
H¡ H£¢¤)Y¥"¦¨§
HQ© )Y¥¡ H£¢¤)Y¥"¦�§pH[© )Y¥¡ H£¢ª)Y¥�¦¨§pH[©)Y¥¡ )Y¥ ¦ §pH 8 G¡ )Y¥ ¦ §
H 8 G¡ )Y¥ ¦ §pHA G« H 8 G« H

 

suchthat

�� � �m � �
� � §¬G � � §­GA Af � 8 f �  

(6)

where

�Q� §­G � � H � h:jj  fk� � �[�¡ j   .® 1  
and � G � 1 .

To simplify the discussion,we definean elementtree as a
treewith oneroot andtwo children.Given a hierarchicaldata
structureand the correspondingmatrix

m
, the transformation

is done by a depth-first traversal of the correspondingtree,
propagatingthe transformationupward to the root. Fig. 2
illustratestheprocedure.Startingfrom height   � 1 , asshown
in Fig. 2(a),for eachelementtreerootedat height1, i.e., trees
(B, C, D) and(E, F, G), we canidentify thecorresponding

�mp¯
blocks in

m
. We construct � ¯ that transformsall

�mp¯
blocks

to
�� ¯ �mp¯ blocks without changinganything else in

m
. Next,

as illustrated in Fig. 2(b), we identify the elementtree at
height   � j

, i.e., tree (A, B, E), and the corresponding
�mp°

block in � ¯ m . Note that the rows of A, B, and E have two
instancesof the

�m °
block in columnsC and F and columns

D and G, respectively. We construct � ° that transformsthe�m °
blocks to

�� ° �m ° blocks without changinganything elsein� ¯ m . In this way, the transformationis propagatedto the root.
Finally, as shown in Fig. 2(c), we move the nonzerorows to
thetopof thematrixusingapermutationmatrix

S
. Theoverall

transformationis given as � � S � ° � ¯ . It is easyto seethat
thenonzerorowsof � m correspondto theroot nodeandnodes
that are right children of other nodes.In other words, zero
rows in � m correspondto nodesthatareleft childrenof other
nodes.

For a treeof height ± , the transformationis

� � S �³²,�³² � ¯ lJlKl � ° � ¯  
where � � is constructedaccordingto the element trees at
height   . Since � ¯  � °  KIJIJI
 �³² , and

S
are orthonormal,the

transformationmatrix � is orthonormal.

C D F G

B E

A´´´ µ µ µ¶ ¶·· ·· ¶ ¶ ¸
A
B
C
D
E
F
G

A
B
C
D
E
F
G

C D F G C D F G
1 1 1 1
1 1
1

1
1 1
1

1

¹º¹»¹º¹¼T½@¼T½
0 0¾^¿ - ¾�¿ ¼ ½ ¼ ½

0 0¾ ¿ - ¾ ¿À Á x À

Á x

(a) Transformationwith
Á x

C D F G

B E

A´´´ µ µ µ¶ ¶·· ·· ¶ ¶ ¸
A
B
C
D
E
F
G

A
B
C
D
E
F
G

C D F G C D F G
1 1 1 1¼ ½ ¼ ½
Â^Ã -ÂÄÃ ¼ ½ ¼ ½

-Â ÃÂ Ã

¼ÆÅ*¼ÆÅ�¼ÆÅ�¼4Å
0 0 0 0ÂÄÃ -ÂÄÃ¾ ½ ¾ ½ - ¾ ½ - ¾ ½Â Ã -Â ÃÁ x À Á � Á x À

Á �

(b) Transformationwith
Á �

C D F G

B E

A´´´ µ µ µ¶ ¶·· ·· ¶ ¶ ¸
A
B
C
D
E
F
G

A
E
D
G
B
C
F

C D F G C D F G¼ Å ¼ Å ¼ Å ¼ Å
- ¾^¿¾^¿¾ ½ ¾ ½ - ¾ ½ - ¾ ½¾ ¿ - ¾ ¿

¼ Å ¼ Å ¼ Å ¼ Å¾,½�¾,½ - ¾,½ - ¾,½¾^¿ - ¾^¿ ¾^¿ - ¾^¿
Á � Á x À Ç Á � Á x À

Ç

(c) Permutingrows with E

Fig. 2. Constructionof transformationÈ for a treeof height É .

