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Sparse Transformations and Preconditionersfor 3-D Capacitance
Extraction

Shu Yan, Vivek Sarin,and Weiping Shi

Abstract— Thr ee-dimensional capacitance extraction algo-
rithms are important due to their high accuracy However, the
current 3D algorithms are slow and thus their application is
limited. In this paper, we presenta novel method to significantly
speedup capacitanceextraction algorithms basedon boundary
element methods, under uniform and multiple dielectrics.

The nxn coefficientmatrix in the boundary elementmethodis
dense,even when approximated with the fast multipole method,
where n is the number of panels needed to discretize the
conductor surfacesand dielectric interfaces. As a result, effective
preconditionersare hard to obtain and iterati ve solvers corverge
slowly. In this paper, we intr oduce a linear transformation to
corvert the n x n densecoefficient matrix into a sparse matrix
with O(n) nonzero entries, and then useincomplete factorization
to produce a very effective preconditioner For the k x k bus
crossing benchmark, our method requires at most 4 iterations,
whereas previous best methods such as FastCap and HiCap
require 10-20 iterations. As a result, our algorithm is up to 70
times faster than FastCap and up to 2 times faster than HiCap
on thesebenchmarks. Additional experimentsillustrate that our
method consistently outperforms previous best methods by a
large magnitude on complex industrial problems with multiple
dielectrics.

Index Terms— Parasitic extraction, capacitance extraction,
boundary elementmethod, iterative method, preconditioning.

|. INTRODUCTION

APACITANCE extraction is important for timing veri-

fication and signal integrity analysisof VLSI circuits,
multi-chip modules printedcircuit boardsandpackagesMost
existing methodsfall into two cateyories: library look-up
wherethe layoutis divided into sectionsand matchedagainst
a pre-characterizetibrary to derive the capacitancevalue, or
field solverwherethe electromagnetidield is solvedto derive
the capacitanceThe library methodsarefaster while the field
methodsare more accurate.As the technologyshrinks, the
demandfor fastandaccuratetoolsis increasingln this paper
we try to meetthis demandby proposinga novel techniqueto
significantlyspeed-ugastmultipole accelerated[1] boundary
elementmethod(BEM), which is usedby mary field solvers
suchasFastCap2], HiCap[3], the multi-scalealgorithm[4],
and hybrid algorithms[5].

The linear systemarising from BEM is often solved by
iterative methods.However, the linear systemis dense,even
when approximatedwith the fast multipole method. As a
result, effective preconditionersare hard to obtain and the
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iterative solverscorvergeslowly. In this paperwe proposePH-
iCap,aPreconditionedHi erarchicahlgorithmfor Capacitance
extraction.PHiCapusesa linear transformatiorto corvert the
denselinear systemobtainedfrom the hierarchicalalgorithm
[3] to an equivalent sparsesystem.The sparsestructureis
exploitedto constructpreconditionerbasedn incompleteLU
or incompleteCholesky factorizationsThe transformedinear
systemis solved by preconditionedGMRES or CG iterative
methodqsee e.g.,[6]). Therateof corvergenceof theiterative
methodsncreasesiramaticallyby usingthesepreconditioners.
For benchmarkexamples,PHiCap usesfewer iterationsand
runssignificantlyfasterthanpreviousmethodssuchasFastCap
[2] andHiCap [3]. The numberof iterationsusedby PHiCap
is alsolessthanthe multi-scalemethod[4].

In addition to fast multipole acceleratedBEMSs, there are
otherfastcapacitancextractionalgorithms,suchasthe pFFT
algorithm[7], the singularvalue decomposition(SVD) algo-
rithm [8] and the geometricindependenmethod[9]. We do
not know if our method can be applied to speed-upthese
algorithms.

The paperis organizedasfollows: In Sectionll, we review
the integral equationapproachfor capacitancesxtraction for
uniform and multiple dielectrics.In Sectionlll, we introduce
the new algorithm. We presentexperimentalresultsin Sec-
tion IV andconclusionsn SectionV.

