Hair Meshes

Cem Yuksel
Cyber Radiance

Scott Schaefer
Texas A&M University

John Keyser
Texas A&M University
Hair Modeling

Previous Work
Previous Work on Hair Modeling

- Flat surfaces

Kim and Neumann 2000

Koh and Huang 2001
Previous Work on Hair Modeling

- Wisps and generalized cylinders

Yang et al. 2000
Previous Work on Hair Modeling

- Wisps and generalized cylinders

Kim and Neumann 2002
Previous Work on Hair Modeling

- Guide curves

Alter 2004
Previous Work on Hair Modeling

- Physically-based approaches

Anjyo et al. 1992
Previous Work on Hair Modeling

- Physically-based approaches

Hadap and Magnenat-Thalmann 2000
Previous Work on Hair Modeling

- Physically-based approaches
Previous Work on Hair Modeling

- Physically-based approaches

Choe and Ko 2005
Previous Work on Hair Modeling

- Physically-based approaches

Ward et al. 2007
Previous Work on Hair Modeling

- Sketch-based interfaces

Wither et al. 2007
Previous Work on Hair Modeling

- Sketch-based interfaces

Fu et al. 2007
Previous Work on Hair Modeling

- Hair Capturing

Paris et al. 2008
Hair Modeling

- Question: Why not use polygons?
 - Polygons are widely accepted
 - Artists are already familiar with polygons

- Unfortunately,
 - Polygons represent surfaces
 - Hair is volumetric

- However,
 - We perceive hair as a surface
Hair Modeling with

Hair Meshes
Hair Meshes

- Volumetric Structure
 - Topological connections
 - Can uniquely trace a path from root to tip

- Editable as a surface
 - Polygonal modeling concepts
 - Obey topological constraints
Hair Modeling with Hair Meshes

- Hair Mesh Modeling
- Hair Generation
- Hair Styling
Hair Meshes

- **Layers**
 - Root Layer
 - Tip Layer

- **Vertices**
 - External Vertices
 - Internal Vertices
Hair Meshes

Hair Generation

- Pick a point at root layer
- Find corresponding points on all layers
- Connect them with a curve (ex. Catmull-Rom splines)
Hair Meshes

- Tip layer can be different for each face
Hair Meshes

- Tip layer can be different for each face
- Topology can change between layers
Hair Mesh

Topological Operations
Topological Operations

- Face Extrude
Topological Operations

- Face Extrude
Topological Operations

- Face Delete
Topological Operations

- Face Delete
Topological Operations

- Face Delete
 - Only tip faces
Topological Operations

- Layer Insert
Topological Operations

- Layer Insert
Topological Operations

- Layer Delete
Topological Operations

- Layer Delete
Topological Operations

- Edge/Vertex Separate
Topological Operations

- Edge/Vertex Separate
Topological Operations

- Edge/Vertex Weld
Topological Operations

- Edge/Vertex Weld
Topological Operations

- Edge/Face Divide and Subdivision
Topological Operations

- Edge/Face Divide and Subdivision
Topological Operations

- Edge/Face Divide and Subdivision
Hair Mesh

Geometrical Operations
Geometrical Operations

- User interacts with the external surface
- Internal structure is automatically shaped

- External Vertices
- Internal Vertices
Geometrical Operations

- Internal Vertex Placement
 - Part of the modeling process
 - It has to be fast
 - Constrained quadric minimization
 - Operates on the whole hair mesh
 - External vertices are fixed
 - Error is the difference between tangent edges
 - Favor local uniformity
 - Initial conditions are the previous positions
 - Solved using Conjugate Gradients
 - Converges after a few iterations
Geometrical Operations

- User SELECTs vertices to move
Geometrical Operations

- User MOVES selected vertices
Geometrical Operations

- Internal vertices are automatically placed
Geometrical Operations

- Internal vertices are automatically placed
Hair Styling

- All operations on hair strands are **styling** operations

![Hair Styling Diagram](image_url)
Hair Styling

- All operations on hair strands are **styling** operations
- Procedural Styling
Hair Styling

- All operations on hair strands are \textit{styling} operations
- Procedural Styling
- Combining with wisp-based methods
Hair Meshes

Results
Wrapping Up...

- Hair Meshes
 - Polygon-like modeling
 - Intuitive

-Direct Control

Lee Perry-Smith, www.ir-models.com
Thanks!

- Lee Perry-Smith
- Alexander Tomchuk
- Cedric Lepiller
- Marc Mordelet
- Luc Begin
- Anish Mohan
- Rune Spaans
- Nildo Hassane Essa