3) Computing � q � o : The matrix
q

is transformedinto� q � o by applying the transformations� � asshown belowqÊ� § ¯�� � �&qÊ� � o�    � 1  j  JIKIJI$ ±  
where

qÊ¯���q
, andthenby applyingthe permutationmatrixS

: � q � o � S q ² § ¯ S o I
In the hierarchicaldatastructure,this is doneby a depth-first
traversalof the tree, propagatingthe transformationupward,
in a mannersimilar to the processof constructingthe matrix� .

In the transformedmatrix � q � o , we are concernedonly
with thesubmatrix sN thatcontainsthe links amongroot nodes
andright child nodes.Thematrix sN canbe treatedasa sparse
matrix with the numberof nonzerosthat are comparableto
the numberof block entriesin

N
(seeFig. 3).

4) ComputingsV : Therowsof thetransformedmatrix
�� � �m �

are orthogonal.It follows that the rows of � are mutually
orthogonal,and that �Ë� o

is a diagonalmatrix with valuesj � � H � §­G , where   is the height of the correspondingnode in
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Fig. 3. The numberof nonzeroentriesin �� andthenumberof block entries
in
�

arecomparable,for variousproblemsizes.

the tree.This propertyis exploited whencomputing sV :

sV � � � o V � � � o � ¯ � V I
Furthermore,the sum of entries in eachrow of � is zero
for all nodesexcept the root. The sum of entries in rows
correspondingto root nodes at height   is

j � � � §­G . As a
result, sV has nonzeroentriesof value � � G� §¬G in the locations
correspondingto the roots of the conductorsurfacesat unit
potential.

The precedingdescriptionis for a balancedtree in which
all leaf nodesare at height 1. An unbalancedtree can be
embeddedinto a balancedtree by addingadditionaldummy
nodes,andthe above procedurecanbe followed.An efficient
implementationcan be developed by avoiding the actual
constructionof dummynodes.

C. Solvingthe TransformedSystem(Steps3-4)

For problemsin uniform medium,the sparselinear system
(5) is symmetric.We usethe incompleteCholesky factoriza-
tion with no fill [6] to computethe preconditioner. Precondi-
tionedConjugateGradientsmethodis usedto solvethesystem.
For problemswith multipledielectrics,thesparselinearsystem
is nonsymmetric.The preconditioneris computedfrom an
incompleteLU factorizationwith no fill [6]. We use right
preconditionedGMRESmethodto solve the system.

D. ComputingCapacitance(Step5)

Capacitancecan be computed from sU directly without
computing U . Recall that sU � � U , and that the rows of �
correspondingto root nodesat height   have identicalnonzero
entries with value �[� §­G . Thus, a root node entry in sU is� � §­G times the sum of all the leaf panelchargesin that tree.
Capacitancecanbe computedby addingthe root nodeentries
of eachconductorin sU after scaling them by corresponding
factors � � G� §­G .

Fig. 4. 4x4 bus with two layersof dielectrics(sectionview).

E. Complexity Analysis

The complexity of constructingthe factorizationof
N

in
Step1 is � 
 > � [3]. The transformationof the linear systemin
Step2 usuallytakes � 
 >�± � time, where ± is the heightof the
tree.Normally, ± � � 
� ¢¡¤£ > � . Sincethenumberof nonzerosinsN is � 
 > � , the incompletefactorizationcanbe donein � 
 > �
time. Eachiteration requiresa matrix-vectorproductwith sN ,
anda solutionof thelower anduppertriangularsystemsof the
preconditioner. Thus,Steps3 and4 take � 
 > � time whenthe
numberof iterationsis small. Capacitancecan be computed
in constanttime. The overall complexity of this algorithm
is normally � 
 >  ¢¡¤£ > h¦¥ > � , where

¥
is the number of

conductors.