Il. PRELIMINARIES

To computethe self and coupling capacitanceswe need
to computethe conductorsurfacechages,given certaincon-
ductor potentials.In general,the surface chages satisfy the
integral equation

P(x) = / o(z") G(z,2") do’, Q)
Sc.USg
where ¢)(z) denotesthe known conductorsurface potential,
S. is the the conductorsurfaces,S, is the dielectric-dielectric
interfaces o is the chage densitieson S, and Sy, G(x,2') is
the Greens function, do/ is the incrementakconductorsurface
area,and 2/ € do’. The Greens function G(z,z’) hasthe
form
Gz, 2') = -
dregl|z — 2’|’
where||z — 2’| denoteghe Euclideandistancebetween: and
'
In addition, the interface condition

Ma(z)  O(z)
a 2
¢ ong b ong (2)
must be satisfiedat ary point z € S,. Here, ¢, ande¢, are
the permittivities of the two adjacentdielectricsa andb, n,, is
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the normal to the dielectric-dielectricinterface at = pointing
into a, and 0y, (z)/0n, and dyy(x)/On, are the normal
componenbdf electricfield at z in a andb, respectiely. Here,
the equivalentchage approacH10], [11] is usedto dealwith
multiple dielectric.

To solve (1) and (2) numerically the standardGalerkin
schemeis used.In this approachthe conductorsurfacesand
dielectric-dielectridnterfacesare dividedinto n small panels,

Ap, As, ..., A, anda denselinear systemis formed:
P.. Pgq dc Ve
= 3
e wa e o[V @

whereq. andqq denotethevectorof chaigesonthe conductor
panelsand dielectric-dielectricinterface panels,respectiely,
andv. denotesthe vector of potentialson conductorpanels.
The (i, ) entry of P.c.andP.q aredefinedas

1
//G:rl,xJ dojday.
area(A4;) area(A

The i-th diagonalentry of Eqq is definedas

bij =

eii = (€a + €p)

2(1@60 '

The off-diagonal entriesof Egqq and the entriesof Eg4. are
definedas

) -2 0 1 1
Ong area(A;) area(A;)

//Ga:z,rj dojday.

The problemwith uniform dielectricis a specialcasewith the
dielectric-dielectricinterfacesremoved.

= (a

eij

I1l. THE PHICAP ALGORITHM

In this section,we presentPHiCap,the preconditionedhier
archical capacitancesxtraction algorithm. Reformulatelinear
system(3) asfollows.

Pq=v. 4)
We will shov how to transformdenselinear system(4) to
a sparsesystem,which is then solved by a preconditioned
iterative method.The algorithmis outlined below.

The PHiCap Algorithm

1)
2)

Constructthe factorizationP = JTHJ.

Transform the dense system Pq = v to equialent
sparsesystemPq = V.

Computean incompletefactorizationpreconditionerfor
P.

Solve Pq =
method.
Computecapacitance.

3)
4) v by preconditionedCG or GMRES

5)

/ A A\
Heshido
A

). [
GlAs A7l

Fig. 1. The hierarchicaldatastructure.

A. Factorizationof P (Stepl)

We usethe HiCap algorithm[3] to constructa hierarchical
datastructureto storethe potentialcoeficient matrix P. Fig. 1
shavs an exampleof the hierarchicaldatastructure Eachtree
representshe partition of a conductorsurfaceor a dielectric-
dielectric interface. Each non-leaf node representsa panel
that is further subdvided into two child panels.Each leaf
node representsa panel that is not further subdvided. The
coeficientsare storedaslinks betweenthe nodes.

In fact, the links storedin the hierarchicaldatastructureare
not exactly entriesof P, but a factorizationof P, which we
now explain. Let n be the numberof leaf panelsand N bethe
total numberof leaf and non-leafpanels.Let H ¢ RY*Y be
the matrix whereeachnonzeroentry representsa link between
the correspondinganelsin the hierarchicaldatastructure Let
J € RV*™ bethe matrix representinghe tree structure Each
row of J corresponddo a panel,eitherleaf or non-leaf,and
each column correspondgo a leaf panel. Entry (i,5) of J
is 1 if panel: containsthe leaf panel j, and O otherwise.
Accordingto [3], we have thefactorizationP = JTHJ. Here
P is adensematrix with O(n) block entriesandH is a sparse
matrix with O(n) nonzeroentries.

