1. Show that \(\neg(p \land q) \) is logically equivalent to \((p \rightarrow q) \rightarrow \neg p\).

2. Show whether \(p \rightarrow p \) logically implies \(p \) or not.

3. Simplify \(\exists x P(x) \rightarrow \forall x \neg P(x) \) so that only one quantifier remains.

4. Find all cases in which \(A \times A \) contains the same number of elements as a given finite set \(A \).

5. Prove that \(\{\phi\} \) is a subset of any power set.