IV. EXPERIMENTAL RESULTS

We comparePHiCap with the following algorithms:Fast-
Capwith expansionorder2, FastCapwith expansionorder1,
and HiCap. Other methods,suchas SVD [8] and pFFT [7],
exhibit performancethat is similar to FastCap.No benchmark
experiments were reported for the geometric independent
method[9]. In [3], HiCap algorithmcanonly solve problems
in uniform media. To make the comparisoncomplete,we
extendHiCap to the multiple dielectricscase.The algorithms
are executedon a Sun UltraSPARC Enterprise4000. Unless
otherwisenoted,theiterationsareterminatedwhentherelative
residualnorm of the preconditionedsystemis reducedbelow1 A � H .

Thefirst setof benchmarksare   �   buscrossingstructures
from [2]. Eachbus is scaledto 1 ¥ � 1 ¥ � 
 j   h 1 � ¥ . The
distancebetweenthe adjacentbusesin the samelayer is 1 ¥
and the distancebetweenthe two bus layers is

j�¥
. For the

uniform dielectric cases,the permittivity is assumedto be5 6
. For the multiple dielectric cases,seeFig. 4, the medium

surroundingthe upperlayer conductorshaspermittivity § I ¨ 5'6
and the mediumsurroundingthe lower layer conductorshas
permittivity © I ª 5'6 . The shadedbox representsthe interfaceof
the two layers.
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Tables I and II comparethe four algorithms. PHiCap is
the fastestandusesmuchlessmemorycomparedto FastCap.
The current implementationof PHiCap usesmore memory
comparedto HiCap becauseof the additionalstorageneeded
for thetransformedsystem sN . Thestoragerequirementcanbe
reducedby computing sN directly, sinceit is not necessaryto
construct

q
. In HiCapandPHiCapalgorithms,thediscretiza-

tion threshold«n¬ is chosento be
A*I A&A8­

. This ensuresthat the
relative error in the capacitancematrix computedby PHiCap
is below 3%,which is acceptablein practice.Therelativeerror
in the capacitancematrix ® � , which is computedby HiCapor
PHiCapalgorithms,is definedas

7 ® 8 ® � 7-¯ E 7 ® 7-¯ , where7 l 7-¯ denotesthe Frobeniusnorm. As per standardpractice,
® is computedby FastCapwith expansionorder2.

TableIII shows thefirst andsecondrows of thecapacitance
matrix computedby PHiCapandFastCap.It is easyto seethat
for theself capacitancesandsignificantcouplingcapacitances,
wherea couplingcapacitanceis consideredsignificantif it is
greaterthan 10% of the self capacitance,PHiCap’s error is
mostly within 3%, with respectto FastCapwith expansion
order 2. The error for the small coupling capacitancesis
sometimeslarge,which is acceptablesincethe small coupling
capacitanceshave minor influenceon the circuit performance.
Fig. 5 shows theerrordistribution of theself capacitancesand
the significant coupling capacitancesfor the six benchmark
examplesin Table I and II.

TABLE I

COMPARISON FOR UNIFORM DIELECTRIC. T IME IS CPU SECONDS,

I TERATION IS AVERAGE FOR SOLVING ONE CONDUCTOR, MEMORY IS MB,

AND ERROR IS WITH RESPECT TO FASTCAP (ORDER=2).

FastCap FastCap HiCap PHiCap
(order=2) (order=1)

4x4 Bus with Uniform Dielectric
Time 18.6 19 0.5 0.4
Iteration 8 14.9 9 3
Memory 25.7 16.7 0.7 1.0
Error — 0.05% 2.1% 2.0%
Panel 2736 2736 1088 1088

6x6 Bus with Uniform Dielectric
Time 113.9 68.5 2.4 1.5
Iteration 14.4 14.5 11.9 3.2
Memory 62.5 40.3 1.9 2.9
Error — 1.1% 2.1% 2.2%
Panel 5832 5832 3168 3168

8x8 Bus with Uniform Dielectric
Time 206 204 7.3 3.4
Iteration 12 21.9 13.0 3.9
Memory 112 67 3.1 4.9
Error — 1.0% 3.1% 3.0%
Panel 10080 10080 4224 4224

The secondset of benchmarksare complex industrial cir-
cuits containing8 layers of dielectricsand 48, 68 and 116
conductors,respectively. The smallestcaseof 48 conductors
is shown in Fig. 6. Theresultsarein TableIV. FastCapcannot
solve theseexamplesbecauseof prohibitive time andmemory
requirements.PHiCap displaysnear-optimal preconditioning
on theseexperiments.Fig. 7 shows that the residual norm
decreasesrapidly for PHiCap. In contrast, the decreaseis
slower for HiCap. As a result, PHiCap requiresmuch less
time to solve the problem.