B. Transformingthe Linear Systen{Step2)

1) Overviav: Our transformationis basedon the factoriza-
tion P = JTHJ. Sincerank(J) = n, we canalwaysconstruct
an orthonormaltransformatiorF € RV *V (describedaterin
this section),suchthat

W
FJ:{ h }
whereW € R"*"™, Thus,
P = JTHJ
= JYFTPHH(FTF)J
= (F3)T (FHFT) (FJ)
W
— T T
_ [WT o] (FHF ){ ; }
whereFHFT canbe representeds

X M

FHFT = {

it
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Here, P is a sparsen x n matrix (we shaw this propertylater),
and x’'s denotesubmatriceghat do not contributeto P. Since
P = WTPW, the denselinear system(4) is transformedto
the sparsesystem

Pg=7v, (5)
whereq = Wq andv = W Ty,

2) ConstructingF: We first introducea basictransforma-
tion thatis usedto constructF. Considerthe matrix

1 1
Ju=1| ¢ O ,
0 cg

wherecy, is a constanthat dependson the heightk of a node
in the tree. Thereexists an orthonormalmatrix

2 Ck Ck
V2(er242)  \/2(cr242)  /2(ck2+2)
Fk _ ch MRS MR
\/Ck2+2 \/Clk2+2 \/Ckl2+2 ’
0 7 %
suchthat
o { Ck+1  Ck+41 -|
Fde=1] 0 (N (6)
ea—
where
2 +2 Cr
Ck41 = k2 ) ek_jkia k217
andc; = 1.

To simplify the discussionwe definean elementtree asa
treewith oneroot andtwo children.Given a hierarchicaldata
structureand the correspondingmatrix J, the transformation
is done by a depth-firsttraversal of the correspondingree,
propagatingthe transformationupward to the root. Fig. 2
illustratesthe procedureStartingfrom heightk = 1, asshovn
in Fig. 2(a),for eachelementreerootedat height1, i.e., trees
(B, C, D) and(E, F, G), we canidentify the correspondingly
blocksin J. We constructF; that transformsall J; blocks
to 1J; blocks without changingarything elsein J. Next,
as illustrated in Fig. 2(b), we identify the elementtree at
height k = 2, i.e., tree (A, B, E), and the corresponding
block in F1J. Note that the rows of A, B, and E have two
instancesof the Jo block in columnsC and F and columns
D and G, respectiely. We constructF5 that transformsthe
J2 blocksto F2J, blocks without changinganything elsein
F1J. In this way, the transformatioris propagatedo the root.
Finally, as shovn in Fig. 2(c), we move the nonzerorows to
thetop of thematrix usinga permutatiormatrix E. The overall
transformations givenasF = EF.F;. It is easyto seethat
thenonzerorows of FJ correspondo theroot nodeandnodes
that are right children of other nodes.In other words, zero
rows in FJ correspondo nodesthatareleft childrenof other
nodes.

For a tree of heighth, the transformationis

F = EF,Fy,_;---FoFy,

where Fy is constructedaccordingto the elementtrees at
heightk. SinceF,F,,... ,Fy, and E are orthonormal,the
transformatiomrmatrix F is orthonormal.

A
CDFG CDFG
All111 Al 111
B|11 B [C2C2
B E Cl|1 FLCc|0O0
D 1 — D |€17€;
E 11 E C;y Cy
F 1 F 00
C D F G G 1 G €,-€,
J FiJ
(a) Transformatiorwith Iy
/ A \
CDFG CDFG
All1111 A |C3C3C3C3
B [C2C2 B{OOOO
B E C > C
D [€.17€ — D (€176
/A b\ E C;Cy E |€2€27€x-€,
F F
C D F G G €,°€; G €, ~€y
FlJ F2F1J
(b) Transformationwith F3
A CDFG CDFG
A [C3C3C3C3 A [C3C3C3C3
B E |€2€2-€;-€y
B E C E D |1 €
D [€17€1 -G €, -y
E |€2€2-€x€; B
F C
C D F G G €€, F
R J EFyF1J

(c) Permutingrows with E

Fig. 2. Constructionof transformationF for a tree of height2.

3) ComputingFHFT: The matrix H is transformedinto
FHFT by applyingthe transformationdy, as shavn below

Hy. 1 = Fi HF], k=1,2,...,h,
whereH; = H, andthenby applyingthe permutationmatrix

E:
FHFT = EH, ET.

