1. How many ways are there to pick \(r \) objects from \(n \) objects when repetitions are allowed and not all the \(n \) objects appear at the same time?

Solution:

(a) pick \(r \) objects from \(n \) objects when repetitions are allowed: \(\binom{n+r-1}{r} \)

(b) pick \(r \) objects from \(n \) objects when repetitions are allowed and ALL the \(n \) objects appear, which equals to first pick all \(n \) objects from \(n \) objects and then pick \(r-n \) objects from \(n \) objects (repetitions allowed): \(\binom{n+(r-n)-1}{r-n} = \binom{r-1}{r-n} \)

(c) pick \(r \) objects from \(n \) objects when repetitions are allowed and NOT ALL the \(n \) objects appear: \(\binom{n+r-1}{r} - \binom{r-1}{r-n} \)

2. How many permutations can be formed from \(n \) types of indistinguishable objects with objects of type \(i \) appearing \(i \) times for \(1 \leq i \leq n \)?

Solution:

\[
\begin{align*}
N_1 &= 1 \text{ objects for type 1} \\
N_2 &= 2 \text{ objects for type 2} \\
&\vdots \\
N_n &= n \text{ objects for type } n \\
\text{Totally } N \text{ objects, } N &= N_1 + N_2 + \ldots + N_n = 1 + 2 + \ldots + n = n(n+1)/2 \\
\text{Totally permutations } \frac{N!}{N_1!N_2!\ldots N_n!} &= \frac{(n(n+1)/2)!}{1!2!\ldots n!}
\end{align*}
\]

3. Find an explicit formula for the recurrence relation \(a_n = (\sqrt{3} + \sqrt{2})a_{n-1} - \sqrt{6}a_{n-2} \) with initial conditions \(a_0 = 2 \) and \(a_1 = \sqrt{3} + \sqrt{2} \).

Solution:

\[
\begin{align*}
r^2 - (\sqrt{3} + \sqrt{2})r + \sqrt{6} &= 0 \\
r &= \sqrt{3} \text{ or } r = \sqrt{2} \\
a_n &= \alpha_1(\sqrt{3})^n + \alpha_2(\sqrt{2})^n \\
a_0 &= 2 \text{ and } a_1 = \sqrt{3} + \sqrt{2}, \text{ so } \alpha_1 = 1, \alpha_2 = 1 \\
a_n &= (\sqrt{3})^n + (\sqrt{2})^n
\end{align*}
\]

4. Solve the recurrence relation \(T(n) = 2T(n/3) + \log(2^n) \), \(T(1) = 1 \), by finding an expression for \(T(n) \) in big-Oh notation.

Solution:

\[
\begin{align*}
T(n) &= 2T(n/3) + c \log(2) \cdot n \\
a &= 2, b = 3, d = 1, a < b^d \\
T(n) &= O(n^1) = O(n)
\end{align*}
\]
5. Find the generating function to determine the number of ways to choose k objects from n objects when the ith object appears either $i - 1$, i or $i + 1$ times for $1 \leq i \leq n$.

Solution:

generating function for the i^{th} object: X^{i-1}, X^i, X^{i+1}

$$\prod_{i=1}^{n}(X^{i-1}, X^i, X^{i+1}) = (1 + X + X^2) \prod_{i=1}^{n} X^{i-1} = (1 + X + X^2) \prod_{i=0}^{n-1} X^i$$

$$= (1 + X + X^2)X^{n(n-1)/2}$$