TABLE II

COMPARISON FOR MULTIPLE DIELECTRICS. T IME IS CPU SECONDS,

I TERATION IS AVERAGE FOR SOLVING ONE CONDUCTOR, MEMORY IS MB,

AND ERROR IS WITH RESPECT TO FASTCAP (ORDER=2).

FastCap FastCap HiCap PHiCap
(order=2) (order=1)

4x4 Bus with Two Layer Dielectrics
Time 63 36 1.7 2
Iteration 13 14 9 3
Memory 68 39 3.0 3.9
Error — 0.6% 1.0% 1.0%
Panel 3456 3456 2120 2120

6x6 Bus with Two Layer Dielectrics
Time 162 104 10.4 5.8
Iteration 17.1 17 11.3 3
Memory 92 61 6.3 8.3
Error — 0.5% 1.0% 1.2%
Panel 5448 5448 4120 4120

8x8 Bus with Two Layer Dielectrics
Time 324 197 32 15
Iteration 18 18 12.8 3
Memory 133 86.9 11.5 15.3
Error — 0.0% 1.4% 1.4%
Panel 7968 7968 6784 6784

−4 −2 0 2 4 6 8
0

20

40

60

80

100

120

Error (%)

FastCap(order=1)
HiCap
PHiCap

Fig. 5. Error distribution of self capacitanceand significant coupling
capacitancefor the 6 examplesin Table I and II.
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Fig. 6. Examplewith 48 metal conductorsand 8 dielectric layers.Metal
wires areshaded.Relative permittivity of M1 is 3.9, M2 throughM6 is 2.5,
and M7 and M8 is 7.0. Layers M2 through M5 have 10 conductorseach
whereaslayersM7 andM8 have 4 conductorseach.
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TABLE III

FIRST TWO ROWS OF CAPACITANCE MATRIX COMPUTED BY PHICAP AND FASTCAP (ORDER=2) FOR 4X4 BUS WITH UNIFORM DIELECTRIC.

ý x"x ý x � ý xzy ý x|{ ý x � ý xz} ý x�� ý x �
FastCap 405.54 -137.54 -12.02 -8.07 -48.40 -40.26 -40.17 -48.48
PHiCap 405.78 -139.30 -18.89 0.10 -48.05 -39.77 -39.84 -46.60ý � x ý �"� ý � y ý � { ý �'� ý � } ý � � ý �'�
FastCap -137.54 468.23 -132.66 -11.89 -40.15 -32.59 -32.54 -40.20
PHiCap -139.32 468.27 -129.49 -18.30 -39.96 -31.49 -31.21 -41.04

TABLE IV

COMPARISON OF HICAP AND PHICAP FOR COMPLEX MULTIPLE

DIELECTRIC PROBLEMS SHOWN IN FIG. 6. T IME IS CPU SECONDS,

I TERATION IS AVERAGE FOR SOLVING ONE CONDUCTOR, AND MEMORY IS

MB. FASTCAP WAS UNABLE TO SOLVE THESE PROBLEMS.

48 conductors 68 conductors 116 conductors
HiCap PHiCap HiCap PHiCap HiCap PHiCap

Time 533 122 3011 389 12930 2391
Iteration 18.7 2.8 25.3 3.0 36.8 5.1
Memory 43 59 115 161 406 570
Panel 19840 19840 42912 42912 138552 138552
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Fig. 7. Comparisonof the rate of convergenceof preconditionedGMRES
method.

The third benchmarkwe studiedis the parallel-plateprob-
lem. It is well known that this problemyields ill-conditioned
systemswhenthe two platesarevery closeto eachother. We
considertheproblemwith platesize ª�«�¬®­¯ª:«�¬ anddistance
betweentwo plates«±° ª:¬ . The resultsin TableV indicatethat
PHiCapperformsvery well on theseproblemstoo.