In the hierarchicaldatastructure this is doneby a depth-first
traversal of the tree, propagatingthe transformationupward,
in a mannersimilar to the processof constructingthe matrix
F.

In the transformedmatrix FHFT, we are concernedonly
with the submatrixP thatcontainsthe links amongroot nodes
andright child nodes The matrix P canbe treatedasa sparse
matrix with the numberof nonzerosthat are comparableto
the numberof block entriesin P(seeFig. 3).

4) Computingv: Therows of thetransformednatrix Fi Jy
are orthogonal.lt follows that the rows of W are mutually
orthogonal,andthat WW T is a diagonalmatrix with values

2’“ci+1, wherek is the height of the correspondingnodein
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107 - -
+  Number of block entries in P _
(o) Number of nonzero entries in P el
pod
10° K"
% °
&
slope=1 936“‘
10° B9
&
/’,, g
r’,’ 6
10* - ' '
102 10° 10* 10°

Matrix dimension

Fig. 3. The numberof nonzeroentriesin P andthe numberof block entries
in P arecomparablefor variousproblemsizes.

the tree. This propertyis exploited when computingv:
F=WTy = (WWT) ' Wv.

Furthermore the sum of entriesin eachrow of W is zero
for all nodesexcept the root. The sum of entriesin rows
correspondingto root nodesat height k& is 2¢¢;,,,. As a
result, ¥ has nonzeroentriesof value c, |, in the locations
correspondingo the roots of the conductorsurfacesat unit
potential.

The precedingdescriptionis for a balancedtree in which
all leaf nodesare at height 1. An unbalancedtree can be
embeddednto a balancedtree by adding additionaldummy
nodes,andthe above procedurecanbe followed. An efficient
implementationcan be developed by avoiding the actual
constructionof dummy nodes.

C. Solvingthe TransformedSystem(Steps3-4)

For problemsin uniform medium,the sparsdinear system
(5) is symmetric.We usethe incompleteCholesk factoriza-
tion with no fill [6] to computethe preconditionerPrecondi-
tionedConjugateGradientamethodis usedto solve the system.
For problemswith multiple dielectrics thesparsdinearsystem
is nonsymmetric.The preconditioneris computedfrom an
incomplete LU factorizationwith no fill [6]. We use right
preconditionedcMRES methodto solve the system.

D. ComputingCapacitance(Step5)

Capacitancecan be computed from q directly without
computingq. Recallthat § = Wq, andthat the rows of W
correspondindo root nodesat heightk have identicalnonzero
entries with value cx1. Thus, a root node entry in q is
cr+1 timesthe sumof all the leaf panelchagesin that tree.
Capacitancean be computedby addingthe root nodeentries
of eachconductorin q after scalingthem by corresponding
factorsc; ;.

Fig. 4. 4x4 buswith two layersof dielectrics(sectionview).

E. Compleity Analysis

The compleity of constructingthe factorizationof P in
Steplis O(n) [3]. Thetransformatiorof the linear systemin
Step2 usuallytakesO(nh) time, whereh is the heightof the
tree.Normally, h = O(log n). Sincethenumberof nonzerosn
P is O(n), the incompletefactorizationcanbe donein O(n)
time. Eachiteration requiresa matrix-vector productwith P,
anda solutionof the lower anduppertriangularsystemsf the
preconditionerThus, Steps3 and4 take O(n) time whenthe
numberof iterationsis small. Capacitancecan be computed
in constanttime. The overall complexity of this algorithm
is normally O(nlogn + mn), where m is the number of
conductors.

IV. EXPERIMENTAL RESULTS

We comparePHiCap with the following algorithms: Fast-
Capwith expansionorder 2, FastCapwith expansionorder1,
and HiCap. Other methods,suchas SVD [8] and pFFT [7],
exhibit performancehatis similar to FastCapNo benchmark
experiments were reported for the geometric independent
method[9]. In [3], HiCap algorithm canonly solve problems
in uniform media. To make the comparisoncomplete, we
extend HiCap to the multiple dielectricscase.The algorithms
are executedon a Sun UltraSFARC Enterprise4000. Unless
otherwisenoted theiterationsareterminatedvhentherelative
residualnorm of the preconditionedsystemis reducedbelow
1072,

Thefirst setof benchmarksrek x k bus crossingstructures
from [2]. Eachbusis scaledto 1m x 1m x (2k + 1)m. The
distancebetweenthe adjacentbusesin the samelayeris 1m
and the distancebetweenthe two bus layersis 2m. For the
uniform dielectric cases,the permittivity is assumedto be
€g. For the multiple dielectric casesseeFig. 4, the medium
surroundingthe upperlayer conductorshaspermittivity 3.9¢q
and the medium surroundingthe lower layer conductorshas
permittivity 7.5¢o. The shadedbox representshe interfaceof
the two layers.
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Tables| and Il comparethe four algorithms. PHiCap is
the fastestand usesmuchlessmemorycomparedo FastCap.
The current implementationof PHiCap usesmore memory
comparedo HiCap becauseof the additional storageneeded
for thetransformedsystemP. The storagerequirementanbe
reducedby computingP directly, sinceit is not necessaryo
constructH. In HiCap and PHiCapalgorithms,the discretiza-
tion thresholdP. is chosento be 0.008. This ensureghat the
relative error in the capacitancenatrix computedby PHiCap
is belov 3%, whichis acceptablén practice.Therelative error
in the capacitancenatrix C’, which is computedoy HiCap or
PHiCapalgorithms,is definedas ||C — C'||z/||C| r, where
| - || denotesthe Frobeniusnorm. As per standardpractice,
C is computedby FastCapwith expansionorder 2.

Tablelll shows thefirst andsecondrows of the capacitance
matrix computedoy PHiCapandFastCaplt is easyto seethat
for the self capacitanceandsignificantcouplingcapacitances,
wherea coupling capacitances consideredsignificantif it is
greaterthan 10% of the self capacitancePHiCaps error is
mostly within 3%, with respectto FastCapwith expansion
order 2. The error for the small coupling capacitancess
sometimedarge, which is acceptablaincethe small coupling
capacitanceblave minor influenceon the circuit performance.
Fig. 5 shavs the errordistribution of the self capacitanceand
the significant coupling capacitancegor the six benchmark
examplesin Tablel andll.

TABLE |
COMPARISON FOR UNIFORM DIELECTRIC. TIME IS CPU SECONDS,
ITERATION IS AVERAGE FOR SOLVING ONE CONDUCTOR, MEMORY ISMB,
AND ERROR ISWITH RESPECT TO FASTCAP (ORDER=2).

FastCap FastCap HiCap PHiCap
(order=2) (order=1)

4x4 Bus with Uniform Dielectric
Time 18.6 19 0.5 0.4
Iteration 8 14.9 9 3
Memory 25.7 16.7 0.7 1.0
Error — 0.05% 2.1% 2.0%
Panel 2736 2736 1088 1088

6x6 Bus with Uniform Dielectric
Time 113.9 68.5 2.4 15
Iteration 14.4 14.5 11.9 3.2
Memory 62.5 40.3 1.9 2.9
Error — 1.1% 2.1% 2.2%
Panel 5832 5832 3168 3168

8x8 Bus with Uniform Dielectric
Time 206 204 7.3 3.4
Iteration 12 21.9 13.0 3.9
Memory 112 67 3.1 49
Error — 1.0% 3.1% 3.0%
Panel 10080 10080 4224 4224

The secondset of benchmarksare complec industrial cir-
cuits containing 8 layers of dielectricsand 48, 68 and 116
conductorsrespectiely. The smallestcaseof 48 conductors
is shovn in Fig. 6. Theresultsarein TablelV. FastCapcannot
solve theseexamplesbecausef prohibitive time andmemory
requirements PHiCap displays nearoptimal preconditioning
on these experiments.Fig. 7 shavs that the residual norm
decreasegapidly for PHiCap. In contrast,the decreaseis
slower for HiCap. As a result, PHiCap requiresmuch less
time to solve the problem.

TABLE 1l
COMPARISON FOR MULTIPLE DIELECTRICS. TIME IS CPU SECONDS,
ITERATION IS AVERAGE FOR SOLVING ONE CONDUCTOR, MEMORY ISMB,
AND ERROR IS WITH RESPECT TO FASTCAP (ORDER=2).