The multi-scalemethod[4] usesa similar idea to sparsify
the dense matrix ² . However, there are important differ-
encesbetweenthe multi-scalemethodand our method.The
multi-scale method is basedon high-order FMM, whereas
our method is basedon HiCap. It was shown that the hi-
erarchical approachin HiCap is more efficient and kernel
independent[3]. Themulti-scalemethodusesa block diagonal
preconditioner, while ours usesincompleteCholesky or LU
factorizations.In addition, the multi-scalemethodhas been
appliedto uniform dielectriconly. For the ³´­µ³ bus crossing

TABLE V

COMPARISON OF HICAP AND PHICAP FOR PARALLEL PLATES OF SIZE¶$·�¸º¹»¶$·�¸
AND DISTANCE

·<¼ ¶$¸
. T IME IS CPU SECONDS AND

ITERATION IS AVERAGE FOR SOLVING ONE CONDUCTOR.

CoarseDiscretization Fine Discretization½¨¾�¿ ·<¼ ·�¶ ½¨¾�¿ ·<¼ ·�·�À
Time Iteration Time Iteration

HiCap 100.2 54 523.5 72.5
PHiCap 53.3 6 265.8 6

benchmarks,we comparethe numberof iterationsneededby
the two methodsto reducethe residual norm below ª�«ÂÁmÃ .
Table VI shows that the number of iterations required by
PHiCap is less than the multi-scalemethod.The growth in
iterationswith the increaseof the problemsize is negligible
for PHiCap. A more detailed comparisonwas not possible
becauseonly the numberof iterationswerereportedin [4].

V. CONCLUSIONS

This paperproposesPHiCap,a preconditionedhierarchical
algorithm for capacitanceextraction. PHiCap transformsthe
denselinear systeminto a sparsesystemand then solves it
by a preconditionediterative method. The sparsestructure
allows constructionof inexpensive but highly effective pre-
conditionersbasedon incompletefactorizationtechniques.The
dense-to-sparsetransformationusedin PHiCap is applicable
to multipole-basedmethodsas well, wherethe linear system
canbe representedby a block matrix. Numericalexperiments
demonstratethe superiority of PHiCap over FastCap and
HiCap in terms of the number of iterations of the solver
and the overall running time. Experimentson the ³Ä­Å³ bus
crossingbenchmarkshow thatPHiCapis up to 70 timesfaster
than FastCap(order=2),up to 60 times fasterthan FastCap
(order=1),andup to 2 times fasterthanHiCap. For complex
industrial problemswith multiple dielectrics,PHiCap is 4-8
times fasterthan HiCap. FastCapis not able to solve these
problemsdue to their sizes.
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Responses to the reviewer's comments

Review Number 3.
*****************
Comments to the Author
----------------------
The method is an extension of their previous work, HiCap, which is to certain extend can be
regarded as the h- adaptive mesh refinement technique, but with pre-determined error estimate
based on the relative distant between interacting panels.  It was demonstrated in their previous
article that HiCap is a very fast algorithm for capacitance extraction problems. 

In this article, they improve their solver by implementing preconditioners, specifically via the
incomplete Cholesky factorization, and incomplete LU factorization, that helps to improve its
convergence rate.  Although, these two approaches of devising preconditioners are not novel,
their implementations to fast integral solvers are not obvious.  Here, the authors present a
systematic approach that transforms the original linear system, based on the original HiCap
algorithm, to another sparse form that allows the devising of the preconditioners.  Hence, their
main contribution here is the transformation of the linear system. 

Here are my comments and suggestions to the authors:
1) The first paragraph in the introduction is supposed to give an overview of the various fast
algorithms, but it is not properly written.  First, HiCap is a hierarchical based algorithm, but
definitely do not accelerated via FMM.  And it is quite meaningless to use another algorithm for
reference [4].  Likewise, it is also meaningless to say that pFFT and SVD are not FMM based
algorithm. The last sentence on the geometric independent method [8] of the paragraph is also
sluggishly written, as it is not very informative about the method.  Hence, I would  hope that the
authors would improve on this part.

Author’s response: We rewrote the introduction part. We outlined the two categories of existing
capacitance extraction methods, and explained that it is hard to find effective preconditioners for
the existing BEM based methods because of the dense structure of the linear system. Then, we
outlined our contribution, including the sparse transformations and effective preconditioners. 