FastCap FastCap HiCap PHiCap
(order=2) (order=1)

4x4 Bus with Two Layer Dielectrics
Time 63 36 1.7 2
Iteration 13 14 9 3
Memory 68 39 3.0 3.9
Error — 0.6% 1.0% 1.0%
Panel 3456 3456 2120 2120

6x6 Bus with Two Layer Dielectrics
Time 162 104 10.4 5.8
Iteration 17.1 17 11.3 3
Memory 92 61 6.3 8.3
Error — 0.5% 1.0% 1.2%
Panel 5448 5448 4120 4120

8x8 Bus with Two Layer Dielectrics
Time 324 197 32 15
Iteration 18 18 12.8 3
Memory 133 86.9 11.5 15.3
Error — 0.0% 1.4% 1.4%
Panel 7968 7968 6784 6784

120 T .
Il FastCap(order=1)
100 I HiCap ,
[ PHiCap
80 |
60 |
40 B
20 i
0
-4 2 4 6 8

Error (%)

Fig. 5.  Error distribution of self capacitanceand significant coupling
capacitancdor the 6 examplesin Table!l andll.

Air 5,21-0
M8 2un
1
NN N
M6 lun W
M5 lum
M4 iy Qaum
My N N8N NENENENEN]
1 ()8
M3 'Lmj
M2 by S S SSESSSSSS
M1 lum
Substrate €, =11.8

Fig. 6. Examplewith 48 metal conductorsand 8 dielectric layers. Metal
wires are shaded Relative permittvity of M1 is 3.9, M2 throughM6 is 2.5,
and M7 and M8 is 7.0. Layers M2 through M5 have 10 conductorseach
whereadayersM7 and M8 have 4 conductorseach.
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TABLE 1lI
FIRST TWO ROWS OF CAPACITANCE MATRIX COMPUTED BY PHICAP AND FASTCAP (ORDER=2) FOR 4X4 BUS WITH UNIFORM DIELECTRIC.

C11 Ci2 Ci3 C1a Cis Cis Cir Cis
FastCap 405.54 -137.54 -12.02 -8.07 -48.40 -40.26 -40.17 -48.48
PHiCap 405.78 -139.30 -18.89 0.10 -48.05 -39.77 -39.84 -46.60

Co1 Ca2 Ca3 Cay Cas Cas Cor Cog
FastCap -137.54 468.23 -132.66 -11.89 -40.15 -32.59 -32.54 -40.20
PHiCap -139.32 468.27 -129.49 -18.30 -39.96 -31.49 -31.21 -41.04
TABLE IV TABLE V

COMPARISON OF HICAP AND PHICAP FOR COMPLEX MULTIPLE
DIELECTRIC PROBLEMS SHOWN IN FIG. 6. TIME IS CPU SECONDS,
ITERATION IS AVERAGE FOR SOLVING ONE CONDUCTOR, AND MEMORY IS
MB. FASTCAPWAS UNABLE TO SOLVE THESE PROBLEMS.

48 conductors 68 conductors 116 conductors
HiCap PHiCap HiCap PHiCap HiCap PHiCap
Time 533 122 3011 389 12930 2391
Iteration 18.7 2.8 25.3 3.0 36.8 5.1
Memory 43 59 115 161 406 570
Panel 19840 19840 42912 42912 138552 138552
10‘2 & * & T T
& FastCap(order=2)
3 - HiCa
§ 107k - PHiCap
8=
s 4
& 10°F 3
10'5 . . .
0 5 10 15 20 25 30 35
Number of iterations
162 T T T T T
E 1(53’ 4
[
~ 1(54’ 4

10°0 Y0 20" 30 40 50 60 70 80 90 100 110
Time(s)

Fig. 7.
method.

Comparisonof the rate of convergenceof preconditionedGMRES

The third benchmarkwe studiedis the parallel-plateprob-
lem. It is well known that this problemyields ill-conditioned
systemswhenthe two platesare very closeto eachother We
considerthe problemwith platesize 10m x 10m anddistance
betweentwo plates0.1m. The resultsin TableV indicatethat
PHiCapperformsvery well on theseproblemstoo.

The multi-scalemethod[4] usesa similar ideato sparsify
the dense matrix P. However, there are important differ-
encesbetweenthe multi-scale methodand our method.The
multi-scale method is basedon high-order FMM, whereas
our methodis basedon HiCap. It was shavn that the hi-
erarchical approachin HiCap is more efficient and kernel
independen{3]. The multi-scalemethodusesa block diagonal
preconditioner while ours usesincompleteCholesk or LU
factorizations.In addition, the multi-scale method has been
appliedto uniform dielectriconly. For the & x k& bus crossing

COMPARISON OF HICAP AND PHICAP FOR PARALLEL PLATES OF SIZE
10m X 10m AND DISTANCE O0.1m. TIME IS CPU SECONDS AND
ITERATION IS AVERAGE FOR SOLVING ONE CONDUCTOR.

CoarseDiscretization  Fine Discretization

P. =0.01 P. = 0.005
Time Iteration Time Iteration
HiCap 100.2 54 5235 725
PHiCap 53.3 6 265.8 6

benchmarksye comparethe numberof iterationsneededby
the two methodsto reducethe residual norm belov 10~°.
Table VI shaws that the number of iterations required by
PHiCapis less than the multi-scale method. The growth in
iterationswith the increaseof the problemsize is negligible
for PHiCap. A more detailed comparisonwas not possible
becauseonly the numberof iterationswere reportedin [4].

V. CONCLUSIONS

This paperproposesPHiCap,a preconditionechierarchical
algorithm for capacitanceextraction. PHiCap transformsthe
denselinear systeminto a sparsesystemand then solves it
by a preconditionediteratve method. The sparsestructure
allows constructionof inexpensve but highly effective pre-
conditionerdasedn incompletefactorizatiortechniquesThe
dense-to-sparstransformationusedin PHiCapis applicable
to multipole-basednethodsas well, wherethe linear system
canbe representedyy a block matrix. Numericalexperiments
demonstratethe superiority of PHiCap over FastCapand
HiCap in terms of the number of iterations of the solver
and the overall running time. Experimentson the & x k& bus
crossingbenchmarlshow that PHiCapis up to 70 timesfaster
than FastCap(order=2),up to 60 times fasterthan FastCap
(order=1),and up to 2 timesfasterthan HiCap. For complex
industrial problemswith multiple dielectrics,PHiCapis 4-8
times fasterthan HiCap. FastCapis not able to solve these
problemsdueto their sizes.
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Responses to the reviewer's comments

Review Number 3.
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Comments to the Author

The method is an extension of their previous work, HiCap, which is to certain extend can be
regarded as the h- adaptive mesh refinement technique, but with pre-determined error estimate
based on the relative distant between interacting panels. It was demonstrated in their previous
article that HiCap is a very fast algorithm for capacitance extraction problems.

In this article, they improve their solver by implementing preconditioners, specifically via the
incomplete Cholesky factorization, and incomplete LU factorization, that helps to improve its
convergence rate. Although, these two approaches of devising preconditioners are not novel,
their implementations to fast integral solvers are not obvious. Here, the authors present a
systematic approach that transforms the original linear system, based on the original HiCap
algorithm, to another sparse form that allows the devising of the preconditioners. Hence, their
main contribution here is the transformation of the linear system.

Here are my comments and suggestions to the authors:

1) The first paragraph in the introduction is supposed to give an overview of the various fast
algorithms, but it is not properly written. First, HiCap is a hierarchical based algorithm, but
definitely do not accelerated via FMM. And it is quite meaningless to use another algorithm for
reference [4]. Likewise, it is also meaningless to say that pFFT and SVD are not FMM based
algorithm. The last sentence on the geometric independent method [8] of the paragraph is also
sluggishly written, as it is not very informative about the method. Hence, | would hope that the
authors would improve on this part.

Author’s response: We rewrote the introduction part. We outlined the two categories of existing
capacitance extraction methods, and explained that it is hard to find effective preconditioners for
the existing BEM based methods because of the dense structure of the linear system. Then, we
outlined our contribution, including the sparse transformations and effective preconditioners.