2) In the second paragraph of the introduction, the claim that their algorithm is significantly
faster than many previous fast algorithms, including FastCap, HiCap, SVD, multi-scale and
pFFT methods, is not evident.  In this article, there are only explicit comparisons made between
their new approach with FastCap and HiCap. Even for the comparison between their method and
the multi-scale method, their experimental results only showed that their approach can converge
to the desire accuracy in lesser iterations.  But that does not means that it can be significantly
faster in terms of CPU time.  So in my opinion, it is not appropriate to make such strong claim
of their new approach.

Author’s response: We have revised the second paragraph of the introduction. We claim that the
new method is faster than FastCap and HiCap, and the new method converges faster than multi-
scale method. This claim is supported by the experiments in section IV. In reference [4], CPU
time is not reported, and therefore, we can only compare number of iterations with multi-scale
method. We do not compare the new method with SVD, pFFT and the algorithm in [9] directly,
since we have no access to those tools.

3) The first paragraph of the preliminary section, i.e. regarding the computing of capacitance
matrix, is redundant, as it is too fundamental.  The authors may also want to consider revising or



combining the subsection A and B, since the main difference between the two sets of problems
is the presence of the dielectric-dielectric layers for case B.  And it is quite evident that the
solution method for case A is the similar to case B with the dielectric-dielectric layer removed. 

Author’s response: As suggested by the reviewer, we simplified the part regarding the
computing of the capacitance matrix to one sentence. We have also combined subsections II.A
and II.B.

4) In section III, the authors can also consider to further summarize the first step of the PHiCap
algorithm, which is essentially the HiCap algorithm [2]. Readers should be able to have the copy
of the article [2] easily.

Author’s response: As suggested by the reviewer, we have simplified the first step of PHiCap
algorithm.
 
5) One major problem that I found quite disturbing is the accuracy of the method. In this article,
and also their previous work [2], the authors have used the Frobenius norm of the capacitance
matrix as a gauge to justify the accuracy of their methods. First, I would like to point out that it
can be quite misleading to use the capacitance solution as an indication of the accuracy of fast
solvers, including FMM.  It was pointed out in a recent article (ET Ong, HP Lee and KM Lim, A
Parallel Fast Fourier Transform on Multipoles (FFTM) Algorithm for  Electrostatics Analysis of
3D Structures, IEEE Trans. CAD, vol. 23, no. 7, pp. 1063, 2004) that the capacitance solution
can be very accurate even thought the primary solution (i.e. surface charge solution) is not as
accurate.  In general, it was observed that the capacitance solution can be up to 2 order more
accurate than the surface charge solution (measured in L2 norm).  This is mainly due to the
global nature of the capacitance variable, where one is only interested in the summation of the
surface charge solution. Furthermore, the used of the Frobenius norm of the capacitance matrix
would further averaged the overall errors.  Take for example the capacitance solutions in Table
II of [2], where HiCap reported an error of only 1.8 in terms of the Frobenius norm, but as far as
the capacitance entries were concerned, the errors can be as large as about 20 for C14.  Hence, I
think the authors may have too over concerned with the efficiency of the algorithm, but fail to
address the accuracy of the method properly.  And I suppose it is very important that a good
numerical method should be able to account for both the efficiency and accuracy aspects
properly.

Author’s response: We agree with the reviewer that Frobenius norm tends to average the overall
errors. To show the accuracy of each capacitance entry, we have added Table III and Fig.5.
Table III includes individual capacitance of the first and second rows for the 4X4 bus uniform
medium case, for both PHiCap and FastCap. Fig 5 is the error distribution of self-capacitance
and significant coupling capacitance for the bus crossing examples. From the table and figure, it
can be seen that for the self and significant coupling capacitance entries, the accuracy is very
good. Although the error for small coupling capacitances is sometimes large, it is acceptable for
circuit analysis purpose, since the small coupling capacitances have minor influence on the
circuit performance. In practical circuit analysis applications, small coupling capacitances are
usually dropped to maintain a manageable problem size. 
As pointed out by the reviewer, the capacitance solution can not be used as an accuracy indicator
for the fast solver, when the concern is the charge distribution. However, for the purpose of
capacitance extraction, it is sufficient to compute the net charge on each conductor. Therefore,
we believe that it is appropriate to use the capacitance solution to evaluate the approach.