2) In the second paragraph of the introduction, the claim that their algorithm is significantly
faster than many previous fast algorithms, including FastCap, HiCap, SVD, multi-scale and
pFFT methods, is not evident. In this article, there are only explicit comparisons made between
their new approach with FastCap and HiCap. Even for the comparison between their method and
the multi-scale method, their experimental results only showed that their approach can converge
to the desire accuracy in lesser iterations. But that does not means that it can be significantly
faster in terms of CPU time. So in my opinion, it is not appropriate to make such strong claim
of their new approach.

Author’s response: We have revised the second paragraph of the introduction. We claim that the
new method is faster than FastCap and HiCap, and the new method converges faster than multi-
scale method. This claim is supported by the experiments in section IV. In reference [4], CPU
time is not reported, and therefore, we can only compare number of iterations with multi-scale
method. We do not compare the new method with SVD, pFFT and the algorithm in [9] directly,
since we have no access to those tools.

3) The first paragraph of the preliminary section, i.e. regarding the computing of capacitance
matrix, is redundant, as it is too fundamental. The authors may also want to consider revising or



combining the subsection A and B, since the main difference between the two sets of problems
is the presence of the dielectric-dielectric layers for case B. And it is quite evident that the
solution method for case A is the similar to case B with the dielectric-dielectric layer removed.

Author’s response: As suggested by the reviewer, we simplified the part regarding the
computing of the capacitance matrix to one sentence. We have also combined subsections 11.A
and 11.B.

4) In section 111, the authors can also consider to further summarize the first step of the PHiCap
algorithm, which is essentially the HiCap algorithm [2]. Readers should be able to have the copy
of the article [2] easily.

Author’s response: As suggested by the reviewer, we have simplified the first step of PHiCap
algorithm.

5) One major problem that I found quite disturbing is the accuracy of the method. In this article,
and also their previous work [2], the authors have used the Frobenius norm of the capacitance
matrix as a gauge to justify the accuracy of their methods. First, | would like to point out that it
can be quite misleading to use the capacitance solution as an indication of the accuracy of fast
solvers, including FMM. It was pointed out in a recent article (ET Ong, HP Lee and KM Lim, A
Parallel Fast Fourier Transform on Multipoles (FFTM) Algorithm for Electrostatics Analysis of
3D Structures, IEEE Trans. CAD, vol. 23, no. 7, pp. 1063, 2004) that the capacitance solution
can be very accurate even thought the primary solution (i.e. surface charge solution) is not as
accurate. In general, it was observed that the capacitance solution can be up to 2 order more
accurate than the surface charge solution (measured in L2 norm). This is mainly due to the
global nature of the capacitance variable, where one is only interested in the summation of the
surface charge solution. Furthermore, the used of the Frobenius norm of the capacitance matrix
would further averaged the overall errors. Take for example the capacitance solutions in Table
Il of [2], where HiCap reported an error of only 1.8 in terms of the Frobenius norm, but as far as
the capacitance entries were concerned, the errors can be as large as about 20 for C14. Hence, |
think the authors may have too over concerned with the efficiency of the algorithm, but fail to
address the accuracy of the method properly. And | suppose it is very important that a good
numerical method should be able to account for both the efficiency and accuracy aspects

properly.

Author’s response: We agree with the reviewer that Frobenius norm tends to average the overall
errors. To show the accuracy of each capacitance entry, we have added Table Ill and Fig.5.
Table 111 includes individual capacitance of the first and second rows for the 4X4 bus uniform
medium case, for both PHiCap and FastCap. Fig 5 is the error distribution of self-capacitance
and significant coupling capacitance for the bus crossing examples. From the table and figure, it
can be seen that for the self and significant coupling capacitance entries, the accuracy is very
good. Although the error for small coupling capacitances is sometimes large, it is acceptable for
circuit analysis purpose, since the small coupling capacitances have minor influence on the
circuit performance. In practical circuit analysis applications, small coupling capacitances are
usually dropped to maintain a manageable problem size.

As pointed out by the reviewer, the capacitance solution can not be used as an accuracy indicator
for the fast solver, when the concern is the charge distribution. However, for the purpose of
capacitance extraction, it is sufficient to compute the net charge on each conductor. Therefore,
we believe that it is appropriate to use the capacitance solution to evaluate the approach.



